
Fixed-Point Designer™

User's Guide

R2015a

How to Contact MathWorks

Latest news: www.mathworks.com

Sales and services: www.mathworks.com/sales_and_services

User community: www.mathworks.com/matlabcentral

Technical support: www.mathworks.com/support/contact_us

Phone: 508-647-7000

The MathWorks, Inc.
3 Apple Hill Drive
Natick, MA 01760-2098

Fixed-Point Designer™ User's Guide
© COPYRIGHT 2013–2015 by The MathWorks, Inc.
The software described in this document is furnished under a license agreement. The software may be used
or copied only under the terms of the license agreement. No part of this manual may be photocopied or
reproduced in any form without prior written consent from The MathWorks, Inc.
FEDERAL ACQUISITION: This provision applies to all acquisitions of the Program and Documentation
by, for, or through the federal government of the United States. By accepting delivery of the Program
or Documentation, the government hereby agrees that this software or documentation qualifies as
commercial computer software or commercial computer software documentation as such terms are used
or defined in FAR 12.212, DFARS Part 227.72, and DFARS 252.227-7014. Accordingly, the terms and
conditions of this Agreement and only those rights specified in this Agreement, shall pertain to and
govern the use, modification, reproduction, release, performance, display, and disclosure of the Program
and Documentation by the federal government (or other entity acquiring for or through the federal
government) and shall supersede any conflicting contractual terms or conditions. If this License fails
to meet the government's needs or is inconsistent in any respect with federal procurement law, the
government agrees to return the Program and Documentation, unused, to The MathWorks, Inc.

Trademarks

MATLAB and Simulink are registered trademarks of The MathWorks, Inc. See
www.mathworks.com/trademarks for a list of additional trademarks. Other product or brand
names may be trademarks or registered trademarks of their respective holders.
Patents

MathWorks products are protected by one or more U.S. patents. Please see
www.mathworks.com/patents for more information.
Revision History

March 2013 Online only New for Version 4.0 (R2013a)
September 2013 Online only Revised for Version 4.1 (R2013b)
March 2014 Online only Revised for Version 4.2 (R2014a)
October 2014 Online Only Revised for Version 4.3 (R2014b)
March 2015 Online Only Revised for Version 5.0 (R2015a)

www.mathworks.com
www.mathworks.com/sales_and_services
www.mathworks.com/matlabcentral
www.mathworks.com/support/contact_us
http://www.mathworks.com/trademarks
http://www.mathworks.com/patents

iii

Contents

Fixed-Point Designer for MATLAB Code

Fixed-Point Concepts
1

Fixed-Point Data Types . 1-2

Scaling . 1-4

Compute Slope and Bias . 1-5
What Is Slope Bias Scaling? . 1-5
Compute Slope and Bias . 1-5

Precision and Range . 1-8
Range . 1-8
Precision . 1-9

Arithmetic Operations . 1-13
Modulo Arithmetic . 1-13
Two's Complement . 1-14
Addition and Subtraction . 1-15
Multiplication . 1-16
Casts . 1-22

fi Objects and C Integer Data Types 1-25
Integer Data Types . 1-25
Unary Conversions . 1-27
Binary Conversions . 1-28
Overflow Handling . 1-30

iv Contents

Working with fi Objects
2

Ways to Construct fi Objects . 2-2
Types of fi Constructors . 2-2
Examples of Constructing fi Objects 2-3

Cast fi Objects . 2-12
Overwriting by Assignment . 2-12
Ways to Cast with MATLAB Software 2-12

fi Object Properties . 2-18
Data Properties . 2-18
fimath Properties . 2-18
numerictype Properties . 2-20
Setting fi Object Properties . 2-21

fi Object Functions . 2-24

Fixed-Point Topics
3

Set Up Fixed-Point Objects . 3-2
Create Fixed-Point Data . 3-2

View Fixed-Point Number Circles 3-16

Perform Binary-Point Scaling . 3-29

Develop Fixed-Point Algorithms 3-34

Calculate Fixed-Point Sine and Cosine 3-46

Calculate Fixed-Point Arctangent 3-69

Compute Sine and Cosine Using CORDIC Rotation
Kernel . 3-94

Perform QR Factorization Using CORDIC 3-99

v

Compute Square Root Using CORDIC 3-134

Convert Cartesian to Polar Using CORDIC Vectoring
Kernel . 3-144

Set Data Types Using Min/Max Instrumentation 3-149

Convert Fast Fourier Transform (FFT) to Fixed Point 3-163

Detect Limit Cycles in Fixed-Point State-Space
Systems . 3-175

Compute Quantization Error . 3-187

Normalize Data for Lookup Tables 3-196

Implement Fixed-Point Log2 Using Lookup Table . . 3-201

Implement Fixed-Point Square Root Using Lookup
Table . 3-206

Set Fixed-Point Math Attributes 3-211

Working with fimath Objects
4

fimath Object Construction . 4-2
fimath Object Syntaxes . 4-2
Building fimath Object Constructors in a GUI 4-3

fimath Object Properties . 4-5
Math, Rounding, and Overflow Properties 4-5
How Properties are Related . 4-9
Setting fimath Object Properties 4-11

fimath Properties Usage for Fixed-Point Arithmetic . 4-13
fimath Rules for Fixed-Point Arithmetic 4-13
Binary-Point Arithmetic . 4-15
[Slope Bias] Arithmetic . 4-18

vi Contents

fimath for Rounding and Overflow Modes 4-21

fimath for Sharing Arithmetic Rules 4-23
Default fimath Usage to Share Arithmetic Rules 4-23
Local fimath Usage to Share Arithmetic Rules 4-23

fimath ProductMode and SumMode 4-26
Example Setup . 4-26
FullPrecision . 4-27
KeepLSB . 4-28
KeepMSB . 4-29
SpecifyPrecision . 4-30

How Functions Use fimath . 4-32
Functions that use then discard attached fimath 4-32
Functions that ignore and discard attached fimath . . . 4-32
Functions that do not perform math 4-33

Working with fipref Objects
5

fipref Object Construction . 5-2

fipref Object Properties . 5-3
Display, Data Type Override, and Logging Properties . . 5-3
fipref Object Properties Setting 5-3

fi Object Display Preferences Using fipref 5-5

Underflow and Overflow Logging Using fipref 5-7
Logging Overflows and Underflows as Warnings 5-7
Accessing Logged Information with Functions 5-9

Data Type Override Preferences Using fipref 5-12
Overriding the Data Type of fi Objects 5-12
Data Type Override for Fixed-Point Scaling 5-13

vii

Working with numerictype Objects
6

numerictype Object Construction 6-2
numerictype Object Syntaxes . 6-2
Example: Construct a numerictype Object with Property

Name and Property Value Pairs 6-3
Example: Copy a numerictype Object 6-4
Example: Build numerictype Object Constructors in a

GUI . 6-4

numerictype Object Properties . 6-6
Data Type and Scaling Properties 6-6
How Properties are Related . 6-9
Set numerictype Object Properties 6-10

numerictype of Fixed-Point Objects 6-12
Valid Values for numerictype Object Properties 6-12
Properties That Affect the Slope 6-14
Stored Integer Value and Real World Value 6-14

numerictype Objects Usage to Share Data Type and
Scaling Settings of fi objects 6-15

Example 1 . 6-15
Example 2 . 6-16

Working with quantizer Objects
7

Constructing quantizer Objects . 7-2

quantizer Object Properties . 7-3

Quantizing Data with quantizer Objects 7-4

Transformations for Quantized Data 7-6

viii Contents

Automated Fixed-Point Conversion
8

Fixed-Point Conversion Workflows 8-2
Choosing a Conversion Workflow 8-2
Automated Workflow . 8-2
Manual Workflow . 8-3

Automated Fixed-Point Conversion 8-4
Automated Fixed-Point Conversion Capabilities 8-4
Code Coverage . 8-5
Proposing Data Types . 8-8
Locking Proposed Data Types 8-10
Viewing Functions . 8-11
Viewing Variables . 8-18
Log Data for Histogram . 8-20
Function Replacements . 8-22
Validating Types . 8-23
Testing Numerics . 8-23
Detecting Overflows . 8-23

Best Practices for Debugging Out-of-the-Box Conversion
by the Fixed-Point Converter 8-25

Prerequisites . 8-27
Convert to Fixed Point Using Default Configuration . . 8-31
Determine Where Numerical Issues Originated 8-34
Adjust fimath Settings . 8-38
Convert kalman_filter Function Using New fimath

Settings . 8-41
Adjust Word Length Settings 8-42
Replace Constant Functions . 8-44

MATLAB Language Features Supported for Automated
Fixed-Point Conversion . 8-47

MATLAB Language Features Supported for Automated
Fixed-Point Conversion . 8-47

MATLAB Language Features Not Supported for
Automated Fixed-Point Conversion 8-49

Generated Fixed-Point Code . 8-50
Location of Generated Fixed-Point Files 8-50
Minimizing fi-casts to Improve Code Readability 8-51
Avoiding Overflows in the Generated Fixed-Point Code 8-51

ix

Controlling Bit Growth . 8-52
Avoiding Loss of Range or Precision 8-52
Handling Non-Constant mpower Exponents 8-54

Fixed-Point Code for MATLAB Classes 8-56
Automated Conversion Support for MATLAB Classes . 8-56
Unsupported Constructs . 8-56
Coding Style Best Practices . 8-57

Automated Fixed-Point Conversion Best Practices . . . 8-59
Create a Test File . 8-59
Prepare Your Algorithm for Code Acceleration or Code

Generation . 8-60
Check for Fixed-Point Support for Functions Used in Your

Algorithm . 8-61
Manage Data Types and Control Bit Growth 8-61
Convert to Fixed Point . 8-62
Use the Histogram to Fine-Tune Data Type Settings . . 8-63
Optimize Your Algorithm . 8-64
Avoid Explicit Double and Single Casts 8-66

Replacing Functions Using Lookup Table
Approximations . 8-67

Custom Plot Functions . 8-68

Generate Fixed-Point MATLAB Code for Multiple Entry-
Point Functions . 8-70

Convert Code Containing Global Data to Fixed Point . 8-74
Workflow . 8-74
Declare Global Variables . 8-74
Define Global Data . 8-75
Define Constant Global Data 8-76
Limitations of Using Global Data 8-78

Convert Code Containing Global Variables to Fixed-
Point . 8-79

Data Type Issues in Generated Code 8-82
Enable the Highlight Option in the Fixed-Point Converter

App . 8-82
Enable the Highlight Option at the Command Line . . . 8-82

x Contents

Stowaway Doubles . 8-82
Stowaway Singles . 8-82
Expensive Fixed-Point Operations 8-83

Using the Fixed-Point Converter App with System
Objects . 8-84

Use the Fixed-Point Converter App with a System
object . 8-85

Create DSP Filter Function and Test Bench 8-85
Convert the Function to Fixed-Point 8-86

Automated Conversion Using Fixed-Point
Converter App

9
Specify Type Proposal Options . 9-2

Detect Overflows . 9-6

Propose Data Types Based on Simulation Ranges 9-17

Propose Data Types Based on Derived Ranges 9-32

View and Modify Variable Information 9-48
View Variable Information . 9-48
Modify Variable Information . 9-48
Revert Changes . 9-50
Promote Sim Min and Sim Max Values 9-51

Replace the exp Function with a Lookup Table 9-52

Convert Fixed-Point Conversion Project to MATLAB
Scripts . 9-62

Replace a Custom Function with a Lookup Table 9-64

Visualize Differences Between Floating-Point and Fixed-
Point Results . 9-73

xi

Enable Plotting Using the Simulation Data Inspector 9-84

Add Global Variables Using the App 9-85

Automatically Define Input Types Using the App 9-86

Define Constant Input Parameters Using the App . . . 9-87

Define or Edit Input Parameter Type Using the App . 9-88
Define or Edit an Input Parameter Type 9-88
Specify an Enumerated Type Input Parameter by Type 9-89
Specify a Fixed-Point Input Parameter by Type 9-90
Specify Structures . 9-90

Define Input Parameters by Example Using the App . 9-92
Define an Input Parameter by Example 9-92
Specify Input Parameters by Example 9-93
Specify an Enumerated Type Input Parameter by

Example . 9-94
Specify a Fixed-Point Input Parameter by Example . . . 9-95

Specify Global Variable Type and Initial Value Using the
App . 9-97

Why Specify a Type Definition for Global Variables? . . 9-97
Specify a Global Variable Type 9-97
Define a Global Variable by Example 9-97
Define or Edit Global Variable Type 9-98
Define Global Variable Initial Value 9-99
Define Global Variable Constant Value 9-100
Remove Global Variables . 9-100

Specify Properties of Entry-Point Function Inputs Using
the App . 9-101

Why Specify Input Properties? 9-101
Specify an Input Definition Using the App 9-101

Detect Dead and Constant-Folded Code 9-102
What Is Dead Code? . 9-102
Detect Dead Code . 9-102
Fix Dead Code . 9-105

xii Contents

Automated Conversion Using Programmatic
Workflow

10
Propose Data Types Based on Simulation Ranges 10-2

Propose Data Types Based on Derived Ranges 10-7

Detect Overflows . 10-14

Replace the exp Function with a Lookup Table 10-19

Replace a Custom Function with a Lookup Table . . . 10-22

Visualize Differences Between Floating-Point and Fixed-
Point Results . 10-24

Enable Plotting Using the Simulation Data Inspector 10-31

Fixed-Point Conversion — Manual Conversion
11

Manual Fixed-Point Conversion Workflow 11-2

Manual Fixed-Point Conversion Best Practices 11-4
Create a Test File . 11-4
Prepare Your Algorithm for Code Acceleration or Code

Generation . 11-5
Check for Fixed-Point Support for Functions Used in Your

Algorithm . 11-6
Manage Data Types and Control Bit Growth 11-7
Separate Data Type Definitions from Algorithm 11-8
Convert to Fixed Point . 11-10
Optimize Data Types . 11-12
Optimize Your Algorithm . 11-15

Implement FIR Filter Algorithm for Floating-Point and
Fixed-Point Types using cast and zeros 11-19

xiii

Viewing Test Results With Simulation Data
Inspector

12
Inspecting Data Using the Simulation Data Inspector 12-2

What Is the Simulation Data Inspector? 12-2
Import Logged Data . 12-2
Export Logged Data . 12-2
Group Signals . 12-3
Run Options . 12-3
Create Report . 12-3
Comparison Options . 12-3
Enabling Plotting Using the Simulation Data

Inspector . 12-3
Save and Load Simulation Data Inspector Sessions . . . 12-4

Code Acceleration and Code Generation from
MATLAB for Fixed-Point Algorithms

13
Code Acceleration and Code Generation from

MATLAB . 13-3

Requirements for Generating Complied C Code Files . 13-4

Functions Supported for Code Acceleration or C Code
Generation . 13-5

Workflow for Fixed-Point Code Acceleration and
Generation . 13-16

Set Up C Compiler . 13-17

Accelerate Code Using fiaccel 13-18
Speeding Up Fixed-Point Execution with fiaccel 13-18
Running fiaccel . 13-18
Generated Files and Locations 13-19
Data Type Override Using fiaccel 13-21
Specifying Default fimath Values for MEX Functions 13-22

xiv Contents

File Infrastructure and Paths Setup 13-24
Compile Path Search Order . 13-24
Naming Conventions . 13-24

Detect and Debug Code Generation Errors 13-27
Debugging Strategies . 13-27
Error Detection at Design Time 13-28
Error Detection at Compile Time 13-28

Set Up C Code Compilation Options 13-29
C Code Compiler Configuration Object 13-29
Compilation Options Modification at the Command Line

Using Dot Notation . 13-29
How fiaccel Resolves Conflicting Options 13-30

MEX Configuration Dialog Box Options 13-31
See Also . 13-35

Best Practices for Accelerating Fixed-Point Code . . . 13-36
Recommended Compilation Options for fiaccel 13-36
Build Scripts . 13-37
Check Code Interactively Using MATLAB Code

Analyzer . 13-38
Separating Your Test Bench from Your Function Code 13-38
Preserving Your Code . 13-38
File Naming Conventions . 13-39

Use Fixed-Point Code Generation Reports 13-40
Code Generation Report Creation 13-40
Code Generation Report Opening 13-41
Viewing Your MATLAB Code 13-41
Viewing Variables in the Variables Tab 13-43
See Also . 13-44

Generate C Code from Code Containing Global Data 13-45
Workflow Overview . 13-45
Declaring Global Variables . 13-45
Defining Global Data . 13-46
Synchronizing Global Data with MATLAB 13-47
Limitations of Using Global Data 13-49

xv

Define Input Properties Programmatically in MATLAB
File . 13-50

How to Use assert . 13-50
Rules for Using assert Function 13-54
Specifying Properties of Primary Fixed-Point Inputs . 13-54
Specifying Class and Size of Scalar Structure 13-55
Specifying Class and Size of Structure Array 13-56

Control Run-Time Checks . 13-57
Types of Run-Time Checks . 13-57
When to Disable Run-Time Checks 13-57
How to Disable Run-Time Checks 13-58

Fix Run-Time Stack Overflows 13-59

Code Generation with MATLAB Coder 13-60

Code Generation with MATLAB Function Block 13-61
Composing a MATLAB Language Function in a Simulink

Model . 13-61
MATLAB Function Block with Data Type Override . . 13-61
Fixed-Point Data Types with MATLAB Function

Block . 13-63

Generate Fixed-Point FIR Code Using MATLAB
Function Block . 13-70

Program the MATLAB Function Block 13-70
Prepare the Inputs . 13-71
Create the Model . 13-71
Define the fimath Object Using the Model Explorer . . 13-73
Run the Simulation . 13-73

Fixed-Point FIR Code Example Parameter Values . . 13-74

Accelerate Code for Variable-Size Data 13-76
Disable Support for Variable-Size Data 13-76
Control Dynamic Memory Allocation 13-76
Accelerate Code for MATLAB Functions with Variable-

Size Data . 13-77
Accelerate Code for a MATLAB Function That Expands a

Vector in a Loop . 13-79

Accelerate Fixed-Point Simulation 13-86

xvi Contents

Code Generation Readiness Tool 13-89
What Information Does the Code Generation Readiness

Tool Provide? . 13-89
Summary Tab . 13-90
Code Structure Tab . 13-92
See Also . 13-95

Check Code Using the Code Generation Readiness
Tool . 13-96

Run Code Generation Readiness Tool at the Command
Line . 13-96

Run the Code Generation Readiness Tool From the
Current Folder Browser . 13-96

See Also . 13-96

Check Code Using the MATLAB Code Analyzer 13-97

Fix Errors Detected at Code Generation Time 13-98
See Also . 13-98

Avoid Multiword Operations in Generated Code 13-99

Find Potential Data Type Issues in Generated Code 13-102
Data Type Issues Overview 13-102
Enable Highlighting of Potential Data Type Issues . 13-102
Find and Address Cumbersome Operations 13-103
Find and Address Expensive Rounding 13-105
Find and Address Expensive Comparison Operations 13-106

Interoperability with Other Products
14

fi Objects with Simulink . 14-2
Reading Fixed-Point Data from the Workspace 14-2
Writing Fixed-Point Data to the Workspace 14-2
Setting the Value and Data Type of Block Parameters . 14-6
Logging Fixed-Point Signals . 14-6
Accessing Fixed-Point Block Data During Simulation . 14-6

xvii

fi Objects with DSP System Toolbox 14-8
Reading Fixed-Point Signals from the Workspace 14-8
Writing Fixed-Point Signals to the Workspace 14-8
fi Objects with dfilt Objects . 14-12

Ways to Generate Code . 14-13

Calling Functions for Code Generation
15

Resolution of Function Calls for Code Generation . . . 15-2
Key Points About Resolving Function Calls 15-4
Compile Path Search Order . 15-4
When to Use the Code Generation Path 15-5

Resolution of File Types on Code Generation Path . . . 15-6

Compilation Directive %#codegen 15-8

Call Local Functions . 15-9

Call Supported Toolbox Functions 15-10

Call MATLAB Functions . 15-11
Declaring MATLAB Functions as Extrinsic Functions 15-12
Calling MATLAB Functions Using feval 15-16
How MATLAB Resolves Extrinsic Functions During

Simulation . 15-16
Working with mxArrays . 15-17
Restrictions on Extrinsic Functions for Code

Generation . 15-19
Limit on Function Arguments 15-19

xviii Contents

Code Generation for MATLAB Classes
16

MATLAB Classes Definition for Code Generation 16-2
Language Limitations . 16-2
Code Generation Features Not Compatible with

Classes . 16-3
Defining Class Properties for Code Generation 16-4
Calls to Base Class Constructor 16-5
Inheritance from Built-In MATLAB Classes Not

Supported . 16-6

Classes That Support Code Generation 16-7

Generate Code for MATLAB Value Classes 16-8

Generate Code for MATLAB Handle Classes and System
Objects . 16-13

MATLAB Classes in Code Generation Reports 16-15
What Reports Tell You About Classes 16-15
How Classes Appear in Code Generation Reports . . . 16-15
How to Generate a Code Generation Report 16-17

Troubleshooting Issues with MATLAB Classes 16-18
Class class does not have a property with name name 16-18

Defining Data for Code Generation
17

Data Definition for Code Generation 17-2

Code Generation for Complex Data 17-4
Restrictions When Defining Complex Variables 17-4
Code Generation for Complex Data with Zero-Valued

Imaginary Parts . 17-4
Results of Expressions That Have Complex Operands . 17-8

Code Generation for Characters 17-9

xix

Array Size Restrictions for Code Generation 17-10
See Also . 17-10

Code Generation for Constants in Structures and
Arrays . 17-11

Defining Functions for Code Generation
18

Specify Variable Numbers of Arguments 18-2

Supported Index Expressions . 18-3

Apply Operations to a Variable Number of
Arguments . 18-4

When to Force Loop Unrolling 18-4
Using Variable Numbers of Arguments in a for-Loop . . 18-5

Implement Wrapper Functions 18-6
Passing Variable Numbers of Arguments from One

Function to Another . 18-6

Pass Property/Value Pairs . 18-7

Variable Length Argument Lists for Code Generation 18-9

Defining MATLAB Variables for C/C++ Code
Generation

19
Variables Definition for Code Generation 19-2

Best Practices for Defining Variables for C/C++ Code
Generation . 19-3

Define Variables By Assignment Before Using Them . . 19-3
Use Caution When Reassigning Variables 19-5
Use Type Cast Operators in Variable Definitions 19-5

xx Contents

Define Matrices Before Assigning Indexed Variables . . 19-6

Eliminate Redundant Copies of Variables in Generated
Code . 19-7

When Redundant Copies Occur 19-7
How to Eliminate Redundant Copies by Defining

Uninitialized Variables . 19-7
Defining Uninitialized Variables 19-8

Reassignment of Variable Properties 19-9

Define and Initialize Persistent Variables 19-10

Reuse the Same Variable with Different Properties . 19-11
When You Can Reuse the Same Variable with Different

Properties . 19-11
When You Cannot Reuse Variables 19-11
Limitations of Variable Reuse 19-14

Avoid Overflows in for-Loops . 19-15

Supported Variable Types . 19-17

Design Considerations for C/C++ Code
Generation

20
When to Generate Code from MATLAB Algorithms . . . 20-2

When Not to Generate Code from MATLAB
Algorithms . 20-2

Which Code Generation Feature to Use 20-4

Prerequisites for C/C++ Code Generation from
MATLAB . 20-5

MATLAB Code Design Considerations for Code
Generation . 20-6

See Also . 20-7

xxi

Differences in Behavior After Compiling MATLAB
Code . 20-8

Why Are There Differences? . 20-8
Character Size . 20-8
Order of Evaluation in Expressions 20-8
Termination Behavior . 20-9
Size of Variable-Size N-D Arrays 20-9
Size of Empty Arrays . 20-10
Floating-Point Numerical Results 20-10
NaN and Infinity Patterns . 20-10
Code Generation Target . 20-11
MATLAB Class Initial Values 20-11
Variable-Size Support for Code Generation 20-11
Complex Numbers . 20-11

MATLAB Language Features Supported for C/C++ Code
Generation . 20-12

MATLAB Language Features Not Supported for C/C++
Code Generation . 20-13

Code Generation for Enumerated Data
21

Enumerated Data Definition for Code Generation . . . 21-2

Enumerated Types Supported for Code Generation . . 21-3
Enumeration Class Base Types for Code Generation . . 21-3
C Code Representation for Base Type int32 21-4
C Code Representation for Base Type Other Than
int32 . 21-4

When to Use Enumerated Data for Code Generation . 21-6

Generate Code for Enumerated Data from MATLAB
Algorithms . 21-7

See Also . 21-7

Define Enumerated Data for Code Generation 21-8
Naming Enumerated Types for Code Generation 21-9

xxii Contents

Operations on Enumerated Data for Code
Generation . 21-10

Assignment Operator, = . 21-10
Relational Operators, < > <= >= == ~= 21-10
Cast Operation . 21-10
Indexing Operation . 21-11
Control Flow Statements: if, switch, while 21-11

Include Enumerated Data in Control Flow
Statements . 21-13
if Statement with Enumerated Data Types 21-13
switch Statement with Enumerated Data Types . . . 21-14
while Statement with Enumerated Data Types 21-16

Customize Enumerated Types for Code Generation . 21-19
Customizing Enumerated Types 21-19
Specify a Default Enumerated Value 21-21
Specify a Header File . 21-22

Control Names of Enumerated Type Values in Generated
Code . 21-24

Change and Reload Enumerated Data Types 21-27

Restrictions on Use of Enumerated Data in for-
Loops . 21-28

Toolbox Functions That Support Enumerated Types for
Code Generation . 21-29

Code Generation for Function Handles
22

Function Handle Definition for Code Generation 22-2

Define and Pass Function Handles for Code
Acceleration . 22-3

Function Handle Limitations for Code Generation . . . 22-5

xxiii

Generate Efficient and Reusable Code
23

Optimization Strategies . 23-2

Modularize MATLAB Code . 23-5

Eliminate Redundant Copies of Function Inputs 23-6

Inline Code . 23-8
Prevent Function Inlining . 23-8
Use Inlining in Control Flow Statements 23-8

Control Inlining . 23-10
Control Size of Functions Inlined 23-10
Control Size of Functions After Inlining 23-11
Control Stack Size Limit on Inlined Functions 23-11

Fold Function Calls into Constants 23-13

Control Stack Space Usage . 23-15

Stack Allocation and Performance 23-16

Dynamic Memory Allocation and Performance 23-17
When Dynamic Memory Allocation Occurs 23-17

Minimize Dynamic Memory Allocation 23-18

Provide Maximum Size for Variable-Size Arrays 23-19

Disable Dynamic Memory Allocation During Code
Generation . 23-25

Set Dynamic Memory Allocation Threshold 23-26
Set Dynamic Memory Allocation Threshold Using the

MATLAB Coder App . 23-26
Set Dynamic Memory Allocation Threshold at the

Command Line . 23-27

Excluding Unused Paths from Generated Code 23-28

xxiv Contents

Prevent Code Generation for Unused Execution
Paths . 23-29

Prevent Code Generation When Local Variable Controls
Flow . 23-29

Prevent Code Generation When Input Variable Controls
Flow . 23-30

Generate Code with Parallel for-Loops (parfor) 23-31

Minimize Redundant Operations in Loops 23-33

Unroll for-Loops . 23-35
Limit Copying the for-loop Body in Generated Code . 23-35

Support for Integer Overflow and Non-Finites 23-38
Disable Support for Integer Overflow 23-38
Disable Support for Non-Finite Numbers 23-39

Integrate Custom Code . 23-40

MATLAB Coder Optimizations in Generated Code . . 23-46
Constant Folding . 23-46
Loop Fusion . 23-47
Successive Matrix Operations Combined 23-47
Unreachable Code Elimination 23-48

Generate Reusable Code . 23-49

Code Generation for MATLAB Structures
24

Structure Definition for Code Generation 24-2

Structure Operations Allowed for Code Generation . . 24-3

Define Scalar Structures for Code Generation 24-4
Restriction When Using struct 24-4
Restrictions When Defining Scalar Structures by

Assignment . 24-4

xxv

Adding Fields in Consistent Order on Each Control Flow
Path . 24-4

Restriction on Adding New Fields After First Use 24-5

Define Arrays of Structures for Code Generation 24-7
Ensuring Consistency of Fields 24-7
Using repmat to Define an Array of Structures with

Consistent Field Properties 24-7
Defining an Array of Structures Using Concatenation . 24-8

Make Structures Persistent . 24-9

Index Substructures and Fields 24-10

Assign Values to Structures and Fields 24-12

Pass Large Structures as Input Parameters 24-14

Functions, Classes, and System Objects
Supported for Code Generation

25
Functions and Objects Supported for C and C++ Code

Generation — Alphabetical List 25-2

Functions and Objects Supported for C and C++ Code
Generation — Category List 25-147

Aerospace Toolbox . 25-149
Arithmetic Operations in MATLAB 25-149
Bit-Wise Operations MATLAB 25-150
Casting in MATLAB . 25-151
Communications System Toolbox 25-151
Complex Numbers in MATLAB 25-157
Computer Vision System Toolbox 25-157
Control Flow in MATLAB . 25-166
Data and File Management in MATLAB 25-167
Data Types in MATLAB . 25-171
Desktop Environment in MATLAB 25-172
Discrete Math in MATLAB 25-172
DSP System Toolbox . 25-173

xxvi Contents

Error Handling in MATLAB 25-180
Exponents in MATLAB . 25-181
Filtering and Convolution in MATLAB 25-181
Fixed-Point Designer . 25-182
HDL Coder . 25-192
Histograms in MATLAB . 25-192
Image Acquisition Toolbox . 25-193
Image Processing in MATLAB 25-193
Image Processing Toolbox . 25-193
Input and Output Arguments in MATLAB 25-202
Interpolation and Computational Geometry in

MATLAB . 25-202
Linear Algebra in MATLAB 25-206
Logical and Bit-Wise Operations in MATLAB 25-207
MATLAB Compiler . 25-208
Matrices and Arrays in MATLAB 25-208
Neural Network Toolbox . 25-216
Nonlinear Numerical Methods in MATLAB 25-217
Numerical Integration and Differentiation in

MATLAB . 25-217
Optimization Functions in MATLAB 25-218
Phased Array System Toolbox 25-218
Polynomials in MATLAB . 25-228
Programming Utilities in MATLAB 25-229
Relational Operators in MATLAB 25-229
Rounding and Remainder Functions in MATLAB . . 25-229
Set Operations in MATLAB 25-230
Signal Processing in MATLAB 25-235
Signal Processing Toolbox . 25-236
Special Values in MATLAB 25-241
Specialized Math in MATLAB 25-241
Statistics in MATLAB . 25-242
Statistics and Machine Learning Toolbox 25-243
String Functions in MATLAB 25-252
Structures in MATLAB . 25-253
Trigonometry in MATLAB . 25-254

Code Generation for Variable-Size Data
26

What Is Variable-Size Data? . 26-2

xxvii

Variable-Size Data Definition for Code Generation . . 26-3

Bounded Versus Unbounded Variable-Size Data 26-4

Control Memory Allocation of Variable-Size Data 26-5

Specify Variable-Size Data Without Dynamic Memory
Allocation . 26-6

Fixing Upper Bounds Errors . 26-6
Specifying Upper Bounds for Variable-Size Data 26-6

Variable-Size Data in Code Generation Reports 26-9
What Reports Tell You About Size 26-9
How Size Appears in Code Generation Reports 26-10
How to Generate a Code Generation Report 26-10

Define Variable-Size Data for Code Generation 26-11
When to Define Variable-Size Data Explicitly 26-11
Using a Matrix Constructor with Nonconstant

Dimensions . 26-11
Inferring Variable Size from Multiple Assignments . . 26-12
Defining Variable-Size Data Explicitly Using

coder.varsize . 26-13

C Code Interface for Arrays . 26-17
C Code Interface for Statically Allocated Arrays 26-17
C Code Interface for Dynamically Allocated Arrays . . 26-18
Utility Functions for Creating emxArray Data

Structures . 26-19

Diagnose and Fix Variable-Size Data Errors 26-22
Diagnosing and Fixing Size Mismatch Errors 26-22
Diagnosing and Fixing Errors in Detecting Upper

Bounds . 26-24

Incompatibilities with MATLAB in Variable-Size
Support for Code Generation 26-26

Incompatibility with MATLAB for Scalar Expansion . 26-26
Incompatibility with MATLAB in Determining Size of

Variable-Size N-D Arrays 26-28
Incompatibility with MATLAB in Determining Size of

Empty Arrays . 26-29

xxviii Contents

Incompatibility with MATLAB in Determining Class of
Empty Arrays . 26-30

Incompatibility with MATLAB in Vector-Vector
Indexing . 26-31

Incompatibility with MATLAB in Matrix Indexing
Operations for Code Generation 26-31

Incompatibility with MATLAB in Concatenating Variable-
Size Matrices . 26-32

Dynamic Memory Allocation Not Supported for MATLAB
Function Blocks . 26-33

Variable-Sizing Restrictions for Code Generation of
Toolbox Functions . 26-34

Common Restrictions . 26-34
Toolbox Functions with Variable Sizing Restrictions . 26-35

Primary Functions
27

Primary Function Input Specification 27-2
Why You Must Specify Input Properties 27-2
Properties to Specify . 27-2
Rules for Specifying Properties of Primary Inputs 27-4
Methods for Defining Properties of Primary Inputs . . . 27-4
Define Input Properties by Example at the Command

Line . 27-5
Specify Constant Inputs at the Command Line 27-7
Specify Variable-Size Inputs at the Command Line . . . 27-9

Define Input Properties Programmatically in the
MATLAB File . 27-11

How to Use assert with MATLAB Coder 27-11
Rules for Using assert Function 27-17
Specifying General Properties of Primary Inputs 27-17
Specifying Properties of Primary Fixed-Point Inputs . 27-18
Specifying Class and Size of Scalar Structure 27-19
Specifying Class and Size of Structure Array 27-20

xxix

System Objects Supported for Code Generation
28

Code Generation for System Objects 28-2

System Objects
29

What Are System Objects? . 29-2

System Objects in MATLAB Code Generation 29-3
System Objects in Generated Code 29-3
System Objects in codegen . 29-8
System Objects in the MATLAB Function Block 29-8
System Objects in the MATLAB System Block 29-8
System Objects and MATLAB Compiler Software 29-9

System Objects in Simulink . 29-10
System Objects in the MATLAB Function Block 29-10

System Object Methods . 29-11
What Are System Object Methods? 29-11
The Step Method . 29-11
Common Methods . 29-12

Fixed-Point Designer for Simulink Models

Getting Started
30

Product Description . 30-2
Key Features . 30-2

xxx Contents

What You Need to Get Started . 30-3
Installation . 30-3
Sharing Fixed-Point Models . 30-3

Physical Quantities and Measurement Scales 30-5
Introduction . 30-5
Selecting a Measurement Scale 30-6
Select a Measurement Scale for Temperature 30-7

Why Use Fixed-Point Hardware? 30-13

Why Use the Fixed-Point Designer Software? 30-14

Developing and Testing Fixed-Point Systems 30-15

Supported Data Types . 30-18

Configure Blocks with Fixed-Point Output 30-19
Specify the Output Data Type and Scaling 30-20
Specify Fixed-Point Data Types with the Data Type

Assistant . 30-22
Rounding . 30-25
Overflow Handling . 30-25
Lock the Output Data Type Setting 30-26
Real-World Values Versus Stored Integer Values . . . 30-26

Configure Blocks with Fixed-Point Parameters 30-29
Specify Fixed-Point Values Directly 30-29
Specify Fixed-Point Values Via Parameter Objects . . 30-30

Pass Fixed-Point Data Between Simulink Models and
MATLAB . 30-32

Read Fixed-Point Data from the Workspace 30-32
Write Fixed-Point Data to the Workspace 30-32
Log Fixed-Point Signals . 30-35
Access Fixed-Point Block Data During Simulation . . . 30-35

Cast from Doubles to Fixed Point 30-36
About This Example . 30-36
Block Descriptions . 30-37
Simulations . 30-38

xxxi

Data Types and Scaling
31

Data Types and Scaling in Digital Hardware 31-2

Fixed-Point Numbers . 31-3

Signed Fixed-Point Numbers . 31-4

Binary Point Interpretation . 31-5

Scaling . 31-7
Binary-Point-Only Scaling . 31-8
Slope and Bias Scaling . 31-8
Unspecified Scaling . 31-8

Quantization . 31-10
Fixed-Point Format . 31-10

Range and Precision . 31-12
Range . 31-12
Precision . 31-13
Fixed-Point Data Type Parameters 31-13
Range of an 8-Bit Fixed-Point Data Type — Binary-Point-

Only Scaling . 31-13
Range of an 8-Bit Fixed-Point Data Type — Slope and

Bias Scaling . 31-14

Fixed-Point Numbers in Simulink 31-15
Constant Scaling for Best Precision 31-15
Fixed-Point Data Type and Scaling Notation 31-17

Display Port Data Types . 31-20

Scaled Doubles . 31-22
What Are Scaled Doubles? . 31-22
When to Use Scaled Doubles 31-23

Use Scaled Doubles to Avoid Precision Loss 31-24
About the Model . 31-24
Running the Example . 31-25

xxxii Contents

Floating-Point Numbers . 31-26
Floating-Point Numbers . 31-26
Scientific Notation . 31-26
The IEEE Format . 31-27
Range and Precision . 31-29
Exceptional Arithmetic . 31-31

Arithmetic Operations
32

Fixed-Point Arithmetic Operations 32-3

Limitations on Precision . 32-4

Rounding . 32-5
Choose a Rounding Mode . 32-5

Rounding Modes for Fixed-Point Simulink Blocks . . . 32-6

Rounding Mode: Ceiling . 32-8

Rounding Mode: Convergent . 32-9

Rounding Mode: Floor . 32-11

Rounding Mode: Nearest . 32-12

Rounding Mode: Round . 32-14

Rounding Mode: Simplest . 32-16
Optimize Rounding for Casts 32-16
Optimize Rounding for High-Level Arithmetic

Operations . 32-16
Optimize Rounding for Intermediate Arithmetic

Operations . 32-18

Rounding Mode: Zero . 32-20
Rounding to Zero Versus Truncation 32-22

Pad with Trailing Zeros . 32-23

xxxiii

Limitations on Precision and Errors 32-24

Maximize Precision . 32-25

Net Slope and Net Bias Precision 32-26
What are Net Slope and Net Bias? 32-26
Detecting Net Slope and Net Bias Precision Issues . . 32-27
Fixed-Point Constant Underflow 32-27
Fixed-Point Constant Overflow 32-27
Fixed-Point Constant Precision Loss 32-28

Detect Net Slope and Bias Precision Issues 32-29

Detect Fixed-Point Constant Precision Loss 32-30

Limitations on Range . 32-31

Saturation and Wrapping . 32-33
What Are Saturation and Wrapping? 32-33
Saturation and Wrapping . 32-33

Guard Bits . 32-36

Determine the Range of Fixed-Point Numbers 32-37

Handle Overflows in Simulink Models 32-38

Recommendations for Arithmetic and Scaling 32-40
Arithmetic Operations and Fixed-Point Scaling 32-40
Addition . 32-41
Accumulation . 32-44
Multiplication . 32-44
Gain . 32-47
Division . 32-49
Summary . 32-51

Parameter and Signal Conversions 32-52
Introduction . 32-52
Parameter Conversions . 32-53
Signal Conversions . 32-53

Rules for Arithmetic Operations 32-56
Computational Units . 32-56

xxxiv Contents

Addition and Subtraction . 32-56
Multiplication . 32-58
Division . 32-63
Shifts . 32-64

The Summation Process . 32-66

The Multiplication Process . 32-69

The Division Process . 32-71

Shifts . 32-72
Shifting Bits to the Right . 32-72

Conversions and Arithmetic Operations 32-74

Realization Structures
33

Realizing Fixed-Point Digital Filters 33-2
Introduction . 33-2
Realizations and Data Types . 33-2

Targeting an Embedded Processor 33-4
Introduction . 33-4
Size Assumptions . 33-4
Operation Assumptions . 33-4
Design Rules . 33-5

Canonical Forms . 33-7

Direct Form II . 33-9

Series Cascade Form . 33-13

Parallel Form . 33-16

xxxv

Fixed-Point Advisor
34

Preparation for Fixed-Point Conversion 34-2
Introduction . 34-2
Best Practices . 34-2
Run the Fixed-Point Advisor . 34-4
Fix a Task Failure . 34-5
Manually Fixing Failures . 34-5
Automatically Fixing Failures 34-6
Batch Fixing Failures . 34-6
Restore Points . 34-7
Save a Restore Point . 34-7
Load a Restore Point . 34-8

Fixed-Point Tool
35

Fixed-Point Tool . 35-2
Introduction to the Fixed-Point Tool 35-2
Using the Fixed-Point Tool . 35-2

Run Management . 35-5
Run Management . 35-5
Run Management with the Shortcut Editor 35-5
Manual Run Management . 35-6

Use Shortcuts to Manage Runs 35-7
Why Use Shortcuts to Manage Runs 35-7
When to Use Shortcuts to Manage Runs 35-7
Add Shortcuts . 35-8
Edit Shortcuts . 35-8
Delete Shortcuts . 35-9
Capture Model Settings Using the Shortcut Editor . . 35-10

Debug a Fixed-Point Model . 35-11
Simulating the Model to See the Initial Behavior . . . 35-11
Debugging the Model . 35-13

xxxvi Contents

Simulating the Model Using a Different Input
Stimulus . 35-15

Debugging the Model with the New Input 35-15
Proposing Fraction Lengths for Math2 Based on

Simulation Results . 35-16
Verifying the New Settings . 35-17

Logging Simulation Ranges for Referenced Models . 35-18
Viewing Simulation Ranges for Referenced Models . . 35-18
Fixed-Point Instrumentation and Data Type Override

Settings . 35-20
See Also . 35-21

Log Simulation Ranges for Referenced Models 35-22

Propose Data Types for a Referenced Model 35-28

Logging Simulation Ranges for MATLAB Function
Block . 35-31

See Also . 35-31

Log Simulation Ranges for MATLAB Function Block 35-32

View Signal Names in Fixed-Point Tool 35-35

Model Multiple Data Type Behaviors Using a Data
Dictionary . 35-37

Change Data Types of Model Parameters 35-41

Convert Floating-Point Model to Fixed Point
36

Learning Objectives . 36-2

Model Description . 36-4
Model Overview . 36-4
Model Set Up . 36-5

Before You Begin . 36-7

xxxvii

Convert Floating-Point Model to Fixed Point 36-8
Open the Model . 36-8
Prepare Floating-Point Model for Conversion to Fixed

Point . 36-8
Propose Data Types . 36-15
Apply Fixed-Point Data Types 36-16
Verify Fixed-Point Settings . 36-17
Test Fixed-Point Settings With New Input Data 36-18
Gather a Floating-Point Benchmark 36-20
Propose Data Types for the New Input 36-20
Apply the New Fixed-Point Data Types 36-21
Verify New Fixed-Point Settings 36-21
Prepare for Code Generation 36-22

Key Points to Remember . 36-24

Where to Learn More . 36-25

Producing Lookup Table Data
37

Producing Lookup Table Data . 37-2

What Is the Worst-Case Error for a Lookup Table? . . . 37-3

Approximate the Square Root Function 37-4

Create Lookup Tables for a Sine Function 37-6
Introduction . 37-6
Parameters for fixpt_look1_func_approx 37-6
Setting Function Parameters for the Lookup Table . . . 37-8
Using errmax with Unrestricted Spacing 37-8
Using nptsmax with Unrestricted Spacing 37-11
Using errmax with Even Spacing 37-13
Using nptsmax with Even Spacing 37-14
Using errmax with Power of Two Spacing 37-15
Using nptsmax with Power of Two Spacing 37-17
Specifying Both errmax and nptsmax 37-18
Comparison of Example Results 37-19

xxxviii Contents

Use Lookup Table Approximation Functions 37-21

Effects of Spacing on Speed, Error, and Memory
Usage . 37-22

Criteria for Comparing Types of Breakpoint Spacing . 37-22
Model That Illustrates Effects of Breakpoint Spacing 37-22
Data ROM Required for Each Lookup Table 37-23
Determination of Out-of-Range Inputs 37-23
How the Lookup Tables Determine Input Location . . 37-24
Interpolation for Each Lookup Table 37-26
Summary of the Effects of Breakpoint Spacing 37-28

Automatic Data Typing
38

About Automatic Data Typing . 38-2

Before Proposing Data Types for Your Model 38-3

Best Practices for Fixed-Point Workflow 38-5
Use a Known Working Simulink Model 38-5
Back Up Your Simulink Model 38-5
Capture the Current Data Type Override Settings . . . 38-5
Convert Individual Subsystems 38-5
Isolate the System Under Conversion 38-5
Do Not Use “Save as” on Referenced Models and MATLAB

Function blocks . 38-6
Use Lock Output Data Type Setting 38-6
Save Simulink Signal Objects 38-6
Test Update Diagram Failure 38-6
Disable Fast Restart . 38-7

Models That Might Cause Data Type Propagation
Errors . 38-8

Automatic Data Typing Using Simulation Data 38-10
Workflow for Automatic Data Typing Using Simulation

Data . 38-10
Set Up the Model . 38-10
Prepare the Model for Fixed-Point Conversion 38-11

xxxix

Gather a Floating-Point Benchmark 38-12
Proposing Data Types . 38-13
Propose Data Types . 38-15
Examine Results to Resolve Conflicts 38-15
Apply Proposed Data Types . 38-18
Verify New Settings . 38-19
Automatic Data Typing of Simulink Signal Objects . . 38-20

Automatic Data Typing Using Derived Ranges 38-21
Prerequisites for Autoscaling Using Derived Ranges . 38-21
Workflow for Autoscaling Using Derived Data 38-21
Set Up the Model . 38-22
Prepare Model for Autoscaling Using Derived Data . . 38-23
Derive Minimum and Maximum Values 38-24
Resolve Range Analysis Issues 38-25
Proposing Data Types . 38-25
Propose Data Types . 38-27
Examine Results to Resolve Conflicts 38-27
Apply Proposed Data Types . 38-31
Update Diagram . 38-32

Propose Fraction Lengths . 38-33
Propose Fraction Lengths . 38-33
About the Feedback Controller Example Model 38-33
Propose Fraction Lengths Using Simulation Range

Data . 38-40

How the Fixed-Point Tool Proposes Word Lengths . . 38-48
How the Fixed-Point Tool Uses Range Information . . 38-48
How the Fixed-Point Tool Uses Target Hardware

Information . 38-49

Propose Word Lengths . 38-51

Propose Word Lengths Based on Simulation Data . . 38-52

Propose Data Types Using Multiple Simulations 38-58
About This Example . 38-58
Running the Simulation . 38-60

View Simulation Results . 38-63
Compare Runs . 38-63
Compare Signals . 38-64

xl Contents

Inspect Signals . 38-65
Histogram Plot of Signal . 38-66
See Also . 38-67

Viewing Results With the Simulation Data Inspector 38-68
Why Use the Simulation Data Inspector 38-68
When to Use the Simulation Data Inspector 38-68
What You Can Inspect in the Simulation Data

Inspector . 38-68
See Also . 38-69

Range Analysis
39

How Range Analysis Works . 39-2
Analyzing a Model with Range Analysis 39-2
Automatic Stubbing . 39-5
Model Compatibility with Range Analysis 39-6

Derive Ranges . 39-7

Derive Ranges at the Subsystem Level 39-9
Deriving Ranges at the Subsystem Level 39-9
Derive Ranges at the Subsystem Level 39-10

View Derived Ranges in the Fixed-Point Tool 39-11

Derive Ranges Using Design Ranges 39-13

Derive Ranges Using Block Initial Conditions 39-15

Derive Ranges Using Design Ranges for
Simulink.Parameter Objects 39-17

Insufficient Design Range Information 39-20

Providing More Design Range Information 39-23

Fixing Design Range Conflicts 39-26

xli

Derive Ranges for a Referenced Model 39-28

Propose Data Types for a Referenced Model 39-34

Deriving Ranges for a Referenced Model 39-36
Viewing Derived Minimum and Maximum Values for

Referenced Models . 39-36
Data Type Override Settings 39-37
See Also . 39-37

Intermediate Range Results . 39-38

Unsupported Simulink Software Features 39-41

Supported and Unsupported Simulink Blocks 39-43
Overview of Simulink Block Support 39-43
Limitations of Support for Model Blocks 39-53

Working with the MATLAB Function Block
40

Convert Model Containing MATLAB Function Block to
Fixed Point . 40-2

Open Model . 40-2
Decouple the MATLAB Function Block 40-4
Collect Range Information . 40-5
Propose Data Types . 40-5
Examine Data Type Proposals 40-6
Apply Proposed Data Types . 40-8
Verify Results . 40-13

Working with the MATLAB Function Block in the Fixed-
Point Tool . 40-16

Best Practices for Working with a MATLAB Function
Block in the Fixed-Point Tool 40-16

Limitations of Working with the MATLAB Function Block
in the Fixed-Point Tool . 40-16

Detect Overflows in a MATLAB Function Block 40-17
Set Data Type Override to Scaled Doubles 40-17

xlii Contents

Propose New Data Types . 40-18
Apply New Data Types . 40-19

Derive Ranges of MATLAB Function Block Variables 40-20
Explore the Model . 40-20
Derive Ranges . 40-21
Propose Data Types . 40-21
Apply Proposed Data Types . 40-22

Working with Bus Objects in the Fixed-Point
Workflow

41
Refine Data Types of a Model with Buses Using

Simulation Data . 41-2
Open and Simulate the Model 41-2
Use Data Type Override to Resolve Overflows 41-3
Propose New Fraction Lengths 41-5
Examine and Apply Proposed Types 41-5
Verify New Fixed-Point Settings 41-8
Save the Model and New Bus Data Types 41-9

Convert a Model with Buses to Fixed-Point Using Range
Analysis . 41-11

Open and Simulate the Model 41-11
Set Design Minimums and Maximums 41-12
Open the Fixed-Point Tool and Run the Fixed-Point

Advisor . 41-14
Derive Minimum and Maximum Values 41-15
Propose Fraction Lengths . 41-15
Examine and Apply Proposed Types 41-15
Verify New Fixed-Point Types 41-18
Save the Model and the New Bus Data Types 41-19

Bus Objects in the Fixed-Point Workflow 41-20
How Data Type Proposals Are Determined for Bus

Objects . 41-20
Bus Naming Conventions with Data Type Override . . 41-22
Limitations of Bus Objects in the Fixed-Point

Workflow . 41-23

xliii

Convert Model with Bus Object with Structure Initial
Conditions to Fixed-Point . 41-24

Command Line Interface for the Fixed-Point
Tool

42
The Command-Line Interface for the Fixed-Point

Tool . 42-2

Convert a Model to Fixed Point Using the Command-
Line . 42-4

Code Generation
43

Generating and Deploying Production Code 43-2

Code Generation Support . 43-3
Introduction . 43-3
Languages . 43-3
Data Types . 43-3
Rounding Modes . 43-3
Overflow Handling . 43-3
Blocks . 43-4
Scaling . 43-4

Accelerating Fixed-Point Models 43-5

Using External Mode or Rapid Simulation Target . . . 43-7
Introduction . 43-7
External Mode . 43-7
Rapid Simulation Target . 43-8

Optimize Your Generated Code 43-9
Reducing ROM Consumption or Model Execution

Time . 43-9

xliv Contents

Restrict Data Type Word Lengths 43-10
Avoid Fixed-Point Scalings with Bias 43-10
Wrap and Round to Floor or Simplest 43-11
Limit the Use of Custom Storage Classes 43-12
Limit the Use of Unevenly Spaced Lookup Tables . . . 43-12
Minimize the Variety of Similar Fixed-Point Utility

Functions . 43-13
Handle Net Slope Computation 43-13
Use Division to Handle Net Slope Computation 43-14
Improve Numerical Accuracy of Simulation Results with

Rational Approximations to Handle Net Slope 43-15
Improve Efficiency of Generated Code with Rational

Approximations to Handle Net Slope 43-20
Use Integer Division to Handle Net Slope

Computation . 43-26
Optimize Generated Code Using Specified Minimum and

Maximum Values . 43-26
Eliminate Unnecessary Utility Functions Using Specified

Minimum and Maximum Values 43-29

Optimizing Your Generated Code with the Model
Advisor . 43-32

Optimize Generated Code with Model Advisor 43-32
Identify Blocks that Generate Expensive Fixed-Point and

Saturation Code . 43-33
Identify Questionable Fixed-Point Operations 43-36
Identify Blocks that Generate Expensive Rounding

Code . 43-38

Use the Model Advisor to Optimize Fixed-Point
Operations in Generated Code 43-40

Fixed-Point Advisor Reference
44

Fixed-Point Advisor . 44-2
Fixed-Point Advisor Overview 44-3

Preparing Model for Conversion 44-6
Prepare Model for Conversion Overview 44-7

xlv

Verify model simulation settings 44-8
Verify update diagram status 44-11
Address unsupported blocks 44-12
Set up signal logging . 44-14
Create simulation reference data 44-15
Verify Fixed-Point Conversion Guidelines Overview . 44-17
Check model configuration data validity diagnostic

parameters settings . 44-18
Implement logic signals as Boolean data 44-19
Check bus usage . 44-20
Simulation range checking . 44-21
Check for implicit signal resolution 44-22

Preparing for Data Typing and Scaling 44-24
Prepare for Data Typing and Scaling Overview 44-25
Review locked data type settings 44-26
Remove output data type inheritance 44-27
Relax input data type settings 44-30
Verify Stateflow charts have strong data typing with

Simulink . 44-31
Remove redundant specification between signal objects

and blocks . 44-32
Verify hardware selection . 44-34
Specify block minimum and maximum values 44-36

Return to the Fixed-Point Tool to Perform Data Typing
and Scaling . 44-37

See Also . 44-37

Troubleshooting
45

Frequently Asked Questions About Fixed-Point
Numbers . 45-2

What Is the Difference Between Fixed-Point and Built-In
Integer Types? . 45-2

Negative Fraction Length . 45-2
Fraction Length Greater Than Word Length 45-3
fi Constructor Does Not Follow globalfimath Rules . . . 45-5

xlvi Contents

Decide Which Workflow Is Right For Your
Application . 45-6

Tips for Making Generated Code More Efficient 45-7
fimath Settings for Efficient Code 45-7
Replace Functions With More Efficient Fixed-Point

Implementations . 45-7

Know When a Function is Supported for
Instrumentation and Acceleration 45-9

What to Do If a Function Is Not Supported for Fixed-
Point Conversion . 45-10

Isolate the Unsupported Functions 45-10
Create a Replacement Function 45-10

Common Errors and Warnings 45-12
fi*non-fi Errors . 45-12
Data Type Mismatch Errors 45-12
Mismatched fimath Errors . 45-13

Why Does the Fixed-Point Converter App Not Propose
Data Types for System Objects? 45-14

Prevent The Fixed-Point Tool From Overriding Integer
Data Types . 45-15

Why Did The Fixed-Point Tool Not Propose Data
Types? . 45-16

Inherited Output Data Types 45-16
Inadequate Range Information 45-16

Frequently Asked Questions About Fixed-Point
Numbers . 45-17

Fraction Length Greater Than Word Length 45-17
Negative Fraction Length . 45-17

What to Do When a Block Is Not Supported For Fixed-
Point Conversion . 45-18

Isolate the Block . 45-18
Lookup Table Block Implementation 45-18
User-Authored Blocks . 45-19

xlvii

Why am I missing data type proposals for MATLAB
Function block variables? . 45-20

Data Type Mismatch and Structure Initial
Conditions . 45-21

Enable Inline Parameters . 45-21
Specify Bus Signal Initial Conditions Using

Simulink.Parameter Objects 45-24
Data Type Mismatch and Masked Atomic Subsystems 45-25

Writing Fixed-Point S-Functions
A

Data Type Support . A-2
Supported Data Types . A-2
The Treatment of Integers . A-3
Data Type Override . A-3

Structure of the S-Function . A-5

Storage Containers . A-7
Introduction . A-7
Storage Containers in Simulation A-7
Storage Containers in Code Generation A-10

Data Type IDs . A-12
The Assignment of Data Type IDs A-12
Registering Data Types . A-13
Setting and Getting Data Types A-15
Getting Information About Data Types A-15
Converting Data Types . A-17

Overflow Handling and Rounding Methods A-18
Tokens for Overflow Handling and Rounding Methods A-18
Overflow Logging Structure . A-19

Create MEX-Files . A-20

Fixed-Point S-Function Examples A-21

xlviii Contents

Get the Input Port Data Type . A-23

Set the Output Port Data Type A-25

Interpret an Input Value . A-26

Write an Output Value . A-28

Determine Output Type Using the Input Type A-30

API Function Reference . A-31

Fixed-Point Designer for MATLAB Code

1

Fixed-Point Concepts

• “Fixed-Point Data Types” on page 1-2
• “Scaling” on page 1-4
• “Compute Slope and Bias” on page 1-5
• “Precision and Range” on page 1-8
• “Arithmetic Operations” on page 1-13
• “fi Objects and C Integer Data Types” on page 1-25

1 Fixed-Point Concepts

1-2

Fixed-Point Data Types

In digital hardware, numbers are stored in binary words. A binary word is a fixed-length
sequence of bits (1's and 0's). How hardware components or software functions interpret
this sequence of 1's and 0's is defined by the data type.

Binary numbers are represented as either fixed-point or floating-point data types. This
chapter discusses many terms and concepts relating to fixed-point numbers, data types,
and mathematics.

A fixed-point data type is characterized by the word length in bits, the position of the
binary point, and whether it is signed or unsigned. The position of the binary point is the
means by which fixed-point values are scaled and interpreted.

For example, a binary representation of a generalized fixed-point number (either signed
or unsigned) is shown below:

bwl 1 bwl 2 b5 b3b4 b2 b1 b0

where

• bi is the ith binary digit.
• wl is the word length in bits.
• bwl-1 is the location of the most significant, or highest, bit (MSB).
• b0 is the location of the least significant, or lowest, bit (LSB).
• The binary point is shown four places to the left of the LSB. In this example,

therefore, the number is said to have four fractional bits, or a fraction length of four.

Fixed-point data types can be either signed or unsigned. Signed binary fixed-point
numbers are typically represented in one of three ways:

• Sign/magnitude
• One's complement
• Two's complement

 Fixed-Point Data Types

1-3

Two's complement is the most common representation of signed fixed-point numbers and
is the only representation used by Fixed-Point Designer™ documentation.

1 Fixed-Point Concepts

1-4

Scaling

Fixed-point numbers can be encoded according to the scheme

real-world value slope integer bias= ¥()+

where the slope can be expressed as

slope slope adjustment factor 2fixed exponent
= ¥

The integer is sometimes called the stored integer. This is the raw binary number,
in which the binary point assumed to be at the far right of the word. In Fixed-Point
Designer documentation, the negative of the fixed exponent is often referred to as the
fraction length.

The slope and bias together represent the scaling of the fixed-point number. In a number
with zero bias, only the slope affects the scaling. A fixed-point number that is only scaled
by binary point position is equivalent to a number in [Slope Bias] representation that
has a bias equal to zero and a slope adjustment factor equal to one. This is referred to as
binary point-only scaling or power-of-two scaling:

real-world value integerfixed exponent
= ¥2

or

real-world value integer-fixed exponent
= ¥2

Fixed-Point Designer software supports both binary point-only scaling and [Slope Bias]
scaling.

Note For examples of binary point-only scaling, see the Fixed-Point Designer Binary-
Point Scaling example.

For an example of how to compute slope and bias in MATLAB®, see “Compute Slope and
Bias” on page 1-5

 Compute Slope and Bias

1-5

Compute Slope and Bias

In this section...

“What Is Slope Bias Scaling?” on page 1-5
“Compute Slope and Bias” on page 1-5

What Is Slope Bias Scaling?

With slope bias scaling, you must specify the slope and bias of a number. The real-world
value of a slope bias scaled number can be represented by:

real world value slope integer bias- = ¥ +()

slope slope adjustment factor
fixed exponent

= ¥ 2

Compute Slope and Bias

Start with the endpoints that you want, signedness, and word length.

lower_bound = 999;

upper_bound = 1000;

is_signed = true;

word_length = 16;

To find the range of a fi object with a specified word length and signedness, use the
range function.

[Q_min, Q_max] = range(fi([], is_signed, word_length, 0));

To find the slope and bias, solve the system of equations:

lower_bound = slope * Q_min + bias

upper_bound = slope * Q_max + bias

Rewrite these equations in matrix form.

lower_bound

upper_bound
=

Q_min 1

Q_max 1
×
slope

bias

È

Î
Í

˘

˚
˙

È

Î
Í

˘

˚
˙

È

ÎÎ
Í

˘

˚
˙

1 Fixed-Point Concepts

1-6

Solve for the slope and bias.

A = double ([Q_min, 1; Q_max, 1]);

b = double ([lower_bound; upper_bound]);

x = A\b;

format long g

To find the slope, or precision, call the first element of the slope-bias vector, x.

slope = x(1)

slope =

 1.52590218966964e-05

To find the bias, call the second element of vector x.

bias = x(2)

bias =

 999.500007629511

Create a numerictype object with slope bias scaling.

T = numerictype(is_signed, word_length, slope, bias)

T =

 DataTypeMode: Fixed-point: slope and bias scaling

 Signedness: Signed

 WordLength: 16

 Slope: 1.5259021896696368e-5

 Bias: 999.500007629511

Create a fi object with numerictype T.

a = fi(999.255, T)

a =

 999.254993514916

 DataTypeMode: Fixed-point: slope and bias scaling

 Signedness: Signed

 Compute Slope and Bias

1-7

 WordLength: 16

 Slope: 1.5259021896696368e-5

 Bias: 999.500007629511

Verify that the fi object that you created has the correct specifications by finding the
range of a.

range(a)

ans =

 999 1000

 DataTypeMode: Fixed-point: slope and bias scaling

 Signedness: Signed

 WordLength: 16

 Slope: 1.5259021896696368e-5

 Bias: 999.500007629511

1 Fixed-Point Concepts

1-8

Precision and Range

In this section...

“Range” on page 1-8
“Precision” on page 1-9

Note: You must pay attention to the precision and range of the fixed-point data types
and scalings you choose in order to know whether rounding methods will be invoked or if
overflows or underflows will occur.

Range

The range is the span of numbers that a fixed-point data type and scaling can represent.
The range of representable numbers for a two's complement fixed-point number of word
length wl , scaling S and bias B is illustrated below:

B
..

negative numbers positive numbers

S B
wl()+2

1
S B

wl()+2 1
1

For both signed and unsigned fixed-point numbers of any data type, the number of
different bit patterns is 2wl.

For example, in two's complement, negative numbers must be represented as well as
zero, so the maximum value is 2wl -1 – 1. Because there is only one representation for zero,
there are an unequal number of positive and negative numbers. This means there is a
representation for -

-

2
1wl but not for 2

1wl- :

0

negative numbers positive numbers

For slope = 1 and bias = 0:

2
1wl

2 1
1wl

 Precision and Range

1-9

Overflow Handling

Because a fixed-point data type represents numbers within a finite range, overflows and
underflows can occur if the result of an operation is larger or smaller than the numbers
in that range.

Fixed-Point Designer software allows you to either saturate or wrap overflows.
Saturation represents positive overflows as the largest positive number in the range
being used, and negative overflows as the largest negative number in the range being
used. Wrapping uses modulo arithmetic to cast an overflow back into the representable
range of the data type.

When you create a fi object, any overflows are saturated. The OverflowAction
property of the default fimath is saturate. You can log overflows and underflows by
setting the LoggingMode property of the fipref object to on. Refer to “LoggingMode”
for more information.

Precision

The precision of a fixed-point number is the difference between successive values
representable by its data type and scaling, which is equal to the value of its least
significant bit. The value of the least significant bit, and therefore the precision of the
number, is determined by the number of fractional bits. A fixed-point value can be
represented to within half of the precision of its data type and scaling.

For example, a fixed-point representation with four bits to the right of the binary point
has a precision of 2-4 or 0.0625, which is the value of its least significant bit. Any number
within the range of this data type and scaling can be represented to within (2-4)/2 or
0.03125, which is half the precision. This is an example of representing a number with
finite precision.

Rounding Methods

When you represent numbers with finite precision, not every number in the available
range can be represented exactly. If a number cannot be represented exactly by the
specified data type and scaling, a rounding method is used to cast the value to a
representable number. Although precision is always lost in the rounding operation, the
cost of the operation and the amount of bias that is introduced depends on the rounding
method itself. To provide you with greater flexibility in the trade-off between cost and
bias, Fixed-Point Designer software currently supports the following rounding methods:

1 Fixed-Point Concepts

1-10

• Ceiling rounds to the closest representable number in the direction of positive
infinity.

• Convergent rounds to the closest representable number. In the case of a tie,
convergent rounds to the nearest even number. This is the least biased rounding
method provided by the toolbox.

• fix rounds to the closest representable number in the direction of zero.
• Floor, which is equivalent to two's complement truncation, rounds to the closest

representable number in the direction of negative infinity.
• Nearest rounds to the closest representable number. In the case of a tie, nearest

rounds to the closest representable number in the direction of positive infinity. This
rounding method is the default for fi object creation and fi arithmetic.

• Round rounds to the closest representable number. In the case of a tie, the round
method rounds:

• Positive numbers to the closest representable number in the direction of positive
infinity.

• Negative numbers to the closest representable number in the direction of negative
infinity.

Choosing a Rounding Method

Each rounding method has a set of inherent properties. Depending on the requirements
of your design, these properties could make the rounding method more or less desirable
to you. By knowing the requirements of your design and understanding the properties of
each rounding method, you can determine which is the best fit for your needs. The most
important properties to consider are:

• Cost — Independent of the hardware being used, how much processing expense does
the rounding method require?

• Low — The method requires few processing cycles.
• Moderate — The method requires a moderate number of processing cycles.
• High — The method requires more processing cycles.

Note: The cost estimates provided here are hardware independent. Some processors
have rounding modes built-in, so consider carefully the hardware you are using before
calculating the true cost of each rounding mode.

 Precision and Range

1-11

• Bias — What is the expected value of the rounded values minus the original values:
E q̂ q-() ?

•
E q̂ q-() < 0 — The rounding method introduces a negative bias.

•
E q̂ q-() = 0 — The rounding method is unbiased.

•
E q̂ q-() > 0 — The rounding method introduces a positive bias.

• Possibility of Overflow — Does the rounding method introduce the possibility of
overflow?

• Yes — The rounded values may exceed the minimum or maximum representable
value.

• No — The rounded values will never exceed the minimum or maximum
representable value.

1 Fixed-Point Concepts

1-12

The following table shows a comparison of the different rounding methods available in
the Fixed-Point Designer product.

Fixed-Point Designer
Rounding Mode

Cost Bias Possibility of Overflow

Ceiling Low Large positive Yes
Convergent High Unbiased Yes
Zero Low • Large positive for negative

samples
• Unbiased for samples with

evenly distributed positive
and negative values

• Large negative for positive
samples

No

Floor Low Large negative No
Nearest Moderate Small positive Yes
Round High • Small negative for negative

samples
• Unbiased for samples with

evenly distributed positive
and negative values

• Small positive for positive
samples

Yes

Simplest

(Simulink® only)
Low Depends on the operation No

 Arithmetic Operations

1-13

Arithmetic Operations

In this section...

“Modulo Arithmetic” on page 1-13
“Two's Complement” on page 1-14
“Addition and Subtraction” on page 1-15
“Multiplication” on page 1-16
“Casts” on page 1-22

Note: These sections will help you understand what data type and scaling choices result
in overflows or a loss of precision.

Modulo Arithmetic

Binary math is based on modulo arithmetic. Modulo arithmetic uses only a finite set of
numbers, wrapping the results of any calculations that fall outside the given set back
into the set.

For example, the common everyday clock uses modulo 12 arithmetic. Numbers in this
system can only be 1 through 12. Therefore, in the “clock” system, 9 plus 9 equals 6. This
can be more easily visualized as a number circle:

1 Fixed-Point Concepts

1-14

12
1

2

3

4

5
6

7

8

9

10

11
12

1

2

3

4

5
6

7

8

9

10

11

9 plus 9 more ...

... equals 6.

Similarly, binary math can only use the numbers 0 and 1, and any arithmetic results
that fall outside this range are wrapped “around the circle” to either 0 or 1.

Two's Complement

Two's complement is a way to interpret a binary number. In two's complement, positive
numbers always start with a 0 and negative numbers always start with a 1. If the
leading bit of a two's complement number is 0, the value is obtained by calculating the
standard binary value of the number. If the leading bit of a two's complement number
is 1, the value is obtained by assuming that the leftmost bit is negative, and then
calculating the binary value of the number. For example,

01 0 2 1

11 2 2 2 1 1

0

1 0

= + =

= -() + ()() = - + = -

()

()

To compute the negative of a binary number using two's complement,

1 Take the one's complement, or “flip the bits.”
2 Add a 2^(-FL) using binary math, where FL is the fraction length.
3 Discard any bits carried beyond the original word length.

 Arithmetic Operations

1-15

For example, consider taking the negative of 11010 (-6). First, take the one's complement
of the number, or flip the bits:

11010 00101Æ

Next, add a 1, wrapping all numbers to 0 or 1:

00101
1

00110 6

+

()

Addition and Subtraction

The addition of fixed-point numbers requires that the binary points of the addends be
aligned. The addition is then performed using binary arithmetic so that no number other
than 0 or 1 is used.

For example, consider the addition of 010010.1 (18.5) with 0110.110 (6.75):

010010 1
0110 110

011001 010

18 5

6 75

25 25

.

.

.

(.)

(.)

(.)

+

Fixed-point subtraction is equivalent to adding while using the two's complement value
for any negative values. In subtraction, the addends must be sign-extended to match
each other's length. For example, consider subtracting 0110.110 (6.75) from 010010.1
(18.5):

010010 100
0110 110

18 5
6 75

.

.
(.)
(.)-

The default fimath has a value of 1 (true) for the CastBeforeSum property. This casts
addends to the sum data type before addition. Therefore, no further shifting is necessary
during the addition to line up the binary points.

If CastBeforeSum has a value of 0 (false), the addends are added with full precision
maintained. After the addition the sum is then quantized.

1 Fixed-Point Concepts

1-16

Multiplication

The multiplication of two's complement fixed-point numbers is directly analogous to
regular decimal multiplication, with the exception that the intermediate results must be
sign-extended so that their left sides align before you add them together.

For example, consider the multiplication of 10.11 (-1.25) with 011 (3):

Multiplication Data Types

The following diagrams show the data types used for fixed-point multiplication using
Fixed-Point Designer software. The diagrams illustrate the differences between the data
types used for real-real, complex-real, and complex-complex multiplication.

Real-Real Multiplication

The following diagram shows the data types used by the toolbox in the multiplication of
two real numbers. The software returns the output of this operation in the product data
type, which is governed by the fimath object ProductMode property.

 Arithmetic Operations

1-17

Real-Complex Multiplication

The following diagram shows the data types used by the toolbox in the multiplication of a
real and a complex fixed-point number. Real-complex and complex-real multiplication are
equivalent. The software returns the output of this operation in the product data type,
which is governed by the fimath object ProductMode property:

Complex-Complex Multiplication

The following diagram shows the multiplication of two complex fixed-point numbers. The
software returns the output of this operation in the sum data type, which is governed by
the fimath object SumMode property. The intermediate product data type is determined
by the fimath object ProductMode property.

1 Fixed-Point Concepts

1-18

When the fimath object CastBeforeSum property is true, the casts to the sum data
type are present after the multipliers in the preceding diagram. In C code, this is
equivalent to

acc=ac;

acc-=bd;

for the subtractor, and

acc=ad;

acc+=bc;

for the adder, where acc is the accumulator. When the CastBeforeSum property is
false, the casts are not present, and the data remains in the product data type before
the subtraction and addition operations.

 Arithmetic Operations

1-19

Multiplication with fimath

In the following examples, let

F = fimath('ProductMode','FullPrecision',...

'SumMode','FullPrecision');

T1 = numerictype('WordLength',24,'FractionLength',20);

T2 = numerictype('WordLength',16,'FractionLength',10);

Real*Real

Notice that the word length and fraction length of the result z are equal to the sum of the
word lengths and fraction lengths, respectively, of the multiplicands. This is because the
fimath SumMode and ProductMode properties are set to FullPrecision:

P = fipref;

P.FimathDisplay = 'none';

x = fi(5, T1, F)

x =

 5

 DataTypeMode: Fixed-point: binary point scaling

 Signedness: Signed

 WordLength: 24

 FractionLength: 20

y = fi(10, T2, F)

y =

 10

 DataTypeMode: Fixed-point: binary point scaling

 Signedness: Signed

 WordLength: 16

 FractionLength: 10

z = x*y

z =

1 Fixed-Point Concepts

1-20

 50

 DataTypeMode: Fixed-point: binary point scaling

 Signedness: Signed

 WordLength: 40

 FractionLength: 30

Real*Complex

Notice that the word length and fraction length of the result z are equal to the sum of the
word lengths and fraction lengths, respectively, of the multiplicands. This is because the
fimath SumMode and ProductMode properties are set to FullPrecision:

x = fi(5,T1,F)

x =

 5

 DataTypeMode: Fixed-point: binary point scaling

 Signedness: Signed

 WordLength: 24

 FractionLength: 20

y = fi(10+2i,T2,F)

y =

 10.0000 + 2.0000i

 DataTypeMode: Fixed-point: binary point scaling

 Signedness: Signed

 WordLength: 16

 FractionLength: 10

z = x*y

z =

 50.0000 +10.0000i

 Arithmetic Operations

1-21

 DataTypeMode: Fixed-point: binary point scaling

 Signedness: Signed

 WordLength: 40

 FractionLength: 30

Complex*Complex

Complex-complex multiplication involves an addition as well as multiplication. As a
result, the word length of the full-precision result has one more bit than the sum of the
word lengths of the multiplicands:

x = fi(5+6i,T1,F)

x =

 5.0000 + 6.0000i

 DataTypeMode: Fixed-point: binary point scaling

 Signedness: Signed

 WordLength: 24

 FractionLength: 20

y = fi(10+2i,T2,F)

y =

 10.0000 + 2.0000i

 DataTypeMode: Fixed-point: binary point scaling

 Signedness: Signed

 WordLength: 16

 FractionLength: 10

z = x*y

z =

 38.0000 +70.0000i

 DataTypeMode: Fixed-point: binary point scaling

 Signedness: Signed

 WordLength: 41

1 Fixed-Point Concepts

1-22

 FractionLength: 30

Casts

The fimath object allows you to specify the data type and scaling of intermediate sums
and products with the SumMode and ProductMode properties. It is important to keep
in mind the ramifications of each cast when you set the SumMode and ProductMode
properties. Depending upon the data types you select, overflow and/or rounding might
occur. The following two examples demonstrate cases where overflow and rounding can
occur.

Note For more examples of casting, see “Cast fi Objects”.

Casting from a Shorter Data Type to a Longer Data Type

Consider the cast of a nonzero number, represented by a 4-bit data type with two
fractional bits, to an 8-bit data type with seven fractional bits:

This bit from the source data
type �falls off� the high end with
the shift up. Overflow might occur.
The result will saturate or wrap.

These bits of the destination
data type are padded with
0�s or 1�s.

source

destination

The source bits must be shifted up to match the
binary point position of the destination data type.

As the diagram shows, the source bits are shifted up so that the binary point matches
the destination binary point position. The highest source bit does not fit, so overflow
might occur and the result can saturate or wrap. The empty bits at the low end of the
destination data type are padded with either 0's or 1's:

 Arithmetic Operations

1-23

• If overflow does not occur, the empty bits are padded with 0's.
• If wrapping occurs, the empty bits are padded with 0's.
• If saturation occurs,

• The empty bits of a positive number are padded with 1's.
• The empty bits of a negative number are padded with 0's.

You can see that even with a cast from a shorter data type to a longer data type, overflow
can still occur. This can happen when the integer length of the source data type (in this
case two) is longer than the integer length of the destination data type (in this case one).
Similarly, rounding might be necessary even when casting from a shorter data type to a
longer data type, if the destination data type and scaling has fewer fractional bits than
the source.

Casting from a Longer Data Type to a Shorter Data Type

Consider the cast of a nonzero number, represented by an 8-bit data type with seven
fractional bits, to a 4-bit data type with two fractional bits:

There is no value for this bit
from the source, so the result
must be sign-extended to fill
the destination data type.

These bits from the source
do not fit into the destination
data type. The result is rounded.

source

destination

The source bits must be shifted down to match the
binary point position of the destination data type.

As the diagram shows, the source bits are shifted down so that the binary point matches
the destination binary point position. There is no value for the highest bit from the
source, so sign extension is used to fill the integer portion of the destination data type.

1 Fixed-Point Concepts

1-24

The bottom five bits of the source do not fit into the fraction length of the destination.
Therefore, precision can be lost as the result is rounded.

In this case, even though the cast is from a longer data type to a shorter data type, all
the integer bits are maintained. Conversely, full precision can be maintained even if you
cast to a shorter data type, as long as the fraction length of the destination data type is
the same length or longer than the fraction length of the source data type. In that case,
however, bits are lost from the high end of the result and overflow can occur.

The worst case occurs when both the integer length and the fraction length of the
destination data type are shorter than those of the source data type and scaling. In that
case, both overflow and a loss of precision can occur.

 fi Objects and C Integer Data Types

1-25

fi Objects and C Integer Data Types

In this section...

“Integer Data Types” on page 1-25
“Unary Conversions” on page 1-27
“Binary Conversions” on page 1-28
“Overflow Handling” on page 1-30

Note: The sections in this topic compare the fi object with fixed-point data types and
operations in C. In these sections, the information on ANSI® C is adapted from Samuel P.
Harbison and Guy L. Steele Jr., C: A Reference Manual, 3rd ed., Prentice Hall, 1991.

Integer Data Types

This section compares the numerical range of fi integer data types to the minimum
numerical range of C integer data types, assuming a “Two's Complement” on page 1-14
representation.

C Integer Data Types

Many C compilers support a two's complement representation of signed integer data
types. The following table shows the minimum ranges of C integer data types using a
two's complement representation. The integer ranges can be larger than or equal to the
ranges shown, but cannot be smaller. The range of a long must be larger than or equal
to the range of an int, which must be larger than or equal to the range of a short.

In the two's complement representation, a signed integer with n bits has a range from
-

-

2
1n to 2 1

1n-

- , inclusive. An unsigned integer with n bits has a range from 0 to 2 1
n

- ,
inclusive. The negative side of the range has one more value than the positive side, and
zero is represented uniquely.

1 Fixed-Point Concepts

1-26

Integer Type Minimum Maximum

signed char –128 127
unsigned char 0 255
short int –32,768 32,767
unsigned short 0 65,535
int –32,768 32,767
unsigned int 0 65,535
long int –2,147,483,648 2,147,483,647
unsigned long 0 4,294,967,295

fi Integer Data Types

The following table lists the numerical ranges of the integer data types of the fi object,
in particular those equivalent to the C integer data types. The ranges are large enough
to accommodate the two's complement representation, which is the only signed binary
encoding technique supported by Fixed-Point Designer software.

Constructor Signed
Word
Length

Fraction
Length

Minimum Maximum
Closest ANSI
C Equivalent

fi(x,1,n,0) Yes
n

(2 to
65,535)

0
-

-

2
1n

2 1
1n-

-
Not applicable

fi(x,0,n,0) No
n

(2 to
65,535)

0 0 2 1
n

-
Not applicable

fi(x,1,8,0) Yes 8 0 –128 127 signed char

fi(x,0,8,0) No 8 0 0 255 unsigned char

fi(x,1,16,0) Yes 16 0 –32,768 32,767 short int

fi(x,0,16,0) No 16 0 0 65,535 unsigned

short

fi(x,1,32,0) Yes 32 0 –
2,147,483,648 2,147,483,647 long int

fi(x,0,32,0) No 32 0 0 4,294,967,295 unsigned long

 fi Objects and C Integer Data Types

1-27

Unary Conversions

Unary conversions dictate whether and how a single operand is converted before an
operation is performed. This section discusses unary conversions in ANSI C and of fi
objects.

ANSI C Usual Unary Conversions

Unary conversions in ANSI C are automatically applied to the operands of the unary !,
–, ~, and * operators, and of the binary << and >> operators, according to the following
table:

Original Operand Type ANSI C Conversion

char or short int

unsigned char or unsigned short int or unsigned int1

float float

Array of T Pointer to T
Function returning T Pointer to function returning T

1If type int cannot represent all the values of the original data type without overflow,
the converted type is unsigned int.

1 Fixed-Point Concepts

1-28

fi Usual Unary Conversions

The following table shows the fi unary conversions:

C Operator fi Equivalent fi Conversion

!x ~x = not(x) Result is logical.
~x bitcmp(x) Result is same numeric type as operand.
*x No equivalent Not applicable
x<<n bitshift(x,n)

positive n
Result is same numeric type as operand. Round mode is
always floor. Overflow mode is obeyed. 0-valued bits are
shifted in on the right.

x>>n bitshift(x,-n) Result is same numeric type as operand. Round mode is
always floor. Overflow mode is obeyed. 0-valued bits are
shifted in on the left if the operand is unsigned or signed
and positive. 1-valued bits are shifted in on the left if the
operand is signed and negative.

+x +x Result is same numeric type as operand.
-x -x Result is same numeric type as operand. Overflow mode

is obeyed. For example, overflow might occur when you
negate an unsigned fi or the most negative value of a
signed fi.

Binary Conversions

This section describes the conversions that occur when the operands of a binary operator
are different data types.

ANSI C Usual Binary Conversions

In ANSI C, operands of a binary operator must be of the same type. If they are different,
one is converted to the type of the other according to the first applicable conversion in the
following table:

Type of One Operand Type of Other Operand ANSI C Conversion

long double Any long double

double Any double

float Any float

 fi Objects and C Integer Data Types

1-29

Type of One Operand Type of Other Operand ANSI C Conversion

unsigned long Any unsigned long

long unsigned long or unsigned long1

long int long

unsigned int or unsigned unsigned

int int int

1Type long is only used if it can represent all values of type unsigned.

fi Usual Binary Conversions

When one of the operands of a binary operator (+, –, *, .*) is a fi object and the other
is a MATLAB built-in numeric type, then the non-fi operand is converted to a fi object
before the operation is performed, according to the following table:

Type of One
Operand

Type of Other
Operand

Properties of Other Operand After Conversion to a fi Object

fi double or

single

• Signed = same as the original fi operand
• WordLength = same as the original fi operand
• FractionLength = set to best precision possible

fi int8 • Signed = 1
• WordLength = 8
• FractionLength = 0

fi uint8 • Signed = 0
• WordLength = 8
• FractionLength = 0

fi int16 • Signed = 1
• WordLength = 16
• FractionLength = 0

fi uint16 • Signed = 0
• WordLength = 16
• FractionLength = 0

fi int32 • Signed = 1

1 Fixed-Point Concepts

1-30

Type of One
Operand

Type of Other
Operand

Properties of Other Operand After Conversion to a fi Object

• WordLength = 32
• FractionLength = 0

fi uint32 • Signed = 0
• WordLength = 32
• FractionLength = 0

fi int64 • Signed = 1
• WordLength = 64
• FractionLength = 0

fi uint64 • Signed = 0
• WordLength = 64
• FractionLength = 0

Overflow Handling

The following sections compare how ANSI C and Fixed-Point Designer software handle
overflows.

ANSI C Overflow Handling

In ANSI C, the result of signed integer operations is whatever value is produced by the
machine instruction used to implement the operation. Therefore, ANSI C has no rules for
handling signed integer overflow.

The results of unsigned integer overflows wrap in ANSI C.

fi Overflow Handling

Addition and multiplication with fi objects yield results that can be exactly represented
by a fi object, up to word lengths of 65,535 bits or the available memory on your
machine. This is not true of division, however, because many ratios result in infinite
binary expressions. You can perform division with fi objects using the divide function,
which requires you to explicitly specify the numeric type of the result.

The conditions under which a fi object overflows and the results then produced
are determined by the associated fimath object. You can specify certain overflow

 fi Objects and C Integer Data Types

1-31

characteristics separately for sums (including differences) and products. Refer to the
following table:

fimath Object Properties
Related to Overflow Handling

Property Value Description

'saturate' Overflows are saturated to the maximum or
minimum value in the range.

OverflowAction

'wrap' Overflows wrap using modulo arithmetic if
unsigned, two's complement wrap if signed.

ProductMode 'FullPrecision' Full-precision results are kept. Overflow
does not occur. An error is thrown if the
resulting word length is greater than
MaxProductWordLength.

The rules for computing the resulting product
word and fraction lengths are given in
“fimath Object Properties” in the Property
Reference.

 'KeepLSB' The least significant bits of the product are
kept. Full precision is kept, but overflow
is possible. This behavior models the C
language integer operations.

The ProductWordLength property
determines the resulting word length. If
ProductWordLength is greater than is
necessary for the full-precision product, then
the result is stored in the least significant
bits. If ProductWordLength is less than is
necessary for the full-precision product, then
overflow occurs.

The rule for computing the resulting product
fraction length is given in “fimath Object
Properties” in the Property Reference.

 'KeepMSB' The most significant bits of the product are
kept. Overflow is prevented, but precision
may be lost.

1 Fixed-Point Concepts

1-32

fimath Object Properties
Related to Overflow Handling

Property Value Description

The ProductWordLength property
determines the resulting word length. If
ProductWordLength is greater than is
necessary for the full-precision product, then
the result is stored in the most significant
bits. If ProductWordLength is less than is
necessary for the full-precision product, then
rounding occurs.

The rule for computing the resulting product
fraction length is given in “fimath Object
Properties” in the Property Reference.

 'SpecifyPrecision' You can specify both the word length and the
fraction length of the resulting product.

ProductWordLength Positive integer The word length of product results when
ProductMode is 'KeepLSB', 'KeepMSB', or
'SpecifyPrecision'.

MaxProductWordLength Positive integer The maximum product word length allowed
when ProductMode is 'FullPrecision'.
The default is 65,535 bits. This property can
help ensure that your simulation does not
exceed your hardware requirements.

ProductFractionLength Integer The fraction length of product results when
ProductMode is 'Specify Precision'.

SumMode 'FullPrecision' Full-precision results are kept. Overflow
does not occur. An error is thrown if the
resulting word length is greater than
MaxSumWordLength.

The rules for computing the resulting sum
word and fraction lengths are given in
“fimath Object Properties” in the Property
Reference.

 fi Objects and C Integer Data Types

1-33

fimath Object Properties
Related to Overflow Handling

Property Value Description

 'KeepLSB' The least significant bits of the sum are
kept. Full precision is kept, but overflow
is possible. This behavior models the C
language integer operations.

The SumWordLength property determines
the resulting word length. If SumWordLength
is greater than is necessary for the full-
precision sum, then the result is stored in the
least significant bits. If SumWordLength is
less than is necessary for the full-precision
sum, then overflow occurs.

The rule for computing the resulting sum
fraction length is given in “fimath Object
Properties” in the Property Reference.

 'KeepMSB' The most significant bits of the sum are kept.
Overflow is prevented, but precision may be
lost.

The SumWordLength property determines
the resulting word length. If SumWordLength
is greater than is necessary for the full-
precision sum, then the result is stored in the
most significant bits. If SumWordLength is
less than is necessary for the full-precision
sum, then rounding occurs.

The rule for computing the resulting sum
fraction length is given in “fimath Object
Properties” in the Property Reference.

 'SpecifyPrecision' You can specify both the word length and the
fraction length of the resulting sum.

SumWordLength Positive integer The word length of sum results when
SumMode is 'KeepLSB', 'KeepMSB', or
'SpecifyPrecision'.

1 Fixed-Point Concepts

1-34

fimath Object Properties
Related to Overflow Handling

Property Value Description

MaxSumWordLength Positive integer The maximum sum word length allowed
when SumMode is 'FullPrecision'. The
default is 65,535 bits. This property can help
ensure that your simulation does not exceed
your hardware requirements.

SumFractionLength Integer The fraction length of sum results when
SumMode is 'SpecifyPrecision'.

2

Working with fi Objects

• “Ways to Construct fi Objects” on page 2-2
• “Cast fi Objects” on page 2-12
• “fi Object Properties” on page 2-18
• “fi Object Functions” on page 2-24

2 Working with fi Objects

2-2

Ways to Construct fi Objects

In this section...

“Types of fi Constructors” on page 2-2
“Examples of Constructing fi Objects” on page 2-3

Types of fi Constructors

You can create fi objects using Fixed-Point Designer software in any of the following
ways:

• You can use the fi constructor function to create a fi object.
• You can use the sfi constructor function to create a new signed fi object.
• You can use the ufi constructor function to create a new unsigned fi object.
• You can use any of the fi constructor functions to copy an existing fi object.

To get started, to create a fi object with the default data type and a value of 0:

a = fi(0)

a =

 0

 DataTypeMode: Fixed-point: binary point scaling

 Signedness: Signed

 WordLength: 16

 FractionLength: 15

This constructor syntax creates a signed fi object with a value of 0, word length of
16 bits, and fraction length of 15 bits. Because you did not specify any fimath object
properties in the fi constructor, the resulting fi object a has no local fimath.

To see all of the fi, sfi, and ufi constructor syntaxes, refer to the respective reference
pages.

For information on the display format of fi objects, refer to “View Fixed-Point Data”.

 Ways to Construct fi Objects

2-3

Examples of Constructing fi Objects

The following examples show you several different ways to construct fi objects. For
other, more basic examples of constructing fi objects, see the Examples section of the
following constructor function reference pages:

• fi

• sfi

• ufi

Note: The fi constructor creates the fi object using a RoundingMethod of Nearest and
an OverflowAction of Saturate. If you construct a fi from floating-point values, the
default RoundingMethod and OverflowAction property settings are not used.

Constructing a fi Object with Property Name/Property Value Pairs

You can use property name/property value pairs to set fi and fimath object properties
when you create the fi object:

a = fi(pi, 'RoundingMethod','Floor', 'OverflowAction','Wrap')

a =

 3.1415

 DataTypeMode: Fixed-point: binary point scaling

 Signedness: Signed

 WordLength: 16

 FractionLength: 13

 RoundingMethod: Floor

 OverflowAction: Wrap

 ProductMode: FullPrecision

 SumMode: FullPrecision

You do not have to specify every fimath object property in the fi constructor. The fi
object uses default values for all unspecified fimath object properties.

• If you specify at least one fimath object property in the fi constructor, the fi
object has a local fimath object. The fi object uses default values for the remaining
unspecified fimath object properties.

2 Working with fi Objects

2-4

• If you do not specify any fimath object properties in the fi object constructor, the fi
object uses default fimath values.

Constructing a fi Object Using a numerictype Object

You can use a numerictype object to define a fi object:

T = numerictype

T =

 DataTypeMode: Fixed-point: binary point scaling

 Signedness: Signed

 WordLength: 16

 FractionLength: 15

a = fi(pi, T)

 a =

 1.0000

 DataTypeMode: Fixed-point: binary point scaling

 Signedness: Signed

 WordLength: 16

 FractionLength: 15

You can also use a fimath object with a numerictype object to define a fi object:

F = fimath('RoundingMethod', 'Nearest',...

'OverflowAction', 'Saturate',...

'ProductMode','FullPrecision',...

'SumMode','FullPrecision')

F =

 RoundingMethod: Nearest

 OverflowAction: Saturate

 ProductMode: FullPrecision

 SumMode: FullPrecision

a = fi(pi, T, F)

a =

 Ways to Construct fi Objects

2-5

 1.0000

 DataTypeMode: Fixed-point: binary point scaling

 Signedness: Signed

 WordLength: 16

 FractionLength: 15

 RoundingMethod: Nearest

 OverflowAction: Saturate

 ProductMode: FullPrecision

 SumMode: FullPrecision

Note The syntax a = fi(pi,T,F) is equivalent to a = fi(pi,F,T). You can use both
statements to define a fi object using a fimath object and a numerictype object.

Constructing a fi Object Using a fimath Object

You can create a fi object using a specific fimath object. When you do so, a local
fimath object is assigned to the fi object you create. If you do not specify any
numerictype object properties, the word length of the fi object defaults to 16 bits. The
fraction length is determined by best precision scaling:

F = fimath('RoundingMethod', 'Nearest',...

'OverflowAction', 'Saturate',...

'ProductMode','FullPrecision',...

'SumMode','FullPrecision')

F =

 RoundingMethod: Nearest

 OverflowAction: Saturate

 ProductMode: FullPrecision

 SumMode: FullPrecision

F.OverflowAction = 'Wrap'

F =

 RoundingMethod: Nearest

2 Working with fi Objects

2-6

 OverflowAction: Wrap

 ProductMode: FullPrecision

 SumMode: FullPrecision

 a = fi(pi, F)

a =

 3.1416

 DataTypeMode: Fixed-point: binary point scaling

 Signedness: Signed

 WordLength: 16

 FractionLength: 13

 RoundingMethod: Nearest

 OverflowAction: Wrap

 ProductMode: FullPrecision

 SumMode: FullPrecision

You can also create fi objects using a fimath object while specifying various
numerictype properties at creation time:

b = fi(pi, 0, F)

b =

 3.1416

 DataTypeMode: Fixed-point: binary point scaling

 Signedness: Unsigned

 WordLength: 16

 FractionLength: 14

 RoundingMethod: Nearest

 OverflowAction: Wrap

 ProductMode: FullPrecision

 SumMode: FullPrecision

c = fi(pi, 0, 8, F)

c =

 3.1406

 Ways to Construct fi Objects

2-7

 DataTypeMode: Fixed-point: binary point scaling

 Signedness: Unsigned

 WordLength: 8

 FractionLength: 6

 RoundingMethod: Nearest

 OverflowAction: Wrap

 ProductMode: FullPrecision

 SumMode: FullPrecision

d = fi(pi, 0, 8, 6, F)

d =

 3.1406

 DataTypeMode: Fixed-point: binary point scaling

 Signedness: Unsigned

 WordLength: 8

 FractionLength: 6

 RoundingMethod: Nearest

 OverflowAction: wrap

 ProductMode: FullPrecision

 SumMode: FullPrecision

Building fi Object Constructors in a GUI

When you are working with files in MATLAB, you can build your fi object constructors
using the Insert fi Constructor dialog box. After specifying the value and properties
of the fi object in the dialog box, you can insert the prepopulated fi object constructor
string at a specific location in your file.

For example, to create a signed fi object with a value of pi, a word length of 16 bits and a
fraction length of 13 bits:

1 On the Home tab, in the File section, click New > Script to open the MATLAB
Editor.

2
On the Editor tab, in the Edit section, click in the Insert button group.
Click Insert fi... to open the Insert fi Constructor dialog box.

3 Use the edit boxes and drop-down menus to specify the following properties of the fi
object:

2 Working with fi Objects

2-8

• Value = pi
• Data type mode = Fixed-point: binary point scaling
• Signedness = Signed
• Word length = 16
• Fraction length = 13

4 To insert the fi object constructor string in your file, place your cursor at the desired
location in the file, and click OK on the Insert fi Constructor dialog box. Clicking
OK closes the Insert fi Constructor dialog box and automatically populates the fi
object constructor string in your file:

Determining Property Precedence

The value of a property is taken from the last time it is set. For example, create a
numerictype object with a value of true for the Signed property and a fraction length
of 14:

T = numerictype('Signed', true, 'FractionLength', 14)

 Ways to Construct fi Objects

2-9

T =

 DataTypeMode: Fixed-point: binary point scaling

 Signedness: Signed

 WordLength: 16

 FractionLength: 14

Now, create the following fi object in which you specify the numerictype property after
the Signed property, so that the resulting fi object is signed:

a = fi(pi,'Signed',false,'numerictype',T)

a =

 1.9999

 DataTypeMode: Fixed-point: binary point scaling

 Signedness: Signed

 WordLength: 16

 FractionLength: 14

Contrast the fi object in this code sample with the fi object in the following code
sample. The numerictype property in the following code sample is specified before the
Signed property, so the resulting fi object is unsigned:

b = fi(pi,'numerictype',T,'Signed',false)

b =

 3.1416

 DataTypeMode: Fixed-point: binary point scaling

 Signedness: Unsigned

 WordLength: 16

 FractionLength: 14

Copying a fi Object

To copy a fi object, simply use assignment:

a = fi(pi)

a =

2 Working with fi Objects

2-10

 3.1416

 DataTypeMode: Fixed-point: binary point scaling

 Signedness: Signed

 WordLength: 16

 FractionLength: 13

b = a

b =

 3.1416

 DataTypeMode: Fixed-point: binary point scaling

 Signedness: Signed

 WordLength: 16

 FractionLength: 13

Creating fi Objects For Use in a Types Table

You can write a reusable MATLAB algorithm by keeping the data types of the
algorithmic variables in a separate types table. For example,

function T = mytypes(dt)

 switch dt

 case 'double'

 T.b = double([]);

 T.x = double([]);

 T.y = double([]);

 case 'fixed16'

 T.b = fi([],1,16,15);

 T.x = fi([],1,16,15);

 T.y = fi([],1,16,14);

 end

end

Cast the variables in the algorithm to the data types in the types table as described in
“Manual Fixed-Point Conversion Best Practices”.

function [y,z]=myfilter(b,x,z,T)

 y = zeros(size(x),'like',T.y);

 for n=1:length(x)

 z(:) = [x(n); z(1:end-1)];

 y(n) = b * z;

 Ways to Construct fi Objects

2-11

 end

end

In a separate test file, set up input data to feed into your algorithm, and specify the data
types of the inputs.

% Test inputs

b = fir1(11,0.25);

t = linspace(0,10*pi,256)';

x = sin((pi/16)*t.^2);

% Linear chirp

% Cast inputs

T=mytypes('fixed16');

b=cast(b,'like',T.b);

x=cast(x,'like',T.x);

z=zeros(size(b'),'like',T.x);

% Run

[y,z] = myfilter(b,x,z,T);

2 Working with fi Objects

2-12

Cast fi Objects

In this section...

“Overwriting by Assignment” on page 2-12
“Ways to Cast with MATLAB Software” on page 2-12

Overwriting by Assignment

Because MATLAB software does not have type declarations, an assignment like A = B
replaces the type and content of A with the type and content of B. If A does not exist at
the time of the assignment, MATLAB creates the variable A and assigns it the same type
and value as B. Such assignment happens with all types in MATLAB—objects and built-
in types alike—including fi, double, single, int8, uint8, int16, etc.

For example, the following code overwrites the value and int8 type of A with the value
and int16 type of B:

A = int8(0);

B = int16(32767);

A = B

A =

 32767

class(A)

ans =

int16

Ways to Cast with MATLAB Software

You may find it useful to cast data into another type—for example, when you are casting
data from an accumulator to memory. There are several ways to cast data in MATLAB.
The following sections provide examples of three different methods:

• Casting by Subscripted Assignment
• Casting by Conversion Function

 Cast fi Objects

2-13

• Casting with the Fixed-Point Designer reinterpretcast Function
• Casting with the cast Function

Casting by Subscripted Assignment

The following subscripted assignment statement retains the type of A and saturates the
value of B to an int8:

A = int8(0);

B = int16(32767);

A(:) = B

A =

 127

class(A)

ans =

int8

The same is true for fi objects:

fipref('NumericTypeDisplay', 'short');

A = fi(0, 1, 8, 0);

B = fi(32767, 1, 16, 0);

A(:) = B

A =

 127

 s8,0

Note For more information on subscripted assignments, see the subsasgn function.

Casting by Conversion Function

You can convert from one data type to another by using a conversion function. In this
example, A does not have to be predefined because it is overwritten.

B = int16(32767);

2 Working with fi Objects

2-14

A = int8(B)

A =

 127

class(A)

ans =

int8

The same is true for fi objects:

B = fi(32767, 1, 16, 0)

A = fi(B, 1, 8, 0)

B =

 32767

 s16,0

A =

 127

 s8,0

Using a numerictype Object in the fi Conversion Function

Often a specific numerictype is used in many places, and it is convenient to predefine
numerictype objects for use in the conversion functions. Predefining these objects is a
good practice because it also puts the data type specification in one place.

T8 = numerictype(1,8,0)

T8 =

 DataTypeMode: Fixed-point: binary point scaling

 Signedness: Signed

 WordLength: 8

 FractionLength: 0

T16 = numerictype(1,16,0)

 Cast fi Objects

2-15

T16 =

 DataTypeMode: Fixed-point: binary point scaling

 Signedness: Signed

 WordLength: 16

 FractionLength: 0

B = fi(32767,T16)

B =

 32767

 s16,0

A = fi(B, T8)

A =

 127

 s8,0

Casting with the reinterpretcast Function

You can convert fixed-point and built-in data types without changing the underlying
data. The Fixed-Point Designer reinterpretcast function performs this type of
conversion.

In the following example, B is an unsigned fi object with a word length of 8 bits and a
fraction length of 5 bits. The reinterpretcast function converts B into a signed fi
object A with a word length of 8 bits and a fraction length of 1 bit. The real-world values
of A and B differ, but their binary representations are the same.

B = fi([pi/4 1 pi/2 4], 0, 8, 5)

T = numerictype(1, 8, 1);

A = reinterpretcast(B, T)

B =

 0.7813 1.0000 1.5625 4.0000

 DataTypeMode: Fixed-point: binary point scaling

 Signedness: Unsigned

 WordLength: 8

2 Working with fi Objects

2-16

 FractionLength: 5

A =

 12.5000 16.0000 25.0000 -64.0000

 DataTypeMode: Fixed-point: binary point scaling

 Signedness: Signed

 WordLength: 8

 FractionLength: 1

To verify that the underlying data has not changed, compare the binary representations
of A and B:

binary_B = bin(B)

binary_A = bin(A)

binary_A =

00011001 00100000 00110010 10000000

binary_B =

00011001 00100000 00110010 10000000

Casting with the cast Function

Using the cast function, you can convert the value of a variable to the same
numerictype, complexity, and fimath as another variable.

In the following example, a is cast to the data type of b. The output, c, has the same
numerictype and fimath properties as b, and the value of a.

a = pi;

b = fi([],1,16,13,'RoundingMethod',Floor);

c= cast(a,'like',b)

c =

 3.1415

 DataTypeMode: Fixed-point: binary point scaling

 Signedness: Signed

 WordLength: 16

 Cast fi Objects

2-17

 FractionLength: 13

 RoundingMethod: Floor

 OverflowAction: Saturate

 ProductMode: FullPrecision

 SumMode: FullPrecision

Using this syntax allows you to specify data types separately from your algorithmic code
as described in “Manual Fixed-Point Conversion Best Practices”.

2 Working with fi Objects

2-18

fi Object Properties

In this section...

“Data Properties” on page 2-18
“fimath Properties” on page 2-18
“numerictype Properties” on page 2-20
“Setting fi Object Properties” on page 2-21

Data Properties

The data properties of a fi object are always writable.

• bin — Stored integer value of a fi object in binary
• data — Numerical real-world value of a fi object
• dec — Stored integer value of a fi object in decimal
• double — Real-world value of a fi object, stored as a MATLAB double data type
• hex — Stored integer value of a fi object in hexadecimal
• int — Stored integer value of a fi object, stored in a built-in MATLAB integer data

type
• oct — Stored integer value of a fi object in octal

To learn more about these properties, see “fi Object Properties” in the Fixed-Point
Designer Reference.

fimath Properties

In general, the fimath properties associated with fi objects depend on how you create
the fi object:

• When you specify one or more fimath object properties in the fi constructor, the
resulting fi object has a local fimath object.

• When you do not specify any fimath object properties in the fi constructor, the
resulting fi object has no local fimath.

To determine whether a fi object has a local fimath object, use the isfimathlocal
function.

 fi Object Properties

2-19

The fimath properties associated with fi objects determine how fixed-point arithmetic
is performed. These fimath properties can come from a local fimath object or from
default fimath property values. To learn more about fimath objects in fixed-point
arithmetic, see “fimath Rules for Fixed-Point Arithmetic”.

The following fimath properties are, by transitivity, also properties of the fi object. You
can set these properties for individual fi objects. The following fimath properties are
always writable.

• CastBeforeSum — Whether both operands are cast to the sum data type before
addition

Note: This property is hidden when the SumMode is set to FullPrecision.
• MaxProductWordLength — Maximum allowable word length for the product data

type
• MaxSumWordLength — Maximum allowable word length for the sum data type
• OverflowAction — Action to take on overflow
• ProductBias — Bias of the product data type
• ProductFixedExponent — Fixed exponent of the product data type
• ProductFractionLength — Fraction length, in bits, of the product data type
• ProductMode — Defines how the product data type is determined
• ProductSlope — Slope of the product data type
• ProductSlopeAdjustmentFactor — Slope adjustment factor of the product data

type
• ProductWordLength — Word length, in bits, of the product data type
• RoundingMethod — Rounding method
• SumBias — Bias of the sum data type
• SumFixedExponent — Fixed exponent of the sum data type
• SumFractionLength — Fraction length, in bits, of the sum data type
• SumMode — Defines how the sum data type is determined
• SumSlope — Slope of the sum data type
• SumSlopeAdjustmentFactor — Slope adjustment factor of the sum data type
• SumWordLength — The word length, in bits, of the sum data type

2 Working with fi Objects

2-20

For more information, see “fimath Object Properties”.

numerictype Properties

When you create a fi object, a numerictype object is also automatically created as a
property of the fi object:

numerictype — Object containing all the data type information of a fi object, Simulink
signal, or model parameter

The following numerictype properties are, by transitivity, also properties of a fi object.
The following properties of the numerictype object become read only after you create
the fi object. However, you can create a copy of a fi object with new values specified for
the numerictype properties:

• Bias — Bias of a fi object
• DataType — Data type category associated with a fi object
• DataTypeMode — Data type and scaling mode of a fi object
• FixedExponent — Fixed-point exponent associated with a fi object
• FractionLength — Fraction length of the stored integer value of a fi object in bits
• Scaling — Fixed-point scaling mode of a fi object
• Signed — Whether a fi object is signed or unsigned
• Signedness — Whether a fi object is signed or unsigned

Note: numerictype objects can have a Signedness of Auto, but all fi objects must
be Signed or Unsigned. If a numerictype object with Auto Signedness is used to
create a fi object, the Signedness property of the fi object automatically defaults to
Signed.

• Slope — Slope associated with a fi object
• SlopeAdjustmentFactor — Slope adjustment associated with a fi object
• WordLength — Word length of the stored integer value of a fi object in bits

For more information, see “numerictype Object Properties”.

There are two ways to specify properties for fi objects in Fixed-Point Designer software.
Refer to the following sections:

 fi Object Properties

2-21

• “Setting Fixed-Point Properties at Object Creation” on page 2-21
• “Using Direct Property Referencing with fi” on page 2-22

Setting fi Object Properties

You can set fi object properties in two ways:

• Setting the properties when you create the object
• Using direct property referencing

Setting Fixed-Point Properties at Object Creation

You can set properties of fi objects at the time of object creation by including properties
after the arguments of the fi constructor function. For example, to set the overflow
action to Wrap and the rounding method to Convergent,

a = fi(pi, 'OverflowAction', 'Wrap',...

 'RoundingMethod', 'Convergent')

a =

 3.1416

 DataTypeMode: Fixed-point: binary point scaling

 Signedness: Signed

 WordLength: 16

 FractionLength: 13

 RoundingMethod: Convergent

 OverflowAction: Wrap

 ProductMode: FullPrecision

 SumMode: FullPrecision

To set the stored integer value of a fi object, use the parameter/value pair for the 'int'
property when you create the object. For example, create a signed fi object with a stored
integer value of 4, 16-bit word length, and 15-bit fraction length.

x = fi(0,1,16,15,'int',4);

Verify that the fi object has the expected integer setting.

x.int

2 Working with fi Objects

2-22

ans =

 4

Using Direct Property Referencing with fi

You can reference directly into a property for setting or retrieving fi object property
values using MATLAB structure-like referencing. You do so by using a period to index
into a property by name.

For example, to get the WordLength of a,

a.WordLength

ans =

 16

To set the OverflowAction of a,

a.OverflowAction = 'Wrap'

a =

 3.1416

 DataTypeMode: Fixed-point: binary point scaling

 Signedness: Signed

 WordLength: 16

 FractionLength: 13

 RoundingMethod: Convergent

 OverflowAction: wrap

 ProductMode: FullPrecision

 SumMode: FullPrecision

If you have a fi object b with a local fimath object, you can remove the local fimath
object and force b to use default fimath values:

b = fi(pi, 1, 'RoundingMethod', 'Floor')

b =

 3.1415

 fi Object Properties

2-23

 DataTypeMode: Fixed-point: binary point scaling

 Signedness: Signed

 WordLength: 16

 FractionLength: 13

 RoundingMethod: Floor

 OverflowAction: Saturate

 ProductMode: FullPrecision

 SumMode: FullPrecision

b.fimath = []

b =

 3.1415

 DataTypeMode: Fixed-point: binary point scaling

 Signedness: Signed

 WordLength: 16

 FractionLength: 13

isfimathlocal(b)

ans =

 0

2 Working with fi Objects

2-24

fi Object Functions

In addition to functions that operate on fi objects, you can use the following functions to
access data in a fi object using dot notation.

• bin

• data

• dec

• double

• hex

• storedInteger

• storedIntegerToDouble

• oct

For example,

a = fi(pi);

n = storedInteger(a)

n =

 25736

h = hex(a)

h =

6488

a.hex

ans =

6488

3

Fixed-Point Topics

• “Set Up Fixed-Point Objects” on page 3-2
• “View Fixed-Point Number Circles” on page 3-16
• “Perform Binary-Point Scaling” on page 3-29
• “Develop Fixed-Point Algorithms” on page 3-34
• “Calculate Fixed-Point Sine and Cosine” on page 3-46
• “Calculate Fixed-Point Arctangent” on page 3-69
• “Compute Sine and Cosine Using CORDIC Rotation Kernel” on page 3-94
• “Perform QR Factorization Using CORDIC” on page 3-99
• “Compute Square Root Using CORDIC” on page 3-134
• “Convert Cartesian to Polar Using CORDIC Vectoring Kernel” on page 3-144
• “Set Data Types Using Min/Max Instrumentation” on page 3-149
• “Convert Fast Fourier Transform (FFT) to Fixed Point” on page 3-163
• “Detect Limit Cycles in Fixed-Point State-Space Systems” on page 3-175
• “Compute Quantization Error” on page 3-187
• “Normalize Data for Lookup Tables” on page 3-196
• “Implement Fixed-Point Log2 Using Lookup Table” on page 3-201
• “Implement Fixed-Point Square Root Using Lookup Table” on page 3-206
• “Set Fixed-Point Math Attributes” on page 3-211

3 Fixed-Point Topics

3-2

Set Up Fixed-Point Objects

Create Fixed-Point Data

This example shows the basics of how to use the fixed-point numeric object fi.

Notation

The fixed-point numeric object is called fi because J.H. Wilkinson used fi to denote
fixed-point computations in his classic texts Rounding Errors in Algebraic Processes
(1963), and The Algebraic Eigenvalue Problem (1965).

Setup

This example may use display settings or preferences that are different from what you
are currently using. To ensure that your current display settings and preferences are not
changed by running this example, the example automatically saves and restores them.
The following code captures the current states for any display settings or properties that
the example changes.

originalFormat = get(0, 'format');

format loose

format long g

% Capture the current state of and reset the fi display and logging

% preferences to the factory settings.

fiprefAtStartOfThisExample = get(fipref);

reset(fipref);

Default Fixed-Point Attributes

To assign a fixed-point data type to a number or variable with the default fixed-point
parameters, use the fi constructor. The resulting fixed-point value is called a fi object.

For example, the following creates fi objects a and b with attributes shown in the
display, all of which we can specify when the variables are constructed. Note that when
the FractionLength property is not specified, it is set automatically to "best precision"
for the given word length, keeping the most-significant bits of the value. When the
WordLength property is not specified it defaults to 16 bits.

a = fi(pi)

a =

 Set Up Fixed-Point Objects

3-3

 3.1416015625

 DataTypeMode: Fixed-point: binary point scaling

 Signedness: Signed

 WordLength: 16

 FractionLength: 13

b = fi(0.1)

b =

 0.0999984741210938

 DataTypeMode: Fixed-point: binary point scaling

 Signedness: Signed

 WordLength: 16

 FractionLength: 18

Specifying Signed and WordLength Properties

The second and third numeric arguments specify Signed (true or 1 = signed, false or
0 = unsigned), and WordLength in bits, respectively.

% Signed 8-bit

a = fi(pi, 1, 8)

a =

 3.15625

 DataTypeMode: Fixed-point: binary point scaling

 Signedness: Signed

 WordLength: 8

 FractionLength: 5

The sfi constructor may also be used to construct a signed fi object

a1 = sfi(pi,8)

a1 =

 3.15625

3 Fixed-Point Topics

3-4

 DataTypeMode: Fixed-point: binary point scaling

 Signedness: Signed

 WordLength: 8

 FractionLength: 5

% Unsigned 20-bit

b = fi(exp(1), 0, 20)

b =

 2.71828079223633

 DataTypeMode: Fixed-point: binary point scaling

 Signedness: Unsigned

 WordLength: 20

 FractionLength: 18

The ufi constructor may be used to construct an unsigned fi object

b1 = ufi(exp(1), 20)

b1 =

 2.71828079223633

 DataTypeMode: Fixed-point: binary point scaling

 Signedness: Unsigned

 WordLength: 20

 FractionLength: 18

Precision

The data is stored internally with as much precision as is specified. However, it is
important to be aware that initializing high precision fixed-point variables with double-
precision floating-point variables may not give you the resolution that you might expect
at first glance. For example, let's initialize an unsigned 100-bit fixed-point variable with
0.1, and then examine its binary expansion:

a = ufi(0.1, 100);

bin(a)

 Set Up Fixed-Point Objects

3-5

ans =

110011001100110011001100110011001100110011001100110100

Note that the infinite repeating binary expansion of 0.1 gets cut off at the 52nd bit (in
fact, the 53rd bit is significant and it is rounded up into the 52nd bit). This is because
double-precision floating-point variables (the default MATLAB® data type), are stored in
64-bit floating-point format, with 1 bit for the sign, 11 bits for the exponent, and 52 bits
for the mantissa plus one "hidden" bit for an effective 53 bits of precision. Even though
double-precision floating-point has a very large range, its precision is limited to 53 bits.
For more information on floating-point arithmetic, refer to Chapter 1 of Cleve Moler's
book, Numerical Computing with MATLAB. The pdf version can be found here: http://
www.mathworks.com/company/aboutus/founders/clevemoler.html

So, why have more precision than floating-point? Because most fixed-point processors
have data stored in a smaller precision, and then compute with larger precisions. For
example, let's initialize a 40-bit unsigned fi and multiply using full-precision for
products.

Note that the full-precision product of 40-bit operands is 80 bits, which is greater
precision than standard double-precision floating-point.

a = fi(0.1, 0, 40);

bin(a)

ans =

1100110011001100110011001100110011001101

b = a*a

b =

 0.0100000000000045

 DataTypeMode: Fixed-point: binary point scaling

 Signedness: Unsigned

 WordLength: 80

 FractionLength: 86

bin(b)

http://www.mathworks.com/company/aboutus/founders/clevemoler.html
http://www.mathworks.com/company/aboutus/founders/clevemoler.html

3 Fixed-Point Topics

3-6

ans =

10100011110101110000101000111101011100001111010111000010100011110101110000101001

Access to Data

The data can be accessed in a number of ways which map to built-in data types and
binary strings. For example,

DOUBLE(A)

a = fi(pi);

double(a)

ans =

 3.1416015625

returns the double-precision floating-point "real-world" value of a, quantized to the
precision of a.

A.DOUBLE = ...

We can also set the real-world value in a double.

a.double = exp(1)

a =

 2.71826171875

 DataTypeMode: Fixed-point: binary point scaling

 Signedness: Signed

 WordLength: 16

 FractionLength: 13

sets the real-world value of a to e, quantized to a's numeric type.

STOREDINTEGER(A)

storedInteger(a)

 Set Up Fixed-Point Objects

3-7

ans =

 22268

returns the "stored integer" in the smallest built-in integer type available, up to 64 bits.

Relationship Between Stored Integer Value and Real-World Value

In BinaryPoint scaling, the relationship between the stored integer value and the real-
world value is

There is also SlopeBias scaling, which has the relationship

where

and

The math operators of fi work with BinaryPoint scaling and real-valued SlopeBias
scaled fi objects.

BIN(A), OCT(A), DEC(A), HEX(A)

return the stored integer in binary, octal, unsigned decimal, and hexadecimal strings,
respectively.

bin(a)

ans =

0101011011111100

3 Fixed-Point Topics

3-8

oct(a)

ans =

053374

dec(a)

ans =

22268

hex(a)

ans =

56fc

A.BIN = ..., A.OCT = ..., A.DEC = ..., A.HEX = ...

set the stored integer from binary, octal, unsigned decimal, and hexadecimal strings,
respectively.

a.bin = '0110010010001000'

a =

 3.1416015625

 DataTypeMode: Fixed-point: binary point scaling

 Signedness: Signed

 WordLength: 16

 FractionLength: 13

 Set Up Fixed-Point Objects

3-9

a.oct = '031707'

a =

 1.6180419921875

 DataTypeMode: Fixed-point: binary point scaling

 Signedness: Signed

 WordLength: 16

 FractionLength: 13

a.dec = '22268'

a =

 2.71826171875

 DataTypeMode: Fixed-point: binary point scaling

 Signedness: Signed

 WordLength: 16

 FractionLength: 13

a.hex = '0333'

a =

 0.0999755859375

 DataTypeMode: Fixed-point: binary point scaling

 Signedness: Signed

 WordLength: 16

 FractionLength: 13

Specifying FractionLength

When the FractionLength property is not specified, it is computed to be the best
precision for the magnitude of the value and given word length. You may also specify the
fraction length directly as the fourth numeric argument in the fi constructor or the third

3 Fixed-Point Topics

3-10

numeric argument in the sfi or ufi constructor. In the following, compare the fraction
length of a, which was explicitly set to 0, to the fraction length of b, which was set to best
precision for the magnitude of the value.

a = sfi(10,16,0)

a =

 10

 DataTypeMode: Fixed-point: binary point scaling

 Signedness: Signed

 WordLength: 16

 FractionLength: 0

b = sfi(10,16)

b =

 10

 DataTypeMode: Fixed-point: binary point scaling

 Signedness: Signed

 WordLength: 16

 FractionLength: 11

Note that the stored integer values of a and b are different, even though their real-
world values are the same. This is because the real-world value of a is the stored integer
scaled by 2^0 = 1, while the real-world value of b is the stored integer scaled by 2^-11 =
0.00048828125.

storedInteger(a)

ans =

 10

storedInteger(b)

ans =

 Set Up Fixed-Point Objects

3-11

 20480

Specifying Properties with Parameter/Value Pairs

Thus far, we have been specifying the numeric type properties by passing numeric
arguments to the fi constructor. We can also specify properties by giving the name of the
property as a string followed by the value of the property:

a = fi(pi,'WordLength',20)

a =

 3.14159393310547

 DataTypeMode: Fixed-point: binary point scaling

 Signedness: Signed

 WordLength: 20

 FractionLength: 17

For more information on fi properties, type

help fi

or

doc fi

at the MATLAB command line.

Numeric Type Properties

All of the numeric type properties of fi are encapsulated in an object named
numerictype:

T = numerictype

T =

 DataTypeMode: Fixed-point: binary point scaling

 Signedness: Signed

3 Fixed-Point Topics

3-12

 WordLength: 16

 FractionLength: 15

The numeric type properties can be modified either when the object is created by passing
in parameter/value arguments

T = numerictype('WordLength',40,'FractionLength',37)

T =

 DataTypeMode: Fixed-point: binary point scaling

 Signedness: Signed

 WordLength: 40

 FractionLength: 37

or they may be assigned by using the dot notation

T.Signed = false

T =

 DataTypeMode: Fixed-point: binary point scaling

 Signedness: Unsigned

 WordLength: 40

 FractionLength: 37

All of the numeric type properties of a fi may be set at once by passing in the
numerictype object. This is handy, for example, when creating more than one fi object
that share the same numeric type.

a = fi(pi,'numerictype',T)

a =

 3.14159265359194

 DataTypeMode: Fixed-point: binary point scaling

 Signedness: Unsigned

 WordLength: 40

 FractionLength: 37

 Set Up Fixed-Point Objects

3-13

b = fi(exp(1),'numerictype',T)

b =

 2.71828182845638

 DataTypeMode: Fixed-point: binary point scaling

 Signedness: Unsigned

 WordLength: 40

 FractionLength: 37

The numerictype object may also be passed directly to the fi constructor

a1 = fi(pi,T)

a1 =

 3.14159265359194

 DataTypeMode: Fixed-point: binary point scaling

 Signedness: Unsigned

 WordLength: 40

 FractionLength: 37

For more information on numerictype properties, type

help numerictype

or

doc numerictype

at the MATLAB command line.

Display Preferences

The display preferences for fi can be set with the fipref object. They can be saved
between MATLAB sessions with the savefipref command.

Display of Real-World Values

When displaying real-world values, the closest double-precision floating-point value is
displayed. As we have seen, double-precision floating-point may not always be able to

3 Fixed-Point Topics

3-14

represent the exact value of high-precision fixed-point number. For example, an 8-bit
fractional number can be represented exactly in doubles

a = sfi(1,8,7)

a =

 0.9921875

 DataTypeMode: Fixed-point: binary point scaling

 Signedness: Signed

 WordLength: 8

 FractionLength: 7

bin(a)

ans =

01111111

while a 100-bit fractional number cannot (1 is displayed, when the exact value is 1 -
2^-99):

b = sfi(1,100,99)

b =

 1

 DataTypeMode: Fixed-point: binary point scaling

 Signedness: Signed

 WordLength: 100

 FractionLength: 99

Note, however, that the full precision is preserved in the internal representation of fi

bin(b)

ans =

0111

 Set Up Fixed-Point Objects

3-15

The display of the fi object is also affected by MATLAB's format command. In
particular, when displaying real-world values, it is handy to use

format long g

so that as much precision as is possible will be displayed.

There are also other display options to make a more shorthand display of the numeric
type properties, and options to control the display of the value (as real-world value,
binary, octal, decimal integer, or hex).

For more information on display preferences, type

help fipref

help savefipref

help format

or

doc fipref

doc savefipref

doc format

at the MATLAB command line.

Cleanup

The following code sets any display settings or preferences that the example changed
back to their original states.

% Reset the fi display and logging preferences

fipref(fiprefAtStartOfThisExample);

set(0, 'format', originalFormat);

3 Fixed-Point Topics

3-16

View Fixed-Point Number Circles

This example shows how to define unsigned and signed two's complement integer and
fixed-point numbers.

Fixed-Point Number Definitions

This example illustrates the definitions of unsigned and signed-two's-complement integer
and fixed-point numbers.

Unsigned Integers.

Unsigned integers are represented in the binary number system in the following way. Let

b = [b(n) b(n-1) ... b(2) b(1)]

be the binary digits of an n-bit unsigned integer, where each b(i) is either one or zero.
Then the value of b is

u = b(n)*2^(n-1) + b(n-1)*2^(n-2) + ... + b(2)*2^(1) + b(1)*2^(0)

For example, let's define a 3-bit unsigned integer quantizer, and enumerate its range.

originalFormat = get(0, 'format'); format

q = quantizer('ufixed',[3 0]);

[a,b] = range(q);

u = (a:eps(q):b)'

% Now, let's display those values in binary.

b = num2bin(q,u)

u =

 0

 1

 2

 3

 4

 5

 6

 7

 View Fixed-Point Number Circles

3-17

b =

000

001

010

011

100

101

110

111

Unsigned Integer Number Circle.

Let's array them around a clock face with their corresponding binary and decimal values.

fidemo.numbercircle(q);

3 Fixed-Point Topics

3-18

Unsigned Fixed-Point.

Unsigned fixed-point values are unsigned integers that are scaled by a power of two. We
call the negative exponent of the power of two the "fractionlength".

If the unsigned integer u is defined as before, and the fractionlength is f, then the value
of the unsigned fixed-point number is

 uf = u*2^-f

For example, let's define a 3-bit unsigned fixed-point quantizer with a fractionlength of 1,
and enumerate its range.

q = quantizer('ufixed',[3 1]);

 View Fixed-Point Number Circles

3-19

[a,b] = range(q);

uf = (a:eps(q):b)'

% Now, let's display those values in binary.

b = num2bin(q,uf)

uf =

 0

 0.5000

 1.0000

 1.5000

 2.0000

 2.5000

 3.0000

 3.5000

b =

000

001

010

011

100

101

110

111

Unsigned Fixed-Point Number Circle.

Let's array them around a clock face with their corresponding binary and decimal values.

fidemo.numbercircle(q);

3 Fixed-Point Topics

3-20

Unsigned Fractional Fixed-Point.

Unsigned fractional fixed-point numbers are fixed-point numbers whos fractionlength f
is equal to the wordlength n, which produces a scaling such that the range of numbers
is between 0 and 1-2^-f, inclusive. This is the most common form of fixed-point numbers
because it has the nice property that all of the numbers are less than one, and the
product of two numbers less than one is a number less than one, and so multiplication
does not overflow.

Thus, the definition of unsigned fractional fixed-point is the same as unsigned fixed-
point, with the restriction that f=n, where n is the wordlength in bits.

 uf = u*2^-f

 View Fixed-Point Number Circles

3-21

For example, let's define a 3-bit unsigned fractional fixed-point quantizer, which implies
a fractionlength of 3.

q = quantizer('ufixed',[3 3]);

[a,b] = range(q);

uf = (a:eps(q):b)'

% Now, let's display those values in binary.

b = num2bin(q,uf)

uf =

 0

 0.1250

 0.2500

 0.3750

 0.5000

 0.6250

 0.7500

 0.8750

b =

000

001

010

011

100

101

110

111

Unsigned Fractional Fixed-Point Number Circle.

Let's array them around a clock face with their corresponding binary and decimal values.

fidemo.numbercircle(q);

3 Fixed-Point Topics

3-22

Signed Two's-Complement Integers.

Signed integers are represented in two's-complement in the binary number system in the
following way. Let

b = [b(n) b(n-1) ... b(2) b(1)]

be the binary digits of an n-bit signed integer, where each b(i) is either one or zero. Then
the value of b is

s = -b(n)*2^(n-1) + b(n-1)*2^(n-2) + ... + b(2)*2^(1) + b(1)*2^(0)

Note that the difference between this and the unsigned number is the negative weight on
the most-significant-bit (MSB).

 View Fixed-Point Number Circles

3-23

For example, let's define a 3-bit signed integer quantizer, and enumerate its range.

q = quantizer('fixed',[3 0]);

[a,b] = range(q);

s = (a:eps(q):b)'

% Now, let's display those values in binary.

b = num2bin(q,s)

% Note that the most-significant-bit of negative numbers is 1, and positive

% numbers is 0.

s =

 -4

 -3

 -2

 -1

 0

 1

 2

 3

b =

100

101

110

111

000

001

010

011

Signed Two's-Complement Integer Number Circle.

Let's array them around a clock face with their corresponding binary and decimal values.

The reason for this ungainly looking definition of negative numbers is that addition of all
numbers, both positive and negative, is carried out as if they were all positive, and then
the n+1 carry bit is discarded. The result will be correct if there is no overflow.

3 Fixed-Point Topics

3-24

fidemo.numbercircle(q);

Signed Fixed-Point.

Signed fixed-point values are signed integers that are scaled by a power of two. We call
the negative exponent of the power of two the "fractionlength".

If the signed integer s is defined as before, and the fractionlength is f, then the value of
the signed fixed-point number is

 sf = s*2^-f

For example, let's define a 3-bit signed fixed-point quantizer with a fractionlength of 1,
and enumerate its range.

 View Fixed-Point Number Circles

3-25

q = quantizer('fixed',[3 1]);

[a,b] = range(q);

sf = (a:eps(q):b)'

% Now, let's display those values in binary.

b = num2bin(q,sf)

sf =

 -2.0000

 -1.5000

 -1.0000

 -0.5000

 0

 0.5000

 1.0000

 1.5000

b =

100

101

110

111

000

001

010

011

Signed Fixed-Point Number Circle.

Let's array them around a clock face with their corresponding binary and decimal values.

fidemo.numbercircle(q);

3 Fixed-Point Topics

3-26

Signed Fractional Fixed-Point.

Signed fractional fixed-point numbers are fixed-point numbers whos fractionlength f is
one less than the wordlength n, which produces a scaling such that the range of numbers
is between -1 and 1-2^-f, inclusive. This is the most common form of fixed-point numbers
because it has the nice property that the product of two numbers less than one is a
number less than one, and so multiplication does not overflow. The only exception is
the case when we are multiplying -1 by -1, because +1 is not an element of this number
system. Some processors have a special multiplication instruction for this situation, and
some add an extra bit in the product to guard against this overflow.

Thus, the definition of signed fractional fixed-point is the same as signed fixed-point,
with the restriction that f=n-1, where n is the wordlength in bits.

 View Fixed-Point Number Circles

3-27

 sf = s*2^-f

For example, let's define a 3-bit signed fractional fixed-point quantizer, which implies a
fractionlength of 2.

q = quantizer('fixed',[3 2]);

[a,b] = range(q);

sf = (a:eps(q):b)'

% Now, let's display those values in binary.

b = num2bin(q,sf)

sf =

 -1.0000

 -0.7500

 -0.5000

 -0.2500

 0

 0.2500

 0.5000

 0.7500

b =

100

101

110

111

000

001

010

011

Signed Fractional Fixed-Point Number Circle.

Let's array them around a clock face with their corresponding binary and decimal values.

fidemo.numbercircle(q);

set(0, 'format', originalFormat);

3 Fixed-Point Topics

3-28

 Perform Binary-Point Scaling

3-29

Perform Binary-Point Scaling

This example shows how to perform binary point scaling in FI.

FI Construction

a = fi(v,s,w,f) returns a fi with value v, signedness s, word length w, and fraction
length f.

If s is true (signed) the leading or most significant bit (MSB) in the resulting fi is always
the sign bit.

Fraction length f is the scaling 2^(-f).

For example, create a signed 8-bit long fi with a value of 0.5 and a scaling of 2^(-7):

a = fi(0.5,true,8,7)

a =

 0.5000

 DataTypeMode: Fixed-point: binary point scaling

 Signedness: Signed

 WordLength: 8

 FractionLength: 7

Fraction Length and the Position of the Binary Point

The fraction length or the scaling determines the position of the binary point in the fi
object.

The Fraction Length is Positive and Less than the Word Length

When the fraction length f is positive and less than the word length, the binary point lies
f places to the left of the least significant bit (LSB) and within the word.

For example, in a signed 3-bit fi with fraction length of 1 and value -0.5, the binary
point lies 1 place to the left of the LSB. In this case each bit is set to 1 and the binary
equivalent of the fi with its binary point is 11.1 .

The real world value of -0.5 is obtained by multiplying each bit by its scaling factor,
starting with the LSB and working up to the signed MSB.

3 Fixed-Point Topics

3-30

(1*2^-1) + (1*2^0) +(-1*2^1) = -0.5

storedInteger(a) returns the stored signed, unscaled integer value -1.

(1*2^0) + (1*2^1) +(-1*2^2) = -1

a = fi(-0.5,true,3,1)

bin(a)

storedInteger(a)

a =

 -0.5000

 DataTypeMode: Fixed-point: binary point scaling

 Signedness: Signed

 WordLength: 3

 FractionLength: 1

ans =

111

ans =

 -1

The Fraction Length is Positive and Greater than the Word Length

When the fraction length f is positive and greater than the word length, the binary point
lies f places to the left of the LSB and outside the word.

For example the binary equivalent of a signed 3-bit word with fraction length of 4 and
value of -0.0625 is ._111 Here _ in the ._111 denotes an unused bit that is not a part of
the 3-bit word. The first 1 after the _ is the MSB or the sign bit.

The real world value of -0.0625 is computed as follows (LSB to MSB).

(1*2^-4) + (1*2^-3) + (-1*2^-2) = -0.0625

bin(b) will return 111 at the MATLAB® prompt and storedInteger(b) = -1

 Perform Binary-Point Scaling

3-31

b = fi(-0.0625,true,3,4)

bin(b)

storedInteger(b)

b =

 -0.0625

 DataTypeMode: Fixed-point: binary point scaling

 Signedness: Signed

 WordLength: 3

 FractionLength: 4

ans =

111

ans =

 -1

The Fraction Length is a Negative Integer and Less than the Word Length

When the fraction length f is negative the binary point lies f places to the right of LSB
and is outside the physical word.

For instance in c = fi(-4,true,3,-2) the binary point lies 2 places to the right of the
LSB 111__.. Here the two right most spaces are unused bits that are not part of the 3-
bit word. The right most 1 is the LSB and the leading 1 is the sign bit.

The real world value of -4 is obtained by multiplying each bit by its scaling factor 2^(-
f), i.e. 2(-(-2)) = 2^(2) for the LSB, and then adding the products together.

(1*2^2) + (1*2^3) +(-1*2^4) = -4

bin(c) and storedInteger(c) will still give 111 and -1 as in the previous two
examples.

c = fi(-4,true,3,-2)

bin(c)

storedInteger(c)

3 Fixed-Point Topics

3-32

c =

 -4

 DataTypeMode: Fixed-point: binary point scaling

 Signedness: Signed

 WordLength: 3

 FractionLength: -2

ans =

111

ans =

 -1

The Fraction Length is Set Automatically to the Best Precision Possible and is Negative

In this example we create a signed 3-bit fi where the fraction length is set automatically
depending on the value that the fi is supposed to contain. The resulting fi has a value
of 6, with a wordlength of 3 bits and a fraction length of -1. Here the binary point is 1
place to the right of the LSB: 011_.. The _ is again an unused bit and the first 1 before
the _ is the LSB. The leading 1 is the sign bit.

The real world value (6) is obtained as follows:

(1*2^1) + (1*2^2) + (-0*2^3) = 6

bin(d) and storedInteger(d) will give 011 and 3 respectively.

d = fi(5,true,3)

bin(d)

storedInteger(d)

d =

 6

 DataTypeMode: Fixed-point: binary point scaling

 Perform Binary-Point Scaling

3-33

 Signedness: Signed

 WordLength: 3

 FractionLength: -1

ans =

011

ans =

 3

Interactive FI Binary Point Scaling Example

This is an interactive example that allows the user to change the fraction length of a 3-
bit fixed-point number by moving the binary point using a slider. The fraction length can
be varied from -3 to 5 and the user can change the value of the 3 bits to '0' or '1' for either
signed or unsigned numbers.

The "Scaling factors" above the 3 bits display the scaling or weight that each bit is given
for the specified signedness and fraction length. The fi code, the double precision real-
world value and the fixed-point attributes are also displayed.

Type fibinscaling at the MATLAB prompt to run this example.

3 Fixed-Point Topics

3-34

Develop Fixed-Point Algorithms

This example shows how to develop and verify a simple fixed-point algorithm.

Simple Example of Algorithm Development

This example shows the development and verification of a simple fixed-point filter
algorithm. We will follow the following steps:

1) Implement a second order filter algorithm and simulate in double-precision floating-
point.

2) Instrument the code to visualize the dynamic range of the output and state.

3) Convert the algorithm to fixed-point by changing the data type of the variables - the
algorithm itself does not change.

4) Compare and plot the fixed-point and floating-point results.

Floating-Point Variable Definitions

We develop our algorithm in double-precision floating-point. We will use a second-order
lowpass filter to remove the high frequencies in the input signal.

b = [0.25 0.5 0.25]; % Numerator coefficients

a = [1 0.09375 0.28125]; % Denominator coefficients

% Random input that has both high and low frequencies.

s = rng; rng(0,'v5uniform');

x = randn(1000,1);

rng(s); % restore RNG state

% Pre-allocate the output and state for speed.

y = zeros(size(x));

z = [0;0];

Data-Type-Independent Algorithm

This is a second-order filter that implements the standard difference equation:

y(n) = b(1)*x(n) + b(2)*x(n-1) + b(3)*x(n-2) - a(2)*y(n-1) - a(3)*y(n-2)

for k=1:length(x)

 y(k) = b(1)*x(k) + z(1);

 Develop Fixed-Point Algorithms

3-35

 z(1) = (b(2)*x(k) + z(2)) - a(2)*y(k);

 z(2) = b(3)*x(k) - a(3)*y(k);

end

% Save the Floating-Point Result

ydouble = y;

Visualize Dynamic Range

In order to convert to fixed-point, we need to know the range of the variables. Depending
on the complexity of an algorithm, this task can be simple or quite challenging. In this
example, the range of the input value is known, so selecting an appropriate fixed-point
data type is simple. We will concentrate on the output (y) and states (z) since their range
is unknown. To view the dynamic range of the output and states, we will modify the code
slightly to instrument it. We will create two NumericTypeScope objects and view the
dynamic range of the output (y) and states (z) simultaneously.

Instrument Floating-Point Code

% Reset states

z = [0;0];

hscope1 = NumericTypeScope;

hscope2 = NumericTypeScope;

for k=1:length(x)

 y(k) = b(1)*x(k) + z(1);

 z(1) = (b(2)*x(k) + z(2)) - a(2)*y(k);

 z(2) = b(3)*x(k) - a(3)*y(k);

 % process the data and update the visual.

 step(hscope1,z);

end

step(hscope2,y);

3 Fixed-Point Topics

3-36

 Develop Fixed-Point Algorithms

3-37

3 Fixed-Point Topics

3-38

Analyze Information in the Scope

Let us first analyze the information displayed for variable z (state). From the histogram
we can see that the dynamic range lies between (].

By default, the scope uses a word length of 16 bits with zero tolerable overflows. This
results in a data type of numerictype(true,16, 14) since we need at least 2 integer bit
to avoid overflows. You can get more information on the statistical data from the Input
Data and Resulting Type panels. From the Input Data panel we can see that the data has
both positive and negative values and hence a signed quantity which is reflected in the
suggested numerictype. Also, the maximum data value is 1.51 which can be represented
by the suggested type.

Next, let us look at variable y (output). From the histogram plot we see that the dynamic
range lies between (].

By default, the scope uses a word length of 16 bits with zero tolerable overflows. This
results in a data type of numerictype(true,16, 14) since we need at least 2 integer bits to
avoid overflows. With this suggested type you see no overflows or underflows.

Fixed-Point Variable Definitions

We convert variables to fixed-point and run the algorithm again. We will turn on logging
to see the overflows and underflows introduced by the selected data types.

% Turn on logging to see overflows/underflows.

FIPREF_STATE = get(fipref);

reset(fipref)

fp = fipref;

default_loggingmode = fp.LoggingMode;

fp.LoggingMode = 'On';

% Capture the present state of and reset the global fimath to the factory

% settings.

globalFimathAtStart = fimath;

resetglobalfimath;

% Define the fixed-point types for the variables in the below format:

% fi(Data, Signed, WordLength, FractionLength)

b = fi(b, 1, 8, 6);

a = fi(a, 1, 8, 6);

x = fi(x, 1, 16, 13);

y = fi(zeros(size(x)), 1, 16, 13);

 Develop Fixed-Point Algorithms

3-39

z = fi([0;0], 1, 16, 14);

Same Data-Type-Independent Algorithm

for k=1:length(x)

 y(k) = b(1)*x(k) + z(1);

 z(1) = (b(2)*x(k) + z(2)) - a(2)*y(k);

 z(2) = b(3)*x(k) - a(3)*y(k);

end

% Reset the logging mode.

fp.LoggingMode = default_loggingmode;

In this example, we have redefined the fixed-point variables with the same names as
the floating-point so that we could inline the algorithm code for clarity. However, it is a
better practice to enclose the algorithm code in a MATLAB® file function that could be
called with either floating-point or fixed-point variables. See filimitcycledemo.m for
an example of writing and using a datatype-agnostic algorithm.

Compare and Plot the Floating-Point and Fixed-Point Results

We will now plot the magnitude response of the floating-point and fixed-point results and
the response of the filter to see if the filter behaves as expected when it is converted to
fixed-point.

n = length(x);

f = linspace(0,0.5,n/2);

x_response = 20*log10(abs(fft(double(x))));

ydouble_response = 20*log10(abs(fft(ydouble)));

y_response = 20*log10(abs(fft(double(y))));

plot(f,x_response(1:n/2),'c-',...

 f,ydouble_response(1:n/2),'bo-',...

 f,y_response(1:n/2),'gs-');

ylabel('Magnitude in dB');

xlabel('Normalized Frequency');

legend('Input','Floating point output','Fixed point output','Location','Best');

title('Magnitude response of Floating-point and Fixed-point results');

3 Fixed-Point Topics

3-40

h = fft(double(b),n)./fft(double(a),n);

h = h(1:end/2);

clf

hax = axes;

plot(hax,f,20*log10(abs(h)));

set(hax,'YLim',[-40 0]);

title('Magnitude response of the filter');

ylabel('Magnitude in dB')

xlabel('Frequency');

 Develop Fixed-Point Algorithms

3-41

Notice that the high frequencies in the input signal are attenuated by the low-pass filter
which is the expected behavior.

Plot the Error

clf

n = (0:length(y)-1)';

e = double(lsb(y));

plot(n,double(y)-ydouble,'.-r', ...

 [n(1) n(end)],[e/2 e/2],'c', ...

 [n(1) n(end)],[-e/2 -e/2],'c')

text(n(end),e/2,'+1/2 LSB','HorizontalAlignment','right','VerticalAlignment','bottom')

text(n(end),-e/2,'-1/2 LSB','HorizontalAlignment','right','VerticalAlignment','top')

xlabel('n (samples)'); ylabel('error')

3 Fixed-Point Topics

3-42

Simulink®

If you have Simulink® and Fixed-Point Designer™, you can run this model, which is the
equivalent of the algorithm above. The output, y_sim is a fixed-point variable equal to
the variable y calculated above in MATLAB code.

As in the MATLAB code, the fixed-point parameters in the blocks can be modified to
match an actual system; these have been set to match the MATLAB code in the example
above. Double-click on the blocks to see the settings.

if fidemo.hasSimulinkLicense

 % Set up the From Workspace variable

 Develop Fixed-Point Algorithms

3-43

 x_sim.time = n;

 x_sim.signals.values = x;

 x_sim.signals.dimensions = 1;

 % Run the simulation

 out_sim = sim('fitdf2filter_demo', 'SaveOutput', 'on', ...

 'SrcWorkspace', 'current');

 % Open the model

 fitdf2filter_demo

 % Verify that the Simulink results are the same as the MATLAB file

 isequal(y, out_sim.get('y_sim'))

end

ans =

 1

3 Fixed-Point Topics

3-44

Assumptions Made for this Example

In order to simplify the example, we have taken the default math parameters: round-
to-nearest, saturate on overflow, full precision products and sums. We can modify all of
these parameters to match an actual system.

The settings were chosen as a starting point in algorithm development. Save a copy of
this MATLAB file, start playing with the parameters, and see what effects they have
on the output. How does the algorithm behave with a different input? See the help for
fi, fimath, and numerictype for information on how to set other parameters, such as
rounding mode, and overflow mode.

close all force;

 Develop Fixed-Point Algorithms

3-45

bdclose all;

% Reset the global fimath

globalfimath(globalFimathAtStart);

fipref(FIPREF_STATE);

3 Fixed-Point Topics

3-46

Calculate Fixed-Point Sine and Cosine

This example shows how to use both CORDIC-based and lookup table-based algorithms
provided by the Fixed-Point Designer™ to approximate the MATLAB® sine (SIN) and
cosine (COS) functions. Efficient fixed-point sine and cosine algorithms are critical to
many embedded applications, including motor controls, navigation, signal processing,
and wireless communications.

Calculating Sine and Cosine Using the CORDIC Algorithm

Introduction

The cordiccexp, cordicsincos, cordicsin, and cordiccos functions approximate
the MATLAB sin and cos functions using a CORDIC-based algorithm. CORDIC is an
acronym for COordinate Rotation DIgital Computer. The Givens rotation-based CORDIC
algorithm (see [1,2]) is one of the most hardware efficient algorithms because it only
requires iterative shift-add operations. The CORDIC algorithm eliminates the need for
explicit multipliers, and is suitable for calculating a variety of functions, such as sine,
cosine, arcsine, arccosine, arctangent, vector magnitude, divide, square root, hyperbolic
and logarithmic functions.

You can use the CORDIC rotation computing mode to calculate sine and cosine, and
also polar-to-cartesian conversion operations. In this mode, the vector magnitude and
an angle of rotation are known and the coordinate (X-Y) components are computed after
rotation.

CORDIC Rotation Computation Mode

The CORDIC rotation mode algorithm begins by initializing an angle accumulator with
the desired rotation angle. Next, the rotation decision at each CORDIC iteration is done
in a way that decreases the magnitude of the residual angle accumulator. The rotation
decision is based on the sign of the residual angle in the angle accumulator after each
iteration.

In rotation mode, the CORDIC equations are:

 Calculate Fixed-Point Sine and Cosine

3-47

where if , and otherwise;

, and is the total number of iterations.

This provides the following result as approaches :

Where:

.

In rotation mode, the CORDIC algorithm is limited to rotation angles between
and . To support angles outside of that range, the cordiccexp, cordicsincos,
cordicsin, and cordiccos functions use quadrant correction (including possible extra
negation) after the CORDIC iterations are completed.

Understanding the CORDICSINCOS Sine and Cosine Code

Introduction

The cordicsincos function calculates the sine and cosine of input angles in the range
[-2*pi 2*pi) using the CORDIC algorithm. This function takes an angle (radians) and
the number of iterations as input arguments. The function returns approximations of
sine and cosine.

The CORDIC computation outputs are scaled by the rotator gain. This gain is accounted
for by pre-scaling the initial constant value.

Initialization

The cordicsincos function performs the following initialization steps:

• The angle input look-up table inpLUT is set to atan(2 .^ -(0:N-1)).

3 Fixed-Point Topics

3-48

• is set to the input argument value.
• is set to .
• is set to zero.

The judicious choice of initial values allows the algorithm to directly compute both sine
and cosine simultaneously. After iterations, these initial values lead to the following
outputs as approaches :

Shared Fixed-Point and Floating-Point CORDIC Kernel Code

The MATLAB code for the CORDIC algorithm (rotation mode) kernel portion is as
follows (for the case of scalar x, y, and z). This same code is used for both fixed-point and
floating-point operations:

function [x, y, z] = cordic_rotation_kernel(x, y, z, inpLUT, n)

% Perform CORDIC rotation kernel algorithm for N kernel iterations.

xtmp = x;

ytmp = y;

for idx = 1:n

 if z < 0

 z(:) = z + inpLUT(idx);

 x(:) = x + ytmp;

 y(:) = y - xtmp;

 else

 z(:) = z - inpLUT(idx);

 x(:) = x - ytmp;

 y(:) = y + xtmp;

 end

 xtmp = bitsra(x, idx); % bit-shift-right for multiply by 2^(-idx)

 ytmp = bitsra(y, idx); % bit-shift-right for multiply by 2^(-idx)

end

Visualizing the Sine-Cosine Rotation Mode CORDIC Iterations

The CORDIC algorithm is usually run through a specified (constant) number of
iterations since ending the CORDIC iterations early would break pipelined code, and the
CORDIC gain would not be constant because would vary.

 Calculate Fixed-Point Sine and Cosine

3-49

For very large values of , the CORDIC algorithm is guaranteed to converge, but not
always monotonically. As will be shown in the following example, intermediate iterations
occasionally produce more accurate results than later iterations. You can typically
achieve greater accuracy by increasing the total number of iterations.

Example

In the following example, iteration 5 provides a better estimate of the result than
iteration 6, and the CORDIC algorithm converges in later iterations.

theta = pi/5; % input angle in radians

niters = 10; % number of iterations

sinTh = sin(theta); % reference result

cosTh = cos(theta); % reference result

y_sin = zeros(niters, 1);

sin_err = zeros(niters, 1);

x_cos = zeros(niters, 1);

cos_err = zeros(niters, 1);

fprintf('\n\nNITERS \tERROR\n');

fprintf('------\t----------\n');

for n = 1:niters

 [y_sin(n), x_cos(n)] = cordicsincos(theta, n);

 sin_err(n) = abs(y_sin(n) - sinTh);

 cos_err(n) = abs(x_cos(n) - cosTh);

 if n < 10

 fprintf(' %d \t %1.8f\n', n, cos_err(n));

 else

 fprintf(' %d \t %1.8f\n', n, cos_err(n));

 end

end

fprintf('\n');

NITERS ERROR

------ ----------

 1 0.10191021

 2 0.13966630

 3 0.03464449

 4 0.03846157

 5 0.00020393

 6 0.01776952

 7 0.00888037

 8 0.00436052

3 Fixed-Point Topics

3-50

 9 0.00208192

 10 0.00093798

Plot the CORDIC approximation error on a bar graph

figure(1); clf;

bar(1:niters, cos_err(1:niters));

xlabel('Number of iterations','fontsize',12,'fontweight','b');

ylabel('Error','fontsize',12,'fontweight','b');

title('CORDIC approximation error for cos(pi/5) computation',...

 'fontsize',12,'fontweight','b');

axis([0 niters 0 0.14]);

Plot the X-Y results for 5 iterations

 Calculate Fixed-Point Sine and Cosine

3-51

Niter2Draw = 5;

figure(2), clf, hold on

plot(cos(0:0.1:pi/2), sin(0:0.1:pi/2), 'b--'); % semi-circle

for i=1:Niter2Draw

 plot([0 x_cos(i)],[0 y_sin(i)], 'LineWidth', 2); % CORDIC iteration result

 text(x_cos(i),y_sin(i),int2str(i),'fontsize',12,'fontweight','b');

end

plot(cos(theta), sin(theta), 'r*', 'MarkerSize', 20); % IDEAL result

xlabel('X (COS)','fontsize',12,'fontweight','b')

ylabel('Y (SIN)','fontsize',12,'fontweight','b')

title('CORDIC iterations for cos(pi/5) computation',...

 'fontsize',12,'fontweight','b')

axis equal;

axis square;

3 Fixed-Point Topics

3-52

Computing Fixed-point Sine with cordicsin

Create 1024 points between [-2*pi, 2*pi)

stepSize = pi/256;

thRadDbl = (-2*pi):stepSize:(2*pi - stepSize);

thRadFxp = sfi(thRadDbl, 12); % signed, 12-bit fixed-point values

sinThRef = sin(double(thRadFxp)); % reference results

Compare fixed-point CORDIC vs. double-precision trig function results

Use 12-bit quantized inputs and vary number of iterations from 4 to 10.

for niters = 4:3:10

 cdcSinTh = cordicsin(thRadFxp, niters);

 errCdcRef = sinThRef - double(cdcSinTh);

 figure; hold on; axis([-2*pi 2*pi -1.25 1.25]);

 plot(thRadFxp, sinThRef, 'b');

 plot(thRadFxp, cdcSinTh, 'g');

 plot(thRadFxp, errCdcRef, 'r');

 ylabel('sin(\Theta)','fontsize',12,'fontweight','b');

 set(gca,'XTick',-2*pi:pi/2:2*pi);

 set(gca,'XTickLabel',...

 {'-2*pi', '-3*pi/2', '-pi', '-pi/2', ...

 '0', 'pi/2', 'pi', '3*pi/2','2*pi'});

 set(gca,'YTick',-1:0.5:1);

 set(gca,'YTickLabel',{'-1.0','-0.5','0','0.5','1.0'});

 ref_str = 'Reference: sin(double(\Theta))';

 cdc_str = sprintf('12-bit CORDICSIN; N = %d', niters);

 err_str = sprintf('Error (max = %f)', max(abs(errCdcRef)));

 legend(ref_str, cdc_str, err_str);

 title(cdc_str,'fontsize',12,'fontweight','b');

end

 Calculate Fixed-Point Sine and Cosine

3-53

3 Fixed-Point Topics

3-54

 Calculate Fixed-Point Sine and Cosine

3-55

Compute the LSB Error for N = 10

figure;

fracLen = cdcSinTh.FractionLength;

plot(thRadFxp, abs(errCdcRef) * pow2(fracLen));

set(gca,'XTick',-2*pi:pi/2:2*pi);

set(gca,'XTickLabel',...

 {'-2*pi', '-3*pi/2', '-pi', '-pi/2', ...

 '0', 'pi/2', 'pi', '3*pi/2','2*pi'});

ylabel(sprintf('LSB Error: 1 LSB = 2^{-%d}',fracLen),'fontsize',12,'fontweight','b');

title('LSB Error: 12-bit CORDICSIN; N=10','fontsize',12,'fontweight','b');

axis([-2*pi 2*pi 0 6]);

3 Fixed-Point Topics

3-56

Compute Noise Floor

fft_mag = abs(fft(double(cdcSinTh)));

max_mag = max(fft_mag);

mag_db = 20*log10(fft_mag/max_mag);

figure;

hold on;

plot(0:1023, mag_db);

plot(0:1023, zeros(1,1024),'r--'); % Normalized peak (0 dB)

plot(0:1023, -62.*ones(1,1024),'r--'); % Noise floor level

ylabel('dB Magnitude','fontsize',12,'fontweight','b');

title('62 dB Noise Floor: 12-bit CORDICSIN; N=10',...

 'fontsize',12,'fontweight','b');

% axis([0 1023 -120 0]); full FFT

 Calculate Fixed-Point Sine and Cosine

3-57

axis([0 round(1024*(pi/8)) -100 10]); % zoom in

set(gca,'XTick',[0 round(1024*pi/16) round(1024*pi/8)]);

set(gca,'XTickLabel',{'0','pi/16','pi/8'});

Accelerating the Fixed-Point CORDICSINCOS Function with FIACCEL

You can generate a MEX function from MATLAB code using the MATLAB® fiaccel
function. Typically, running a generated MEX function can improve the simulation
speed, although the actual speed improvement depends on the simulation platform being
used. The following example shows how to accelerate the fixed-point cordicsincos
function using fiaccel.

The fiaccel function compiles the MATLAB code into a MEX function. This step
requires the creation of a temporary directory and write permissions in this directory.

3 Fixed-Point Topics

3-58

tempdirObj = fidemo.fiTempdir('fi_sin_cos_demo');

When you declare the number of iterations to be a constant (e.g., 10) using
coder.newtype('constant',10), the compiled angle look-up table will also
be constant, and thus won't be computed at each iteration. Also, when you call
cordicsincos_mex, you will not need to give it the input argument for the number of
iterations. If you pass in the number of iterations, the MEX-function will error.

The data type of the input parameters determines whether the cordicsincos function
performs fixed-point or floating-point calculations. When MATLAB generates code for
this file, code is only generated for the specific data type. For example, if the THETA
input argument is fixed point, then only fixed-point code is generated.

inp = {thRadFxp, coder.newtype('constant',10)}; % example inputs for the function

fiaccel('cordicsincos', '-o', 'cordicsincos_mex', '-args', inp)

First, calculate sine and cosine by calling cordicsincos.

tstart = tic;

cordicsincos(thRadFxp,10);

telapsed_Mcordicsincos = toc(tstart);

Next, calculate sine and cosine by calling the MEX-function cordicsincos_mex.

cordicsincos_mex(thRadFxp); % load the MEX file

tstart = tic;

cordicsincos_mex(thRadFxp);

telapsed_MEXcordicsincos = toc(tstart);

Now, compare the speed. Type the following at the MATLAB command line to see the
speed improvement on your platform:

fiaccel_speedup = telapsed_Mcordicsincos/telapsed_MEXcordicsincos;

To clean up the temporary directory, run the following commands:

clear cordicsincos_mex;

status = tempdirObj.cleanUp;

Calculating SIN and COS Using Lookup Tables

There are many lookup table-based approaches that may be used to implement fixed-
point sine and cosine approximations. The following is a low-cost approach based on a
single real-valued lookup table and simple nearest-neighbor linear interpolation.

 Calculate Fixed-Point Sine and Cosine

3-59

Single Lookup Table Based Approach

The sin and cos methods of the fi object in the Fixed-Point Designer approximate
the MATLAB® builtin floating-point sin and cos functions, using a lookup table-
based approach with simple nearest-neighbor linear interpolation between values. This
approach allows for a small real-valued lookup table and uses simple arithmetic.

Using a single real-valued lookup table simplifies the index computation and the overall
arithmetic required to achieve very good accuracy of the results. These simplifications
yield relatively high speed performance and also relatively low memory requirements.

Understanding the Lookup Table Based SIN and COS Implementation

Lookup Table Size and Accuracy

Two important design considerations of a lookup table are its size and its accuracy. It is
not possible to create a table for every possible input value . It is also not possible to be
perfectly accurate due to the quantization of or lookup table values.

As a compromise, the Fixed-Point Designer SIN and COS methods of FI use an 8-bit
lookup table as part of their implementation. An 8-bit table is only 256 elements long,
so it is small and efficient. Eight bits also corresponds to the size of a byte or a word on
many platforms. Used in conjunction with linear interpolation, and 16-bit output (lookup
table value) precision, an 8-bit-addressable lookup table provides both very good accuracy
and performance.

Initializing the Constant SIN Lookup Table Values

For implementation simplicity, table value uniformity, and speed, a full sinewave table is
used. First, a quarter-wave SIN function is sampled at 64 uniform intervals in the range
[0, pi/2) radians. Choosing a signed 16-bit fractional fixed-point data type for the table
values, i.e., tblValsNT = numerictype(1,16,15), produces best precision results
in the SIN output range [-1.0, 1.0). The values are pre-quantized before they are set, to
avoid overflow warnings.

tblValsNT = numerictype(1,16,15);

quarterSinDblFltPtVals = (sin(2*pi*((0:63) ./ 256)))';

endpointQuantized_Plus1 = 1.0 - double(eps(fi(0,tblValsNT)));

halfSinWaveDblFltPtVals = ...

 [quarterSinDblFltPtVals; ...

 endpointQuantized_Plus1; ...

 flipud(quarterSinDblFltPtVals(2:end))];

3 Fixed-Point Topics

3-60

fullSinWaveDblFltPtVals = ...

 [halfSinWaveDblFltPtVals; -halfSinWaveDblFltPtVals];

FI_SIN_LUT = fi(fullSinWaveDblFltPtVals, tblValsNT);

Overview of Algorithm Implementation

The implementation of the Fixed-Point Designer sin and cos methods of fi objects
involves first casting the fixed-point angle inputs (in radians) to a pre-defined data
type in the range [0, 2pi]. For this purpose, a modulo-2pi operation is performed to obtain
the fixed-point input value inpValInRange in the range [0, 2pi] and cast to in the best
precision binary point scaled unsigned 16-bit fixed-point type numerictype(0,16,13):

% Best UNSIGNED type for real-world value range [0, 2*pi],

% which maps to fixed-point stored integer vals [0, 51472].

inpInRangeNT = numerictype(0,16,13);

Next, we get the 16-bit stored unsigned integer value from this in-range fixed-point FI
angle value:

idxUFIX16 = fi(storedInteger(inpValInRange), numerictype(0,16,0));

We multiply the stored integer value by a normalization constant, 65536/51472. The
resulting integer value will be in a full-scale uint16 index range:

normConst_NT = numerictype(0,32,31);

normConstant = fi(65536/51472, normConst_NT);

fullScaleIdx = normConstant * idxUFIX16;

idxUFIX16(:) = fullScaleIdx;

The top 8 most significant bits (MSBs) of this full-scale unsigned 16-bit index idxUFIX16
are used to directly index into the 8-bit sine lookup table. Two table lookups are
performed, one at the computed table index location lutValBelow, and one at the next
index location lutValAbove:

idxUint8MSBs = storedInteger(bitsliceget(idxUFIX16, 16, 9));

zeroBasedIdx = int16(idxUint8MSBs);

lutValBelow = FI_SIN_LUT(zeroBasedIdx + 1);

lutValAbove = FI_SIN_LUT(zeroBasedIdx + 2);

The remaining 8 least significant bits (LSBs) of idxUFIX16 are used to interpolate
between these two table values. The LSB values are treated as a normalized scaling
factor with 8-bit fractional data type rFracNT:

 Calculate Fixed-Point Sine and Cosine

3-61

rFracNT = numerictype(0,8,8); % fractional remainder data type

idxFrac8LSBs = reinterpretcast(bitsliceget(idxUFIX16,8,1), rFracNT);

rFraction = idxFrac8LSBs;

A real multiply is used to determine the weighted difference between the two points. This
results in a simple calculation (equivalent to one product and two sums) to obtain the
interpolated fixed-point sine result:

temp = rFraction * (lutValAbove - lutValBelow);

rslt = lutValBelow + temp;

Example

Using the above algorithm, here is an example of the lookup table and linear
interpolation process used to compute the value of SIN for a fixed-point input
inpValInRange = 0.425 radians:

% Use an arbitrary input value (e.g., 0.425 radians)

inpInRangeNT = numerictype(0,16,13); % best precision, [0, 2*pi] radians

inpValInRange = fi(0.425, inpInRangeNT); % arbitrary fixed-point input angle

% Normalize its stored integer to get full-scale unsigned 16-bit integer index

idxUFIX16 = fi(storedInteger(inpValInRange), numerictype(0,16,0));

normConst_NT = numerictype(0,32,31);

normConstant = fi(65536/51472, normConst_NT);

fullScaleIdx = normConstant * idxUFIX16;

idxUFIX16(:) = fullScaleIdx;

% Do two table lookups using unsigned 8-bit integer index (i.e., 8 MSBs)

idxUint8MSBs = storedInteger(bitsliceget(idxUFIX16, 16, 9));

zeroBasedIdx = int16(idxUint8MSBs); % zero-based table index value

lutValBelow = FI_SIN_LUT(zeroBasedIdx + 1); % 1st table lookup value

lutValAbove = FI_SIN_LUT(zeroBasedIdx + 2); % 2nd table lookup value

% Do nearest-neighbor interpolation using 8 LSBs (treat as fractional remainder)

rFracNT = numerictype(0,8,8); % fractional remainder data type

idxFrac8LSBs = reinterpretcast(bitsliceget(idxUFIX16,8,1), rFracNT);

rFraction = idxFrac8LSBs; % fractional value for linear interpolation

temp = rFraction * (lutValAbove - lutValBelow);

rslt = lutValBelow + temp;

Here is a plot of the algorithm results:

x_vals = 0:(pi/128):(pi/4);

xIdxLo = zeroBasedIdx - 1;

3 Fixed-Point Topics

3-62

xIdxHi = zeroBasedIdx + 4;

figure; hold on; axis([x_vals(xIdxLo) x_vals(xIdxHi) 0.25 0.65]);

plot(x_vals(xIdxLo:xIdxHi), double(FI_SIN_LUT(xIdxLo:xIdxHi)), 'b^--');

plot([x_vals(zeroBasedIdx+1) x_vals(zeroBasedIdx+2)], ...

 [lutValBelow lutValAbove], 'k.'); % Closest values

plot(0.425, double(rslt), 'r*'); % Interpolated fixed-point result

plot(0.425, sin(0.425), 'gs'); % Double precision reference result

xlabel('X'); ylabel('SIN(X)');

lut_val_str = 'Fixed-point lookup table values';

near_str = 'Two closest fixed-point LUT values';

interp_str = 'Interpolated fixed-point result';

ref_str = 'Double precision reference value';

legend(lut_val_str, near_str, interp_str, ref_str);

title('Fixed-Point Designer Lookup Table Based SIN with Linear Interpolation', ...

 'fontsize',12,'fontweight','b');

 Calculate Fixed-Point Sine and Cosine

3-63

Computing Fixed-point Sine Using SIN

Create 1024 points between [-2*pi, 2*pi)

stepSize = pi/256;

thRadDbl = (-2*pi):stepSize:(2*pi - stepSize); % double precision floating-point

thRadFxp = sfi(thRadDbl, 12); % signed, 12-bit fixed-point inputs

Compare fixed-point SIN vs. double-precision SIN results

fxpSinTh = sin(thRadFxp); % fixed-point results

sinThRef = sin(double(thRadFxp)); % reference results

errSinRef = sinThRef - double(fxpSinTh);

figure; hold on; axis([-2*pi 2*pi -1.25 1.25]);

plot(thRadFxp, sinThRef, 'b');

3 Fixed-Point Topics

3-64

plot(thRadFxp, fxpSinTh, 'g');

plot(thRadFxp, errSinRef, 'r');

ylabel('sin(\Theta)','fontsize',12,'fontweight','b');

set(gca,'XTick',-2*pi:pi/2:2*pi);

set(gca,'XTickLabel',...

 {'-2*pi', '-3*pi/2', '-pi', '-pi/2', ...

 '0', 'pi/2', 'pi', '3*pi/2','2*pi'});

set(gca,'YTick',-1:0.5:1);

set(gca,'YTickLabel',{'-1.0','-0.5','0','0.5','1.0'});

ref_str = 'Reference: sin(double(\Theta))';

fxp_str = sprintf('16-bit Fixed-Point SIN with 12-bit Inputs');

err_str = sprintf('Error (max = %f)', max(abs(errSinRef)));

legend(ref_str, fxp_str, err_str);

title(fxp_str,'fontsize',12,'fontweight','b');

 Calculate Fixed-Point Sine and Cosine

3-65

Compute the LSB Error

figure;

fracLen = fxpSinTh.FractionLength;

plot(thRadFxp, abs(errSinRef) * pow2(fracLen));

set(gca,'XTick',-2*pi:pi/2:2*pi);

set(gca,'XTickLabel',...

 {'-2*pi', '-3*pi/2', '-pi', '-pi/2', ...

 '0', 'pi/2', 'pi', '3*pi/2','2*pi'});

ylabel(sprintf('LSB Error: 1 LSB = 2^{-%d}',fracLen),'fontsize',12,'fontweight','b');

title('LSB Error: 16-bit Fixed-Point SIN with 12-bit Inputs','fontsize',12,'fontweight','b');

axis([-2*pi 2*pi 0 8]);

Compute Noise Floor

3 Fixed-Point Topics

3-66

fft_mag = abs(fft(double(fxpSinTh)));

max_mag = max(fft_mag);

mag_db = 20*log10(fft_mag/max_mag);

figure;

hold on;

plot(0:1023, mag_db);

plot(0:1023, zeros(1,1024),'r--'); % Normalized peak (0 dB)

plot(0:1023, -64.*ones(1,1024),'r--'); % Noise floor level (dB)

ylabel('dB Magnitude','fontsize',12,'fontweight','b');

title('64 dB Noise Floor: 16-bit Fixed-Point SIN with 12-bit Inputs',...

 'fontsize',12,'fontweight','b');

% axis([0 1023 -120 0]); full FFT

axis([0 round(1024*(pi/8)) -100 10]); % zoom in

set(gca,'XTick',[0 round(1024*pi/16) round(1024*pi/8)]);

set(gca,'XTickLabel',{'0','pi/16','pi/8'});

 Calculate Fixed-Point Sine and Cosine

3-67

Comparing the Costs of the Fixed-Point Approximation Algorithms

The fixed-point CORDIC algorithm requires the following operations:

• 1 table lookup per iteration
• 2 shifts per iteration
• 3 additions per iteration

The simplified single lookup table algorithm with nearest-neighbor linear interpolatiom
requires the following operations:

• 2 table lookups
• 1 multiplication

3 Fixed-Point Topics

3-68

• 2 additions

In real world applications, selecting an algorithm for the fixed-point trigonometric
function calculations typically depends on the required accuracy, cost and hardware
constraints.

close all; % close all figure windows

References

1 Jack E. Volder, The CORDIC Trigonometric Computing Technique, IRE
Transactions on Electronic Computers, Volume EC-8, September 1959, pp330-334.

2 Ray Andraka, A survey of CORDIC algorithm for FPGA based computers,
Proceedings of the 1998 ACM/SIGDA sixth international symposium on Field
programmable gate arrays, Feb. 22-24, 1998, pp191-200

 Calculate Fixed-Point Arctangent

3-69

Calculate Fixed-Point Arctangent

This example shows how to use the CORDIC algorithm, polynomial approximation,
and lookup table approaches to calculate the fixed-point, four quadrant inverse
tangent. These implementations are approximations to the MATLAB® built-in function
atan2. An efficient fixed-point arctangent algorithm to estimate an angle is critical
to many applications, including control of robotics, frequency tracking in wireless
communications, and many more.

Calculating atan2(y,x) Using the CORDIC Algorithm

Introduction

The cordicatan2 function approximates the MATLAB® atan2 function, using a
CORDIC-based algorithm. CORDIC is an acronym for COordinate Rotation DIgital
Computer. The Givens rotation-based CORDIC algorithm (see [1,2]) is one of the most
hardware efficient algorithms because it only requires iterative shift-add operations.
The CORDIC algorithm eliminates the need for explicit multipliers, and is suitable for
calculating a variety of functions, such as sine, cosine, arcsine, arccosine, arctangent,
vector magnitude, divide, square root, hyperbolic and logarithmic functions.

CORDIC Vectoring Computation Mode

The CORDIC vectoring mode equations are widely used to calculate atan(y/x). In
vectoring mode, the CORDIC rotator rotates the input vector towards the positive X-
axis to minimize the component of the residual vector. For each iteration, if the
coordinate of the residual vector is positive, the CORDIC rotator rotates clockwise (using
a negative angle); otherwise, it rotates counter-clockwise (using a positive angle). If
the angle accumulator is initialized to 0, at the end of the iterations, the accumulated
rotation angle is the angle of the original input vector.

In vectoring mode, the CORDIC equations are:

 is the angle accumulator

3 Fixed-Point Topics

3-70

where if , and otherwise;

, and is the total number of iterations.

As approaches :

As explained above, the arctangent can be directly computed using the vectoring
mode CORDIC rotator with the angle accumulator initialized to zero, i.e., and

.

Understanding the CORDICATAN2 Code

Introduction

The cordicatan2 function computes the four quadrant arctangent of the elements of x
and y, where . cordicatan2 calculates the arctangent using
the vectoring mode CORDIC algorithm, according to the above CORDIC equations.

Initialization

The cordicatan2 function performs the following initialization steps:

• is set to the initial X input value.
• is set to the initial Y input value.
• is set to zero.

 Calculate Fixed-Point Arctangent

3-71

After iterations, these initial values lead to

Shared Fixed-Point and Floating-Point CORDIC Kernel Code

The MATLAB code for the CORDIC algorithm (vectoring mode) kernel portion is as
follows (for the case of scalar x, y, and z). This same code is used for both fixed-point and
floating-point operations:

function [x, y, z] = cordic_vectoring_kernel(x, y, z, inpLUT, n)

% Perform CORDIC vectoring kernel algorithm for N kernel iterations.

xtmp = x;

ytmp = y;

for idx = 1:n

 if y < 0

 x(:) = x - ytmp;

 y(:) = y + xtmp;

 z(:) = z - inpLUT(idx);

 else

 x(:) = x + ytmp;

 y(:) = y - xtmp;

 z(:) = z + inpLUT(idx);

 end

 xtmp = bitsra(x, idx); % bit-shift-right for multiply by 2^(-idx)

 ytmp = bitsra(y, idx); % bit-shift-right for multiply by 2^(-idx)

end

Visualizing the Vectoring Mode CORDIC Iterations

The CORDIC algorithm is usually run through a specified (constant) number of
iterations since ending the CORDIC iterations early would break pipelined code, and the
CORDIC gain would not be constant because would vary.

For very large values of , the CORDIC algorithm is guaranteed to converge, but not
always monotonically. As will be shown in the following example, intermediate iterations
occasionally rotate the vector closer to the positive X-axis than the following iteration
does. You can typically achieve greater accuracy by increasing the total number of
iterations.

Example

In the following example, iteration 5 provides a better estimate of the angle than
iteration 6, and the CORDIC algorithm converges in later iterations.

3 Fixed-Point Topics

3-72

Initialize the input vector with angle degrees, magnitude = 1

origFormat = get(0, 'format'); % store original format setting;

 % restore this setting at the end.

format short

%

theta = 43*pi/180; % input angle in radians

Niter = 10; % number of iterations

inX = cos(theta); % x coordinate of the input vector

inY = sin(theta); % y coordinate of the input vector

%

% pre-allocate memories

zf = zeros(1, Niter);

xf = [inX, zeros(1, Niter)];

yf = [inY, zeros(1, Niter)];

angleLUT = atan(2.^-(0:Niter-1)); % pre-calculate the angle lookup table

%

% Call CORDIC vectoring kernel algorithm

for k = 1:Niter

 [xf(k+1), yf(k+1), zf(k)] = fixed.internal.cordic_vectoring_kernel_private(inX, inY, 0, angleLUT, k);

end

The following output shows the CORDIC angle accumulation (in degrees) through 10
iterations. Note that the 5th iteration produced less error than the 6th iteration, and that
the calculated angle quickly converges to the actual input angle afterward.

angleAccumulator = zf*180/pi; angleError = angleAccumulator - theta*180/pi;

fprintf('Iteration: %2d, Calculated angle: %7.3f, Error in degrees: %10g, Error in bits: %g\n',...

 [(1:Niter); angleAccumulator(:)'; angleError(:)';log2(abs(zf(:)'-theta))]);

Iteration: 1, Calculated angle: 45.000, Error in degrees: 2, Error in bits: -4.84036

Iteration: 2, Calculated angle: 18.435, Error in degrees: -24.5651, Error in bits: -1.22182

Iteration: 3, Calculated angle: 32.471, Error in degrees: -10.5288, Error in bits: -2.44409

Iteration: 4, Calculated angle: 39.596, Error in degrees: -3.40379, Error in bits: -4.07321

Iteration: 5, Calculated angle: 43.173, Error in degrees: 0.172543, Error in bits: -8.37533

Iteration: 6, Calculated angle: 41.383, Error in degrees: -1.61737, Error in bits: -5.14671

Iteration: 7, Calculated angle: 42.278, Error in degrees: -0.722194, Error in bits: -6.3099

Iteration: 8, Calculated angle: 42.725, Error in degrees: -0.27458, Error in bits: -7.70506

Iteration: 9, Calculated angle: 42.949, Error in degrees: -0.0507692, Error in bits: -10.1403

Iteration: 10, Calculated angle: 43.061, Error in degrees: 0.0611365, Error in bits: -9.87218

As N approaches , the CORDIC rotator gain approaches 1.64676. In this example,
the input was on the unit circle, so the initial rotator magnitude is 1. The
following output shows the rotator magnitude through 10 iterations:

 Calculate Fixed-Point Arctangent

3-73

rotatorMagnitude = sqrt(xf.^2+yf.^2); % CORDIC rotator gain through iterations

fprintf('Iteration: %2d, Rotator magnitude: %g\n',...

 [(0:Niter); rotatorMagnitude(:)']);

Iteration: 0, Rotator magnitude: 1

Iteration: 1, Rotator magnitude: 1.41421

Iteration: 2, Rotator magnitude: 1.58114

Iteration: 3, Rotator magnitude: 1.6298

Iteration: 4, Rotator magnitude: 1.64248

Iteration: 5, Rotator magnitude: 1.64569

Iteration: 6, Rotator magnitude: 1.64649

Iteration: 7, Rotator magnitude: 1.64669

Iteration: 8, Rotator magnitude: 1.64674

Iteration: 9, Rotator magnitude: 1.64676

Iteration: 10, Rotator magnitude: 1.64676

Note that approaches 0, and approaches because .

y_n = yf(end)

y_n =

 -0.0018

x_n = xf(end)

x_n =

 1.6468

figno = 1;

fidemo.fixpt_atan2_demo_plot(figno, xf, yf) %Vectoring Mode CORDIC Iterations

3 Fixed-Point Topics

3-74

figno = figno + 1; %Cumulative Angle and Rotator Magnitude Through Iterations

fidemo.fixpt_atan2_demo_plot(figno,Niter, theta, angleAccumulator, rotatorMagnitude)

 Calculate Fixed-Point Arctangent

3-75

Performing Overall Error Analysis of the CORDIC Algorithm

The overall error consists of two parts:

1 The algorithmic error that results from the CORDIC rotation angle being
represented by a finite number of basic angles.

2 The quantization or rounding error that results from the finite precision
representation of the angle lookup table, and from the finite precision arithmetic
used in fixed-point operations.

Calculate the CORDIC Algorithmic Error

theta = (-178:2:180)*pi/180; % angle in radians

3 Fixed-Point Topics

3-76

inXflt = cos(theta); % generates input vector

inYflt = sin(theta);

Niter = 12; % total number of iterations

zflt = cordicatan2(inYflt, inXflt, Niter); % floating-point results

Calculate the maximum magnitude of the CORDIC algorithmic error by comparing the
CORDIC computation to the builtin atan2 function.

format long

cordic_algErr_real_world_value = max(abs((atan2(inYflt, inXflt) - zflt)))

cordic_algErr_real_world_value =

 4.753112306290497e-04

The log base 2 error is related to the number of iterations. In this example, we use 12
iterations (i.e., accurate to 11 binary digits), so the magnitude of the error is less than

cordic_algErr_bits = log2(cordic_algErr_real_world_value)

cordic_algErr_bits =

 -11.038839889583048

Relationship Between Number of Iterations and Precision

Once the quantization error dominates the overall error, i.e., the quantization error
is greater than the algorithmic error, increasing the total number of iterations won't
significantly decrease the overall error of the fixed-point CORDIC algorithm. You
should pick your fraction lengths and total number of iterations to ensure that the
quantization error is smaller than the algorithmic error. In the CORDIC algorithm, the
precision increases by one bit every iteration. Thus, there is no reason to pick a number
of iterations greater than the precision of the input data.

Another way to look at the relationship between the number of iterations and the
precision is in the right-shift step of the algorithm. For example, on the counter-clockwise
rotation

x(:) = x0 - bitsra(y,i);

 Calculate Fixed-Point Arctangent

3-77

y(:) = y + bitsra(x0,i);

if i is equal to the word length of y and x0, then bitsra(y,i) and bitsra(x0,i) shift
all the way to zero and do not contribute anything to the next step.

To measure the error from the fixed-point algorithm, and not the differences in input
values, compute the floating-point reference with the same inputs as the fixed-point
CORDIC algorithm.

inXfix = sfi(inXflt, 16, 14);

inYfix = sfi(inYflt, 16, 14);

zref = atan2(double(inYfix), double(inXfix));

zfix8 = cordicatan2(inYfix, inXfix, 8);

zfix10 = cordicatan2(inYfix, inXfix, 10);

zfix12 = cordicatan2(inYfix, inXfix, 12);

zfix14 = cordicatan2(inYfix, inXfix, 14);

zfix15 = cordicatan2(inYfix, inXfix, 15);

cordic_err = bsxfun(@minus,zref,double([zfix8;zfix10;zfix12;zfix14;zfix15]));

The error depends on the number of iterations and the precision of the input data. In
the above example, the input data is in the range [-1, +1], and the fraction length is 14.
From the following tables showing the maximum error at each iteration, and the figure
showing the overall error of the CORDIC algorithm, you can see that the error decreases
by about 1 bit per iteration until the precision of the data is reached.

iterations = [8, 10, 12, 14, 15];

max_cordicErr_real_world_value = max(abs(cordic_err'));

fprintf('Iterations: %2d, Max error in real-world-value: %g\n',...

 [iterations; max_cordicErr_real_world_value]);

Iterations: 8, Max error in real-world-value: 0.00773633

Iterations: 10, Max error in real-world-value: 0.00187695

Iterations: 12, Max error in real-world-value: 0.000501175

Iterations: 14, Max error in real-world-value: 0.000244621

Iterations: 15, Max error in real-world-value: 0.000244621

max_cordicErr_bits = log2(max_cordicErr_real_world_value);

fprintf('Iterations: %2d, Max error in bits: %g\n',[iterations; max_cordicErr_bits]);

Iterations: 8, Max error in bits: -7.01414

Iterations: 10, Max error in bits: -9.05739

Iterations: 12, Max error in bits: -10.9624

Iterations: 14, Max error in bits: -11.9972

Iterations: 15, Max error in bits: -11.9972

3 Fixed-Point Topics

3-78

figno = figno + 1;

fidemo.fixpt_atan2_demo_plot(figno, theta, cordic_err)

Accelerating the Fixed-Point CORDICATAN2 Algorithm Using FIACCEL

You can generate a MEX function from MATLAB code using the MATLAB® fiaccel
command. Typically, running a generated MEX function can improve the simulation
speed, although the actual speed improvement depends on the simulation platform being
used. The following example shows how to accelerate the fixed-point cordicatan2
algorithm using fiaccel.

The fiaccel function compiles the MATLAB code into a MEX function. This step
requires the creation of a temporary directory and write permissions in that directory.

 Calculate Fixed-Point Arctangent

3-79

tempdirObj = fidemo.fiTempdir('fixpt_atan2_demo');

When you declare the number of iterations to be a constant (e.g., 12) using
coder.newtype('constant',12), the compiled angle lookup table will also be
constant, and thus won't be computed at each iteration. Also, when you call the compiled
MEX file cordicatan2_mex, you will not need to give it the input argument for the
number of iterations. If you pass in the number of iterations, the MEX function will
error.

The data type of the input parameters determines whether the cordicatan2 function
performs fixed-point or floating-point calculations. When MATLAB generates code for
this file, code is only generated for the specific data type. For example, if the inputs are
fixed point, only fixed-point code is generated.

inp = {inYfix, inXfix, coder.newtype('constant',12)}; % example inputs for the function

fiaccel('cordicatan2', '-o', 'cordicatan2_mex', '-args', inp)

First, calculate a vector of 4 quadrant atan2 by calling cordicatan2.

tstart = tic;

cordicatan2(inYfix,inXfix,Niter);

telapsed_Mcordicatan2 = toc(tstart);

Next, calculate a vector of 4 quadrant atan2 by calling the MEX-function
cordicatan2_mex

cordicatan2_mex(inYfix,inXfix); % load the MEX file

tstart = tic;

cordicatan2_mex(inYfix,inXfix);

telapsed_MEXcordicatan2 = toc(tstart);

Now, compare the speed. Type the following in the MATLAB command window to see the
speed improvement on your specific platform:

fiaccel_speedup = telapsed_Mcordicatan2/telapsed_MEXcordicatan2;

To clean up the temporary directory, run the following commands:

clear cordicatan2_mex;

status = tempdirObj.cleanUp;

Calculating atan2(y,x) Using Chebyshev Polynomial Approximation

Polynomial approximation is a multiply-accumulate (MAC) centric algorithm. It can be a
good choice for DSP implementations of non-linear functions like atan(x).

3 Fixed-Point Topics

3-80

For a given degree of polynomial, and a given function f(x) = atan(x) evaluated over
the interval of [-1, +1], the polynomial approximation theory tries to find the polynomial
that minimizes the maximum value of , where P(x) is the approximating
polynomial. In general, you can obtain polynomials very close to the optimal one by
approximating the given function in terms of Chebyshev polynomials and cutting off the
polynomial at the desired degree.

The approximation of arctangent over the interval of [-1, +1] using the Chebyshev
polynomial of the first kind is summarized in the following formula:

where

Therefore, the 3rd order Chebyshev polynomial approximation is

The 5th order Chebyshev polynomial approximation is

 Calculate Fixed-Point Arctangent

3-81

The 7th order Chebyshev polynomial approximation is

You can obtain four quadrant output through angle correction based on the properties of
the arctangent function.

Comparing the Algorithmic Error of the CORDIC and Polynomial Approximation Algorithms

In general, higher degrees of polynomial approximation produce more accurate final
results. However, higher degrees of polynomial approximation also increase the
complexity of the algorithm and require more MAC operations and more memory. To
be consistent with the CORDIC algorithm and the MATLAB atan2 function, the input
arguments consist of both x and y coordinates instead of the ratio y/x.

To eliminate quantization error, floating-point implementations of the CORDIC and
Chebyshev polynomial approximation algorithms are used in the comparison below. An
algorithmic error comparison reveals that increasing the number of CORDIC iterations
results in less error. It also reveals that the CORDIC algorithm with 12 iterations
provides a slightly better angle estimation than the 5th order Chebyshev polynomial
approximation. The approximation error of the 3rd order Chebyshev Polynomial is about
8 times larger than that of the 5th order Chebyshev polynomial. You should choose the
order or degree of the polynomial based on the required accuracy of the angle estimation
and the hardware constraints.

The coefficients of the Chebyshev polynomial approximation for atan(x) are shown in
ascending order of x.

constA3 = [0.970562748477141, -0.189514164974601]; % 3rd order

constA5 = [0.994949366116654,-0.287060635532652,0.078037176446441]; % 5th order

constA7 = [0.999133448222780 -0.320533292381664 0.144982490144465...

 -0.038254464970299]; % 7th order

theta = (-90:1:90)*pi/180; % angle in radians

inXflt = cos(theta);

inYflt = sin(theta);

zfltRef = atan2(inYflt, inXflt); % Ideal output from ATAN2 function

zfltp3 = fidemo.poly_atan2(inYflt,inXflt,3,constA3); % 3rd order polynomial

zfltp5 = fidemo.poly_atan2(inYflt,inXflt,5,constA5); % 5th order polynomial

zfltp7 = fidemo.poly_atan2(inYflt,inXflt,7,constA7); % 7th order polynomial

zflt8 = cordicatan2(inYflt, inXflt, 8); % CORDIC alg with 8 iterations

zflt12 = cordicatan2(inYflt, inXflt, 12); % CORDIC alg with 12 iterations

3 Fixed-Point Topics

3-82

The maximum algorithmic error magnitude (or infinity norm of the algorithmic error) for
the CORDIC algorithm with 8 and 12 iterations is shown below:

cordic_algErr = [zfltRef;zfltRef] - [zflt8;zflt12];

max_cordicAlgErr = max(abs(cordic_algErr'));

fprintf('Iterations: %2d, CORDIC algorithmic error in real-world-value: %g\n',...

 [[8,12]; max_cordicAlgErr(:)']);

Iterations: 8, CORDIC algorithmic error in real-world-value: 0.00772146

Iterations: 12, CORDIC algorithmic error in real-world-value: 0.000483258

The log base 2 error shows the number of binary digits of accuracy. The 12th iteration of
the CORDIC algorithm has an estimated angle accuracy of :

max_cordicAlgErr_bits = log2(max_cordicAlgErr);

fprintf('Iterations: %2d, CORDIC algorithmic error in bits: %g\n',...

 [[8,12]; max_cordicAlgErr_bits(:)']);

Iterations: 8, CORDIC algorithmic error in bits: -7.01691

Iterations: 12, CORDIC algorithmic error in bits: -11.0149

The following code shows the magnitude of the maximum algorithmic error of the
polynomial approximation for orders 3, 5, and 7:

poly_algErr = [zfltRef;zfltRef;zfltRef] - [zfltp3;zfltp5;zfltp7];

max_polyAlgErr = max(abs(poly_algErr'));

fprintf('Order: %d, Polynomial approximation algorithmic error in real-world-value: %g\n',...

 [3:2:7; max_polyAlgErr(:)']);

Order: 3, Polynomial approximation algorithmic error in real-world-value: 0.00541647

Order: 5, Polynomial approximation algorithmic error in real-world-value: 0.000679384

Order: 7, Polynomial approximation algorithmic error in real-world-value: 9.16204e-05

The log base 2 error shows the number of binary digits of accuracy.

max_polyAlgErr_bits = log2(max_polyAlgErr);

fprintf('Order: %d, Polynomial approximation algorithmic error in bits: %g\n',...

 [3:2:7; max_polyAlgErr_bits(:)']);

Order: 3, Polynomial approximation algorithmic error in bits: -7.52843

Order: 5, Polynomial approximation algorithmic error in bits: -10.5235

Order: 7, Polynomial approximation algorithmic error in bits: -13.414

figno = figno + 1;

fidemo.fixpt_atan2_demo_plot(figno, theta, cordic_algErr, poly_algErr)

 Calculate Fixed-Point Arctangent

3-83

Converting the Floating-Point Chebyshev Polynomial Approximation Algorithm to Fixed Point

Assume the input and output word lengths are constrained to 16 bits by the hardware,
and the 5th order Chebyshev polynomial is used in the approximation. Because the
dynamic range of inputs x, y and y/x are all within [-1, +1], you can avoid overflow by
picking a signed fixed-point input data type with a word length of 16 bits and a fraction
length of 14 bits. The coefficients of the polynomial are purely fractional and within (-1,
+1), so we can pick their data types as signed fixed point with a word length of 16 bits
and a fraction length of 15 bits (best precision). The algorithm is robust because
is within [-1, +1], and the multiplication of the coefficients and is within (-1, +1).
Thus, the dynamic range will not grow, and due to the pre-determined fixed-point data
types, overflow is not expected.

3 Fixed-Point Topics

3-84

Similar to the CORDIC algorithm, the four quadrant polynomial approximation-based
atan2 algorithm outputs estimated angles within . Therefore, we can pick an
output fraction length of 13 bits to avoid overflow and provide a dynamic range of [-4,
+3.9998779296875].

The basic floating-point Chebyshev polynomial approximation of arctangent over the
interval [-1, +1] is implemented as the chebyPoly_atan_fltpt local function in the
poly_atan2.m file.

 function z = chebyPoly_atan_fltpt(y,x,N,constA,Tz,RoundingMethodStr)

 tmp = y/x;

 switch N

 case 3

 z = constA(1)*tmp + constA(2)*tmp^3;

 case 5

 z = constA(1)*tmp + constA(2)*tmp^3 + constA(3)*tmp^5;

 case 7

 z = constA(1)*tmp + constA(2)*tmp^3 + constA(3)*tmp^5 + constA(4)*tmp^7;

 otherwise

 disp('Supported order of Chebyshev polynomials are 3, 5 and 7');

 end

The basic fixed-point Chebyshev polynomial approximation of arctangent over the
interval [-1, +1] is implemented as the chebyPoly_atan_fixpt local function in the
poly_atan2.m file.

 function z = chebyPoly_atan_fixpt(y,x,N,constA,Tz,RoundingMethodStr)

 z = fi(0,'numerictype', Tz, 'RoundingMethod', RoundingMethodStr);

 Tx = numerictype(x);

 tmp = fi(0, 'numerictype',Tx, 'RoundingMethod', RoundingMethodStr);

 tmp(:) = Tx.divide(y, x); % y/x;

 tmp2 = fi(0, 'numerictype',Tx, 'RoundingMethod', RoundingMethodStr);

 tmp3 = fi(0, 'numerictype',Tx, 'RoundingMethod', RoundingMethodStr);

 tmp2(:) = tmp*tmp; % (y/x)^2

 tmp3(:) = tmp2*tmp; % (y/x)^3

 z(:) = constA(1)*tmp + constA(2)*tmp3; % for order N = 3

 if (N == 5) || (N == 7)

 tmp5 = fi(0, 'numerictype',Tx, 'RoundingMethod', RoundingMethodStr);

 tmp5(:) = tmp3 * tmp2; % (y/x)^5

 z(:) = z + constA(3)*tmp5; % for order N = 5

 Calculate Fixed-Point Arctangent

3-85

 if N == 7

 tmp7 = fi(0, 'numerictype',Tx, 'RoundingMethod', RoundingMethodStr);

 tmp7(:) = tmp5 * tmp2; % (y/x)^7

 z(:) = z + constA(4)*tmp7; %for order N = 7

 end

 end

The universal four quadrant atan2 calculation using Chebyshev polynomial
approximation is implemented in the poly_atan2.m file.

 function z = poly_atan2(y,x,N,constA,Tz,RoundingMethodStr)

 if nargin < 5

 % floating-point algorithm

 fhandle = @chebyPoly_atan_fltpt;

 Tz = [];

 RoundingMethodStr = [];

 z = zeros(size(y));

 else

 % fixed-point algorithm

 fhandle = @chebyPoly_atan_fixpt;

 %pre-allocate output

 z = fi(zeros(size(y)), 'numerictype', Tz, 'RoundingMethod', RoundingMethodStr);

 end

 % Apply angle correction to obtain four quadrant output

 for idx = 1:length(y)

 % fist quadrant

 if abs(x(idx)) >= abs(y(idx))

 % (0, pi/4]

 z(idx) = feval(fhandle, abs(y(idx)), abs(x(idx)), N, constA, Tz, RoundingMethodStr);

 else

 % (pi/4, pi/2)

 z(idx) = pi/2 - feval(fhandle, abs(x(idx)), abs(y(idx)), N, constA, Tz, RoundingMethodStr);

 end

 if x(idx) < 0

 % second and third quadrant

 if y(idx) < 0

 z(idx) = -pi + z(idx);

 else

 z(idx) = pi - z(idx);

 end

 else % fourth quadrant

 if y(idx) < 0

 z(idx) = -z(idx);

3 Fixed-Point Topics

3-86

 end

 end

 end

Performing the Overall Error Analysis of the Polynomial Approximation Algorithm

Similar to the CORDIC algorithm, the overall error of the polynomial approximation
algorithm consists of two parts - the algorithmic error and the quantization error. The
algorithmic error of the polynomial approximation algorithm was analyzed and compared
to the algorithmic error of the CORDIC algorithm in a previous section.

Calculate the Quantization Error

Compute the quantization error by comparing the fixed-point polynomial approximation
to the floating-point polynomial approximation.

Quantize the inputs and coefficients with convergent rounding:

inXfix = fi(fi(inXflt, 1, 16, 14,'RoundingMethod','Convergent'),'fimath',[]);

inYfix = fi(fi(inYflt, 1, 16, 14,'RoundingMethod','Convergent'),'fimath',[]);

constAfix3 = fi(fi(constA3, 1, 16,'RoundingMethod','Convergent'),'fimath',[]);

constAfix5 = fi(fi(constA5, 1, 16,'RoundingMethod','Convergent'),'fimath',[]);

constAfix7 = fi(fi(constA7, 1, 16,'RoundingMethod','Convergent'),'fimath',[]);

Calculate the maximum magnitude of the quantization error using Floor rounding:

ord = 3:2:7; % using 3rd, 5th, 7th order polynomials

Tz = numerictype(1, 16, 13); % output data type

zfix3p = fidemo.poly_atan2(inYfix,inXfix,ord(1),constAfix3,Tz,'Floor'); % 3rd order

zfix5p = fidemo.poly_atan2(inYfix,inXfix,ord(2),constAfix5,Tz,'Floor'); % 5th order

zfix7p = fidemo.poly_atan2(inYfix,inXfix,ord(3),constAfix7,Tz,'Floor'); % 7th order

poly_quantErr = bsxfun(@minus, [zfltp3;zfltp5;zfltp7], double([zfix3p;zfix5p;zfix7p]));

max_polyQuantErr_real_world_value = max(abs(poly_quantErr'));

max_polyQuantErr_bits = log2(max_polyQuantErr_real_world_value);

fprintf('PolyOrder: %2d, Quant error in bits: %g\n',...

 [ord; max_polyQuantErr_bits]);

PolyOrder: 3, Quant error in bits: -12.7101

PolyOrder: 5, Quant error in bits: -12.325

PolyOrder: 7, Quant error in bits: -11.8416

Calculate the Overall Error

Compute the overall error by comparing the fixed-point polynomial approximation to the
builtin atan2 function. The ideal reference output is zfltRef. The overall error of the
7th order polynomial approximation is dominated by the quantization error, which is due

 Calculate Fixed-Point Arctangent

3-87

to the finite precision of the input data, coefficients and the rounding effects from the
fixed-point arithmetic operations.

poly_err = bsxfun(@minus, zfltRef, double([zfix3p;zfix5p;zfix7p]));

max_polyErr_real_world_value = max(abs(poly_err'));

max_polyErr_bits = log2(max_polyErr_real_world_value);

fprintf('PolyOrder: %2d, Overall error in bits: %g\n',...

 [ord; max_polyErr_bits]);

PolyOrder: 3, Overall error in bits: -7.51907

PolyOrder: 5, Overall error in bits: -10.2497

PolyOrder: 7, Overall error in bits: -11.5883

figno = figno + 1;

fidemo.fixpt_atan2_demo_plot(figno, theta, poly_err)

3 Fixed-Point Topics

3-88

The Effect of Rounding Modes in Polynomial Approximation

Compared to the CORDIC algorithm with 12 iterations and a 13-bit fraction length in the
angle accumulator, the fifth order Chebyshev polynomial approximation gives a similar
order of quantization error. In the following example, Nearest, Round and Convergent
rounding modes give smaller quantization errors than the Floor rounding mode.

Maximum magnitude of the quantization error using Floor rounding

poly5_quantErrFloor = max(abs(poly_quantErr(2,:)));

poly5_quantErrFloor_bits = log2(poly5_quantErrFloor)

poly5_quantErrFloor_bits =

 -12.324996933210334

For comparison, calculate the maximum magnitude of the quantization error using
Nearest rounding:

zfixp5n = fidemo.poly_atan2(inYfix,inXfix,5,constAfix5,Tz,'Nearest');

poly5_quantErrNearest = max(abs(zfltp5 - double(zfixp5n)));

poly5_quantErrNearest_bits = log2(poly5_quantErrNearest)

set(0, 'format', origFormat); % reset MATLAB output format

poly5_quantErrNearest_bits =

 -13.175966487895451

Calculating atan2(y,x) Using Lookup Tables

There are many lookup table based approaches that may be used to implement fixed-
point argtangent approximations. The following is a low-cost approach based on a single
real-valued lookup table and simple nearest-neighbor linear interpolation.

Single Lookup Table Based Approach

The atan2 method of the fi object in the Fixed-Point Designer™ approximates the
MATLAB® builtin floating-point atan2 function, using a single lookup table based
approach with simple nearest-neighbor linear interpolation between values. This
approach allows for a small real-valued lookup table and uses simple arithmetic.

 Calculate Fixed-Point Arctangent

3-89

Using a single real-valued lookup table simplifies the index computation and the overall
arithmetic required to achieve very good accuracy of the results. These simplifications
yield a relatively high speed performance as well as relatively low memory requirements.

Understanding the Lookup Table Based ATAN2 Implementation

Lookup Table Size and Accuracy

Two important design considerations of a lookup table are its size and its accuracy. It is
not possible to create a table for every possible input value. It is also not possible to
be perfectly accurate due to the quantization of the lookup table values.

As a compromise, the atan2 method of the Fixed-Point Designer fi object uses an 8-bit
lookup table as part of its implementation. An 8-bit table is only 256 elements long, so it
is small and efficient. Eight bits also corresponds to the size of a byte or a word on many
platforms. Used in conjunction with linear interpolation, and 16-bit output (lookup table
value) precision, an 8-bit-addressable lookup table provides very good accuracy as well as
performance.

Overview of Algorithm Implementation

To better understand the Fixed-Point Designer implementation, first consider the
symmetry of the four-quadrant atan2(y,x) function. If you always compute the
arctangent in the first-octant of the x-y space (i.e., between angles 0 and pi/4 radians),
then you can perform octant correction on the resulting angle for any y and x values.

As part of the pre-processing portion, the signs and relative magnitudes of y and x are
considered, and a division is performed. Based on the signs and magnitudes of y and x,
only one of the following values is computed: y/x, x/y, -y/x, -x/y, -y/-x, -x/-y. The unsigned
result that is guaranteed to be non-negative and purely fractional is computed, based
on the a priori knowledge of the signs and magnitudes of y and x. An unsigned 16-bit
fractional fixed-point type is used for this value.

The 8 most significant bits (MSBs) of the stored unsigned integer representation of
the purely-fractional unsigned fixed-point result is then used to directly index an 8-bit
(length-256) lookup table value containing angle values between 0 and pi/4 radians. Two
table lookups are performed, one at the computed table index location lutValBelow, and
one at the next index location lutValAbove:

idxUint8MSBs = bitsliceget(idxUFIX16, 16, 9);

zeroBasedIdx = int16(idxUint8MSBs);

3 Fixed-Point Topics

3-90

lutValBelow = FI_ATAN_LUT(zeroBasedIdx + 1);

lutValAbove = FI_ATAN_LUT(zeroBasedIdx + 2);

The remaining 8 least significant bits (LSBs) of idxUFIX16 are used to interpolate
between these two table values. The LSB values are treated as a normalized scaling
factor with 8-bit fractional data type rFracNT:

rFracNT = numerictype(0,8,8); % fractional remainder data type

idxFrac8LSBs = reinterpretcast(bitsliceget(idxUFIX16,8,1), rFracNT);

rFraction = idxFrac8LSBs;

The two lookup table values, with the remainder (rFraction) value, are used to perform
a simple nearest-neighbor linear interpolation. A real multiply is used to determine
the weighted difference between the two points. This results in a simple calculation
(equivalent to one product and two sums) to obtain the interpolated fixed-point result:

temp = rFraction * (lutValAbove - lutValBelow);

rslt = lutValBelow + temp;

Finally, based on the original signs and relative magnitudes of y and x, the output result
is formed using simple octant-correction logic and arithmetic. The first-octant [0, pi/4]
angle value results are added or subtracted with constants to form the octant-corrected
angle outputs.

Computing Fixed-point Argtangent Using ATAN2

You can call the atan2 function directly using fixed-point or floating-point inputs. The
lookup table based algorithm is used for the fixed-point atan2 implementation:

zFxpLUT = atan2(inYfix,inXfix);

Calculate the Overall Error

You can compute the overall error by comparing the fixed-point lookup table based
approximation to the builtin atan2 function. The ideal reference output is zfltRef.

lut_err = bsxfun(@minus, zfltRef, double(zFxpLUT));

max_lutErr_real_world_value = max(abs(lut_err'));

max_lutErr_bits = log2(max_lutErr_real_world_value);

fprintf('Overall error in bits: %g\n', max_lutErr_bits);

Overall error in bits: -12.6743

figno = figno + 1;

 Calculate Fixed-Point Arctangent

3-91

fidemo.fixpt_atan2_demo_plot(figno, theta, lut_err)

Comparison of Overall Error Between the Fixed-Point Implementations

As was done previously, you can compute the overall error by comparing the fixed-point
approximation(s) to the builtin atan2 function. The ideal reference output is zfltRef.

zfixCDC15 = cordicatan2(inYfix, inXfix, 15);

cordic_15I_err = bsxfun(@minus, zfltRef, double(zfixCDC15));

poly_7p_err = bsxfun(@minus, zfltRef, double(zfix7p));

figno = figno + 1;

fidemo.fixpt_atan2_demo_plot(figno, theta, cordic_15I_err, poly_7p_err, lut_err)

3 Fixed-Point Topics

3-92

Comparing the Costs of the Fixed-Point Approximation Algorithms

The fixed-point CORDIC algorithm requires the following operations:

• 1 table lookup per iteration
• 2 shifts per iteration
• 3 additions per iteration

The N-th order fixed-point Chebyshev polynomial approximation algorithm requires the
following operations:

• 1 division
• (N+1) multiplications

 Calculate Fixed-Point Arctangent

3-93

• (N-1)/2 additions

The simplified single lookup table algorithm with nearest-neighbor linear interpolation
requires the following operations:

• 1 division
• 2 table lookups
• 1 multiplication
• 2 additions

In real world applications, selecting an algorithm for the fixed-point arctangent
calculation typically depends on the required accuracy, cost and hardware constraints.

close all; % close all figure windows

References

1 Jack E. Volder, The CORDIC Trigonometric Computing Technique, IRE
Transactions on Electronic Computers, Volume EC-8, September 1959, pp330-334.

2 Ray Andraka, A survey of CORDIC algorithm for FPGA based computers,
Proceedings of the 1998 ACM/SIGDA sixth international symposium on Field
programmable gate arrays, Feb. 22-24, 1998, pp191-200

3 Fixed-Point Topics

3-94

Compute Sine and Cosine Using CORDIC Rotation Kernel

This example shows how to compute sine and cosine using a CORDIC rotation kernel
in MATLAB®. CORDIC-based algorithms are critical to many embedded applications,
including motor controls, navigation, signal processing, and wireless communications.

Introduction

CORDIC is an acronym for COordinate Rotation DIgital Computer. The Givens
rotation-based CORDIC algorithm (see [1,2]) is one of the most hardware efficient
algorithms because it only requires iterative shift-add operations. The CORDIC
algorithm eliminates the need for explicit multipliers, and is suitable for calculating
a variety of functions, such as sine, cosine, arcsine, arccosine, arctangent, vector
magnitude, divide, square root, hyperbolic and logarithmic functions.

The fixed-point CORDIC algorithm requires the following operations:

• 1 table lookup per iteration
• 2 shifts per iteration
• 3 additions per iteration

CORDIC Kernel Algorithm Using the Rotation Computation Mode

You can use a CORDIC rotation computing mode algorithm to calculate sine and cosine
simultaneously, compute polar-to-cartesian conversions, and for other operations. In
the rotation mode, the vector magnitude and an angle of rotation are known and the
coordinate (X-Y) components are computed after rotation.

The CORDIC rotation mode algorithm begins by initializing an angle accumulator with
the desired rotation angle. Next, the rotation decision at each CORDIC iteration is done
in a way that decreases the magnitude of the residual angle accumulator. The rotation
decision is based on the sign of the residual angle in the angle accumulator after each
iteration.

In rotation mode, the CORDIC equations are:

 Compute Sine and Cosine Using CORDIC Rotation Kernel

3-95

where if , and otherwise;

, and is the total number of iterations.

This provides the following result as approaches :

Where:

.

Typically is chosen to be a large-enough constant value. Thus, may be pre-
computed.

In rotation mode, the CORDIC algorithm is limited to rotation angles between and
. To support angles outside of that range, quadrant correction is often used.

Efficient MATLAB Implementation of a CORDIC Rotation Kernel Algorithm

A MATLAB code implementation example of the CORDIC Rotation Kernel algorithm
follows (for the case of scalar x, y, and z). This same code can be used for both fixed-point
and floating-point operation.

CORDIC Rotation Kernel

function [x, y, z] = cordic_rotation_kernel(x, y, z, inpLUT, n)

% Perform CORDIC rotation kernel algorithm for N iterations.

xtmp = x;

ytmp = y;

for idx = 1:n

 if z < 0

 z(:) = accumpos(z, inpLUT(idx));

3 Fixed-Point Topics

3-96

 x(:) = accumpos(x, ytmp);

 y(:) = accumneg(y, xtmp);

 else

 z(:) = accumneg(z, inpLUT(idx));

 x(:) = accumneg(x, ytmp);

 y(:) = accumpos(y, xtmp);

 end

 xtmp = bitsra(x, idx); % bit-shift-right for multiply by 2^(-idx)

 ytmp = bitsra(y, idx); % bit-shift-right for multiply by 2^(-idx)

end

CORDIC-Based Sine and Cosine Computation Using Normalized Inputs

Sine and Cosine Computation Using the CORDIC Rotation Kernel

The judicious choice of initial values allows the CORDIC kernel rotation mode algorithm
to directly compute both sine and cosine simultaneously.

First, the following initialization steps are performed:

• The angle input look-up table inpLUT is set to atan(2 .^ -(0:N-1)).
• is set to the input argument value.
• is set to .
• is set to zero.

After iterations, these initial values lead to the following outputs as approaches
:

•

•

Other rotation-kernel-based function approximations are possible via pre- and post-
processing and using other initial conditions (see [1,2]).

The CORDIC algorithm is usually run through a specified (constant) number of
iterations since ending the CORDIC iterations early would break pipelined code, and the
CORDIC gain would not be constant because would vary.

For very large values of , the CORDIC algorithm is guaranteed to converge, but not
always monotonically. You can typically achieve greater accuracy by increasing the total
number of iterations.

 Compute Sine and Cosine Using CORDIC Rotation Kernel

3-97

Example

Suppose that you have a rotation angle sensor (e.g. in a servo motor) that uses formatted
integer values to represent measured angles of rotation. Also suppose that you have a 16-
bit integer arithmetic unit that can perform add, subtract, shift, and memory operations.
With such a device, you could implement the CORDIC rotation kernel to efficiently
compute cosine and sine (equivalently, cartesian X and Y coordinates) from the sensor
angle values, without the use of multiplies or large lookup tables.

sumWL = 16; % CORDIC sum word length

thNorm = -1.0:(2^-8):1.0; % Normalized [-1.0, 1.0] angle values

theta = fi(thNorm, 1, sumWL); % Fixed-point angle values (best precision)

z_NT = numerictype(theta); % Data type for Z

xyNT = numerictype(1, sumWL, sumWL-2); % Data type for X-Y

x_out = fi(zeros(size(theta)), xyNT); % X array pre-allocation

y_out = fi(zeros(size(theta)), xyNT); % Y array pre-allocation

z_out = fi(zeros(size(theta)), z_NT); % Z array pre-allocation

niters = 13; % Number of CORDIC iterations

inpLUT = fi(atan(2 .^ (-((0:(niters-1))'))) .* (2/pi), z_NT); % Normalized

AnGain = prod(sqrt(1+2.^(-2*(0:(niters-1))))); % CORDIC gain

inv_An = 1 / AnGain; % 1/A_n inverse of CORDIC gain

for idx = 1:length(theta)

 % CORDIC rotation kernel iterations

 [x_out(idx), y_out(idx), z_out(idx)] = ...

 fidemo.cordic_rotation_kernel(...

 fi(inv_An, xyNT), fi(0, xyNT), theta(idx), inpLUT, niters);

end

% Plot the CORDIC-approximated sine and cosine values

figure;

subplot(411);

plot(thNorm, x_out);

axis([-1 1 -1 1]);

title('Normalized X Values from CORDIC Rotation Kernel Iterations');

subplot(412);

thetaRadians = pi/2 .* thNorm; % real-world range [-pi/2 pi/2] angle values

plot(thNorm, cos(thetaRadians) - double(x_out));

title('Error between MATLAB COS Reference Values and X Values');

subplot(413);

plot(thNorm, y_out);

axis([-1 1 -1 1]);

3 Fixed-Point Topics

3-98

title('Normalized Y Values from CORDIC Rotation Kernel Iterations');

subplot(414);

plot(thNorm, sin(thetaRadians) - double(y_out));

title('Error between MATLAB SIN Reference Values and Y Values');

References

1 Jack E. Volder, The CORDIC Trigonometric Computing Technique, IRE
Transactions on Electronic Computers, Volume EC-8, September 1959, pp330-334.

2 Ray Andraka, A survey of CORDIC algorithm for FPGA based computers,
Proceedings of the 1998 ACM/SIGDA sixth international symposium on Field
programmable gate arrays, Feb. 22-24, 1998, pp191-200

 Perform QR Factorization Using CORDIC

3-99

Perform QR Factorization Using CORDIC

This example shows how to write MATLAB® code that works for both floating-point
and fixed-point data types. The algorithm used in this example is the QR factorization
implemented via CORDIC (Coordinate Rotation Digital Computer).

A good way to write an algorithm intended for a fixed-point target is to write it in
MATLAB using builtin floating-point types so you can verify that the algorithm works.
When you refine the algorithm to work with fixed-point types, then the best thing to do is
to write it so that the same code continues working with floating-point. That way, when
you are debugging, then you can switch the inputs back and forth between floating-point
and fixed-point types to determine if a difference in behavior is because of fixed-point
effects such as overflow and quantization versus an algorithmic difference. Even if the
algorithm is not well suited for a floating-point target (as is the case of using CORDIC
in the following example), it is still advantageous to have your MATLAB code work with
floating-point for debugging purposes.

In contrast, you may have a completely different strategy if your target is floating
point. For example, the QR algorithm is often done in floating-point with Householder
transformations and row or column pivoting. But in fixed-point it is often more efficient
to use CORDIC to apply Givens rotations with no pivoting.

This example addresses the first case, where your target is fixed-point, and you want an
algorithm that is independent of data type because it is easier to develop and debug.

In this example you will learn various coding methods that can be applied across
systems. The significant design patterns used in this example are the following:

• Data Type Independence: the algorithm is written in such a way that the MATLAB
code is independent of data type, and will work equally well for fixed-point, double-
precision floating-point, and single-precision floating-point.

• Overflow Prevention: method to guarantee not to overflow. This demonstrates how to
prevent overflows in fixed-point.

• Solving Systems of Equations: method to use computational efficiency. Narrow your
code scope by isolating what you need to define.

The main part in this example is an implementation of the QR factorization in fixed-
point arithmetic using CORDIC for the Givens rotations. The algorithm is written in
such a way that the MATLAB code is independent of data type, and will work equally
well for fixed-point, double-precision floating-point, and single-precision floating-point.

3 Fixed-Point Topics

3-100

The QR factorization of M-by-N matrix A produces an M-by-N upper triangular matrix R
and an M-by-M orthogonal matrix Q such that A = Q*R. A matrix is upper triangular if
it has all zeros below the diagonal. An M-by-M matrix Q is orthogonal if Q'*Q = eye (M),
the identity matrix.

The QR factorization is widely used in least-squares problems, such as the recursive least
squares (RLS) algorithm used in adaptive filters.

The CORDIC algorithm is attractive for computing the QR algorithm in fixed-point
because you can apply orthogonal Givens rotations with CORDIC using only shift and
add operations.

Setup

So this example does not change your preferences or settings, we store the original state
here, and restore them at the end.

originalFormat = get(0, 'format'); format short

originalFipref = get(fipref); reset(fipref);

originalGlobalFimath = fimath; resetglobalfimath;

Defining the CORDIC QR Algorithm

The CORDIC QR algorithm is given in the following MATLAB function, where A is an M-
by-N real matrix, and niter is the number of CORDIC iterations. Output Q is an M-by-
M orthogonal matrix, and R is an M-by-N upper-triangular matrix such that Q*R = A.

function [Q,R] = cordicqr(A,niter)

 Kn = inverse_cordic_growth_constant(niter);

 [m,n] = size(A);

 R = A;

 Q = coder.nullcopy(repmat(A(:,1),1,m)); % Declare type and size of Q

 Q(:) = eye(m); % Initialize Q

 for j=1:n

 for i=j+1:m

 [R(j,j:end),R(i,j:end),Q(:,j),Q(:,i)] = ...

 cordicgivens(R(j,j:end),R(i,j:end),Q(:,j),Q(:,i),niter,Kn);

 end

 end

end

This function was written to be independent of data type. It works equally well with
builtin floating-point types (double and single) and with the fixed-point fi object.

 Perform QR Factorization Using CORDIC

3-101

One of the trickiest aspects of writing data-type independent code is to specify data type
and size for a new variable. In order to preserve data types without having to explicitly
specify them, the output R was set to be the same as input A, like this:

 R = A;

In addition to being data-type independent, this function was written in such a way that
MATLAB Coder™ will be able to generate efficient C code from it. In MATLAB, you most
often declare and initialize a variable in one step, like this:

 Q = eye(m)

However, Q=eye(m) would always produce Q as a double-precision floating point
variable. If A is fixed-point, then we want Q to be fixed-point; if A is single, then we want
Q to be single; etc.

Hence, you need to declare the type and size of Q in one step, and then initialize it in a
second step. This gives MATLAB Coder the information it needs to create an efficient C
program with the correct types and sizes. In the finished code you initialize output Q to
be an M-by-M identity matrix and the same data type as A, like this:

 Q = coder.nullcopy(repmat(A(:,1),1,m)); % Declare type and size of Q

 Q(:) = eye(m); % Initialize Q

The coder.nullcopy function declares the size and type of Q without initializing it.
The expansion of the first column of A with repmat won't appear in code generated by
MATLAB; it is only used to specify the size. The repmat function was used instead of
A(:,1:m) because A may have more rows than columns, which will be the case in a
least-squares problem. You have to be sure to always assign values to every element of
an array when you declare it with coder.nullcopy, because if you don't then you will
have uninitialized memory.

You will notice this pattern of assignment again and again. This is another key enabler of
data-type independent code.

The heart of this function is applying orthogonal Givens rotations in-place to the rows
of R to zero out sub-diagonal elements, thus forming an upper-triangular matrix. The
same rotations are applied in-place to the columns of the identity matrix, thus forming
orthogonal Q. The Givens rotations are applied using the cordicgivens function,
as defined in the next section. The rows of R and columns of Q are used as both input
and output to the cordicgivens function so that the computation is done in-place,
overwriting R and Q.

3 Fixed-Point Topics

3-102

[R(j,j:end),R(i,j:end),Q(:,j),Q(:,i)] = ...

 cordicgivens(R(j,j:end),R(i,j:end),Q(:,j),Q(:,i),niter,Kn);

Defining the CORDIC Givens Rotation

The cordicgivens function applies a Givens rotation by performing CORDIC iterations
to rows x=R(j,j:end), y=R(i,j:end) around the angle defined by x(1)=R(j,j)
and y(1)=R(i,j) where i>j, thus zeroing out R(i,j). The same rotation is applied to
columns u = Q(:,j) and v = Q(:,i), thus forming the orthogonal matrix Q.

function [x,y,u,v] = cordicgivens(x,y,u,v,niter,Kn)

 if x(1)<0

 % Compensation for 3rd and 4th quadrants

 x(:) = -x; u(:) = -u;

 y(:) = -y; v(:) = -v;

 end

 for i=0:niter-1

 x0 = x;

 u0 = u;

 if y(1)<0

 % Counter-clockwise rotation

 % x and y form R, u and v form Q

 x(:) = x - bitsra(y, i); u(:) = u - bitsra(v, i);

 y(:) = y + bitsra(x0,i); v(:) = v + bitsra(u0,i);

 else

 % Clockwise rotation

 % x and y form R, u and v form Q

 x(:) = x + bitsra(y, i); u(:) = u + bitsra(v, i);

 y(:) = y - bitsra(x0,i); v(:) = v - bitsra(u0,i);

 end

 end

 % Set y(1) to exactly zero so R will be upper triangular without round off

 % showing up in the lower triangle.

 y(1) = 0;

 % Normalize the CORDIC gain

 x(:) = Kn * x; u(:) = Kn * u;

 y(:) = Kn * y; v(:) = Kn * v;

end

The advantage of using CORDIC in fixed-point over the standard Givens rotation is
that CORDIC does not use square root or divide operations. Only bit-shifts, addition,
and subtraction are needed in the main loop, and one scalar-vector multiply at the
end to normalize the CORDIC gain. Also, CORDIC rotations work well in pipelined
architectures.

 Perform QR Factorization Using CORDIC

3-103

The bit shifts in each iteration are performed with the bit shift right arithmetic (bitsra)
function instead of bitshift, multiplication by 0.5, or division by 2, because bitsra

• generates more efficient embedded code,
• works equally well with positive and negative numbers,
• works equally well with floating-point, fixed-point and integer types, and
• keeps this code independent of data type.

It is worthwhile to note that there is a difference between sub-scripted assignment
(subsasgn) into a variable a(:) = b versus overwriting a variable a = b. Sub-scripted
assignment into a variable like this

x(:) = x + bitsra(y, i);

always preserves the type of the left-hand-side argument x. This is the recommended
programming style in fixed-point. For example fixed-point types often grow their word
length in a sum, which is governed by the SumMode property of the fimath object, so that
the right-hand-side x + bitsra(y,i) can have a different data type than x.

If, instead, you overwrite the left-hand-side like this

x = x + bitsra(y, i);

then the left-hand-side x takes on the type of the right-hand-side sum. This programming
style leads to changing the data type of x in fixed-point code, and is discouraged.

Defining the Inverse CORDIC Growth Constant

This function returns the inverse of the CORDIC growth factor after niter iterations.
It is needed because CORDIC rotations grow the values by a factor of approximately
1.6468, depending on the number of iterations, so the gain is normalized in the last step
of cordicgivens by a multiplication by the inverse Kn = 1/1.6468 = 0.60725.

function Kn = inverse_cordic_growth_constant(niter)

 Kn = 1/prod(sqrt(1+2.^(-2*(0:double(niter)-1))));

end

Exploring CORDIC Growth as a Function of Number of Iterations

The function for CORDIC growth is defined as

growth = prod(sqrt(1+2.^(-2*(0:double(niter)-1))))

3 Fixed-Point Topics

3-104

and the inverse is

inverse_growth = 1 ./ growth

Growth is a function of the number of iterations niter, and quickly converges to
approximately 1.6468, and the inverse converges to approximately 0.60725. You can see
in the following table that the difference from one iteration to the next ceases to change
after 27 iterations. This is because the calculation hit the limit of precision in double
floating-point at 27 iterations.

niter growth diff(growth) 1./growth diff(1./growth)

 0 1.000000000000000 0 1.000000000000000 0

 1 1.414213562373095 0.414213562373095 0.707106781186547 -0.292893218813453

 2 1.581138830084190 0.166925267711095 0.632455532033676 -0.074651249152872

 3 1.629800601300662 0.048661771216473 0.613571991077896 -0.018883540955780

 4 1.642484065752237 0.012683464451575 0.608833912517752 -0.004738078560144

 5 1.645688915757255 0.003204850005018 0.607648256256168 -0.001185656261584

 6 1.646492278712479 0.000803362955224 0.607351770141296 -0.000296486114872

 7 1.646693254273644 0.000200975561165 0.607277644093526 -0.000074126047770

 8 1.646743506596901 0.000050252323257 0.607259112298893 -0.000018531794633

 9 1.646756070204878 0.000012563607978 0.607254479332562 -0.000004632966330

 10 1.646759211139822 0.000003140934944 0.607253321089875 -0.000001158242687

 11 1.646759996375617 0.000000785235795 0.607253031529134 -0.000000289560741

 12 1.646760192684695 0.000000196309077 0.607252959138945 -0.000000072390190

 13 1.646760241761972 0.000000049077277 0.607252941041397 -0.000000018097548

 14 1.646760254031292 0.000000012269320 0.607252936517010 -0.000000004524387

 15 1.646760257098622 0.000000003067330 0.607252935385914 -0.000000001131097

 16 1.646760257865455 0.000000000766833 0.607252935103139 -0.000000000282774

 17 1.646760258057163 0.000000000191708 0.607252935032446 -0.000000000070694

 18 1.646760258105090 0.000000000047927 0.607252935014772 -0.000000000017673

 19 1.646760258117072 0.000000000011982 0.607252935010354 -0.000000000004418

 20 1.646760258120067 0.000000000002995 0.607252935009249 -0.000000000001105

 21 1.646760258120816 0.000000000000749 0.607252935008973 -0.000000000000276

 22 1.646760258121003 0.000000000000187 0.607252935008904 -0.000000000000069

 23 1.646760258121050 0.000000000000047 0.607252935008887 -0.000000000000017

 24 1.646760258121062 0.000000000000012 0.607252935008883 -0.000000000000004

 25 1.646760258121065 0.000000000000003 0.607252935008882 -0.000000000000001

 26 1.646760258121065 0.000000000000001 0.607252935008881 -0.000000000000000

 27 1.646760258121065 0 0.607252935008881 0

 28 1.646760258121065 0 0.607252935008881 0

 29 1.646760258121065 0 0.607252935008881 0

 30 1.646760258121065 0 0.607252935008881 0

 31 1.646760258121065 0 0.607252935008881 0

 32 1.646760258121065 0 0.607252935008881 0

 Perform QR Factorization Using CORDIC

3-105

Comparing CORDIC to the Standard Givens Rotation

The cordicgivens function is numerically equivalent to the following standard Givens
rotation algorithm from Golub & Van Loan, Matrix Computations. In the cordicqr
function, if you replace the call to cordicgivens with a call to givensrotation, then
you will have the standard Givens QR algorithm.

function [x,y,u,v] = givensrotation(x,y,u,v)

 a = x(1); b = y(1);

 if b==0

 % No rotation necessary. c = 1; s = 0;

 return;

 else

 if abs(b) > abs(a)

 t = -a/b; s = 1/sqrt(1+t^2); c = s*t;

 else

 t = -b/a; c = 1/sqrt(1+t^2); s = c*t;

 end

 end

 x0 = x; u0 = u;

 % x and y form R, u and v form Q

 x(:) = c*x0 - s*y; u(:) = c*u0 - s*v;

 y(:) = s*x0 + c*y; v(:) = s*u0 + c*v;

end

The givensrotation function uses division and square root, which are expensive in
fixed-point, but good for floating-point algorithms.

Example of CORDIC Rotations

Here is a 3-by-3 example that follows the CORDIC rotations through each step of the
algorithm. The algorithm uses orthogonal rotations to zero out the subdiagonal elements
of R using the diagonal elements as pivots. The same rotations are applied to the identity
matrix, thus producing orthogonal Q such that Q*R = A.

Let A be a random 3-by-3 matrix, and initialize R = A, and Q = eye(3).

 R = A = [-0.8201 0.3573 -0.0100

 -0.7766 -0.0096 -0.7048

 -0.7274 -0.6206 -0.8901]

 Q = [1 0 0

 0 1 0

 0 0 1]

3 Fixed-Point Topics

3-106

The first rotation is about the first and second row of R and the first and second column
of Q. Element R(1,1) is the pivot and R(2,1) rotates to 0.

 R before the first rotation R after the first rotation

x [-0.8201 0.3573 -0.0100] -> x [1.1294 -0.2528 0.4918]

y [-0.7766 -0.0096 -0.7048] -> y [0 0.2527 0.5049]

 -0.7274 -0.6206 -0.8901 -0.7274 -0.6206 -0.8901

 Q before the first rotation Q after the first rotation

 u v u v

 [1] [0] 0 [-0.7261] [0.6876] 0

 [0] [1] 0 -> [-0.6876] [-0.7261] 0

 [0] [0] 1 [0] [0] 1

In the following plot, you can see the growth in x in each of the CORDIC iterations. The
growth is factored out at the last step by multiplying it by Kn = 0.60725. You can see
that y(1) iterates to 0. Initially, the point [x(1), y(1)] is in the third quadrant, and
is reflected into the first quadrant before the start of the CORDIC iterations.

 Perform QR Factorization Using CORDIC

3-107

The second rotation is about the first and third row of R and the first and third column of
Q. Element R(1,1) is the pivot and R(3,1) rotates to 0.

 R before the second rotation R after the second rotation

x [1.1294 -0.2528 0.4918] -> x [1.3434 0.1235 0.8954]

 0 0.2527 0.5049 0 0.2527 0.5049

y [-0.7274] -0.6206 -0.8901 -> y [0 -0.6586 -0.4820]

 Q before the second rotation Q after the second rotation

 u v u v

 [-0.7261] 0.6876 [0] [-0.6105] 0.6876 [-0.3932]

3 Fixed-Point Topics

3-108

 [-0.6876] -0.7261 [0] -> [-0.5781] -0.7261 [-0.3723]

 [0] 0 [1] [-0.5415] 0 [0.8407]

The third rotation is about the second and third row of R and the second and third
column of Q. Element R(2,2) is the pivot and R(3,2) rotates to 0.

 R before the third rotation R after the third rotation

 1.3434 0.1235 0.8954 1.3434 0.1235 0.8954

 x 0 [0.2527 0.5049] -> x 0 [0.7054 0.6308]

 y 0 [-0.6586 -0.4820] -> y 0 [0 0.2987]

 Q before the third rotation Q after the third rotation

 Perform QR Factorization Using CORDIC

3-109

 u v u v

 -0.6105 [0.6876] [-0.3932] -0.6105 [0.6134] [0.5011]

 -0.5781 [-0.7261] [-0.3723] -> -0.5781 [0.0875] [-0.8113]

 -0.5415 [0] [0.8407] -0.5415 [-0.7849] [0.3011]

This completes the QR factorization. R is upper triangular, and Q is orthogonal.

R =

 1.3434 0.1235 0.8954

 0 0.7054 0.6308

 0 0 0.2987

3 Fixed-Point Topics

3-110

Q =

 -0.6105 0.6134 0.5011

 -0.5781 0.0875 -0.8113

 -0.5415 -0.7849 0.3011

You can verify that Q is within roundoff error of being orthogonal by multiplying and
seeing that it is close to the identity matrix.

Q*Q' = 1.0000 0.0000 0.0000

 0.0000 1.0000 0

 0.0000 0 1.0000

Q'*Q = 1.0000 0.0000 -0.0000

 0.0000 1.0000 -0.0000

 -0.0000 -0.0000 1.0000

You can see the error difference by subtracting the identity matrix.

Q*Q' - eye(size(Q)) = 0 2.7756e-16 3.0531e-16

 2.7756e-16 4.4409e-16 0

 3.0531e-16 0 6.6613e-16

You can verify that Q*R is close to A by subtracting to see the error difference.

Q*R - A = -3.7802e-11 -7.2325e-13 -2.7756e-17

 -3.0512e-10 1.1708e-12 -4.4409e-16

 3.6836e-10 -4.3487e-13 -7.7716e-16

Determining the Optimal Output Type of Q for Fixed Word Length

Since Q is orthogonal, you know that all of its values are between -1 and +1. In floating-
point, there is no decision about the type of Q: it should be the same floating-point type
as A. However, in fixed-point, you can do better than making Q have the identical fixed-
point type as A. For example, if A has word length 16 and fraction length 8, and if we
make Q also have word length 16 and fraction length 8, then you force Q to be less
accurate than it could be and waste the upper half of the fixed-point range.

The best type for Q is to make it have full range of its possible outputs, plus
accommodate the 1.6468 CORDIC growth factor in intermediate calculations. Therefore,
assuming that the word length of Q is the same as the word length of input A, then the
best fraction length for Q is 2 bits less than the word length (one bit for 1.6468 and one
bit for the sign).

Hence, our initialization of Q in cordicqr can be improved like this.

 Perform QR Factorization Using CORDIC

3-111

if isfi(A) && (isfixed(A) || isscaleddouble(A))

 Q = fi(one*eye(m), get(A,'NumericType'), ...

 'FractionLength',get(A,'WordLength')-2);

else

 Q = coder.nullcopy(repmat(A(:,1),1,m));

 Q(:) = eye(m);

end

A slight disadvantage is that this section of code is dependent on data type. However,
you gain a major advantage by picking the optimal type for Q, and the main algorithm is
still independent of data type. You can do this kind of input parsing in the beginning of a
function and leave the main algorithm data-type independent.

Preventing Overflow in Fixed Point R

This section describes how to determine a fixed-point output type for R in order to
prevent overflow. In order to pick an output type, you need to know how much the
magnitude of the values of R will grow.

Given real matrix A and its QR factorization computed by Givens rotations without
pivoting, an upper-bound on the magnitude of the elements of R is the square-root of the
number of rows of A times the magnitude of the largest element in A. Furthermore, this
growth will never be greater during an intermediate computation. In other words, let
[m,n]=size(A), and [Q,R]=givensqr(A). Then

max(abs(R(:))) <= sqrt(m) * max(abs(A(:))).

This is true because the each element of R is formed from orthogonal rotations from its
corresponding column in A, so the largest that any element R(i,j) can get is if all of
the elements of its corresponding column A(:,j) were rotated to a single value. In other
words, the largest possible value will be bounded by the 2-norm of A(:,j). Since the 2-
norm of A(:,j) is equal to the square-root of the sum of the squares of the m elements,
and each element is less-than-or-equal-to the largest element of A, then

norm(A(:,j)) <= sqrt(m) * max(abs(A(:))).

That is, for all j

norm(A(:,j)) = sqrt(A(1,j)^2 + A(2,j)^2 + ... + A(m,j)^2)

 <= sqrt(m * max(abs(A(:)))^2)

 = sqrt(m) * max(abs(A(:))).

and so for all i,j

3 Fixed-Point Topics

3-112

abs(R(i,j)) <= norm(A(:,j)) <= sqrt(m) * max(abs(A(:))).

Hence, it is also true for the largest element of R

max(abs(R(:))) <= sqrt(m) * max(abs(A(:))).

This becomes useful in fixed-point where the elements of A are often very close to the
maximum value attainable by the data type, so we can set a tight upper bound without
knowing the values of A. This is important because we want to set an output type for R
with a minimum number of bits, only knowing the upper bound of the data type of A. You
can use fi method upperbound to get this value.

Therefore, for all i,j

abs(R(i,j)) <= sqrt(m) * upperbound(A)

Note that sqrt(m)*upperbound(A) is also an upper bound for the elements of A:

abs(A(i,j)) <= upperbound(A) <= sqrt(m)*upperbound(A)

Therefore, when picking fixed-point data types, sqrt(m)*upperbound(A) is an upper
bound that will work for both A and R.

Attaining the maximum is easy and common. The maximum will occur when all elements
get rotated into a single element, like the following matrix with orthogonal columns:

A = [7 -7 7 7

 7 7 -7 7

 7 -7 -7 -7

 7 7 7 -7];

Its maximum value is 7 and its number of rows is m=4, so we expect that the maximum
value in R will be bounded by max(abs(A(:)))*sqrt(m) = 7*sqrt(4) = 14. Since
A in this example is orthogonal, each column gets rotated to the max value on the
diagonal.

niter = 52;

[Q,R] = cordicqr(A,niter)

Q =

 0.5000 -0.5000 0.5000 0.5000

 0.5000 0.5000 -0.5000 0.5000

 0.5000 -0.5000 -0.5000 -0.5000

 Perform QR Factorization Using CORDIC

3-113

 0.5000 0.5000 0.5000 -0.5000

R =

 14.0000 0.0000 -0.0000 -0.0000

 0 14.0000 -0.0000 0.0000

 0 0 14.0000 0.0000

 0 0 0 14.0000

Another simple example of attaining maximum growth is a matrix that has all identical
elements, like a matrix of all ones. A matrix of ones will get rotated into 1*sqrt(m)
in the first row and zeros elsewhere. For example, this 9-by-5 matrix will have all
1*sqrt(9)=3 in the first row of R.

m = 9; n = 5;

A = ones(m,n)

niter = 52;

[Q,R] = cordicqr(A,niter)

A =

 1 1 1 1 1

 1 1 1 1 1

 1 1 1 1 1

 1 1 1 1 1

 1 1 1 1 1

 1 1 1 1 1

 1 1 1 1 1

 1 1 1 1 1

 1 1 1 1 1

Q =

 Columns 1 through 7

 0.3333 0.5567 -0.6784 0.3035 -0.1237 0.0503 0.0158

 0.3333 0.0296 0.2498 -0.1702 -0.6336 0.1229 -0.3012

 0.3333 0.2401 0.0562 -0.3918 0.4927 0.2048 -0.5395

 0.3333 0.0003 0.0952 -0.1857 0.2148 0.4923 0.7080

 0.3333 0.1138 0.0664 -0.2263 0.1293 -0.8348 0.2510

 0.3333 -0.3973 -0.0143 0.3271 0.4132 -0.0354 -0.2165

3 Fixed-Point Topics

3-114

 0.3333 0.1808 0.3538 -0.1012 -0.2195 0 0.0824

 0.3333 -0.6500 -0.4688 -0.2380 -0.2400 0 0

 0.3333 -0.0740 0.3400 0.6825 -0.0331 0 0

 Columns 8 through 9

 0.0056 -0.0921

 -0.5069 -0.1799

 0.0359 0.3122

 -0.2351 -0.0175

 -0.2001 0.0610

 -0.0939 -0.6294

 0.7646 -0.2849

 0.2300 0.2820

 0 0.5485

R =

 3.0000 3.0000 3.0000 3.0000 3.0000

 0 0.0000 0.0000 0.0000 0.0000

 0 0 0.0000 0.0000 0.0000

 0 0 0 0.0000 0.0000

 0 0 0 0 0.0000

 0 0 0 0 0

 0 0 0 0 0

 0 0 0 0 0

 0 0 0 0 0

As in the cordicqr function, the Givens QR algorithm is often written by overwriting
A in-place with R, so being able to cast A into R's data type at the beginning of the
algorithm is convenient.

In addition, if you compute the Givens rotations with CORDIC, there is a growth-factor
that converges quickly to approximately 1.6468. This growth factor gets normalized
out after each Givens rotation, but you need to accommodate it in the intermediate
calculations. Therefore, the number of additional bits that are required including the
Givens and CORDIC growth are log2(1.6468* sqrt(m)). The additional bits of
head-room can be added either by increasing the word length, or decreasing the fraction
length.

A benefit of increasing the word length is that it allows for the maximum possible
precision for a given word length. A disadvantage is that the optimal word length may

 Perform QR Factorization Using CORDIC

3-115

not correspond to a native type on your processor (e.g. increasing from 16 to 18 bits), or
you may have to increase to the next larger native word size which could be quite large
(e.g. increasing from 16 to 32 bits, when you only needed 18).

A benefit of decreasing fraction length is that you can do the computation in-place in the
native word size of A. A disadvantage is that you lose precision.

Another option is to pre-scale the input by right-shifting. This is equivalent to decreasing
the fraction length, with the additional disadvantage of changing the scaling of your
problem. However, this may be an attractive option to you if you prefer to only work in
fractional arithmetic or integer arithmetic.

Example of Fixed Point Growth in R

If you have a fixed-point input matrix A, you can define fixed-point output R with the
growth defined in the previous section.

Start with a random matrix X.

X = [0.0513 -0.2097 0.9492 0.2614

 0.8261 0.6252 0.3071 -0.9415

 1.5270 0.1832 0.1352 -0.1623

 0.4669 -1.0298 0.5152 -0.1461];

Create a fixed-point A from X.

A = sfi(X)

A =

 0.0513 -0.2097 0.9492 0.2614

 0.8261 0.6252 0.3071 -0.9415

 1.5270 0.1832 0.1352 -0.1623

 0.4669 -1.0298 0.5152 -0.1461

 DataTypeMode: Fixed-point: binary point scaling

 Signedness: Signed

 WordLength: 16

 FractionLength: 14

m = size(A,1)

m =

3 Fixed-Point Topics

3-116

 4

The growth factor is 1.6468 times the square-root of the number of rows of A. The bit
growth is the next integer above the base-2 logarithm of the growth.

bit_growth = ceil(log2(cordic_growth_constant * sqrt(m)))

bit_growth =

 2

Initialize R with the same values as A, and a word length increased by the bit growth.

R = sfi(A, get(A,'WordLength')+bit_growth, get(A,'FractionLength'))

R =

 0.0513 -0.2097 0.9492 0.2614

 0.8261 0.6252 0.3071 -0.9415

 1.5270 0.1832 0.1352 -0.1623

 0.4669 -1.0298 0.5152 -0.1461

 DataTypeMode: Fixed-point: binary point scaling

 Signedness: Signed

 WordLength: 18

 FractionLength: 14

Use R as input and overwrite it.

niter = get(R,'WordLength') - 1

[Q,R] = cordicqr(R, niter)

niter =

 17

Q =

 Perform QR Factorization Using CORDIC

3-117

 0.0284 -0.1753 0.9110 0.3723

 0.4594 0.4470 0.3507 -0.6828

 0.8490 0.0320 -0.2169 0.4808

 0.2596 -0.8766 -0.0112 -0.4050

 DataTypeMode: Fixed-point: binary point scaling

 Signedness: Signed

 WordLength: 18

 FractionLength: 16

R =

 1.7989 0.1694 0.4166 -0.6008

 0 1.2251 -0.4764 -0.3438

 0 0 0.9375 -0.0555

 0 0 0 0.7214

 DataTypeMode: Fixed-point: binary point scaling

 Signedness: Signed

 WordLength: 18

 FractionLength: 14

Verify that Q*Q' is near the identity matrix.

double(Q)*double(Q')

ans =

 1.0000 -0.0001 0.0000 0.0000

 -0.0001 1.0001 0.0000 -0.0000

 0.0000 0.0000 1.0000 -0.0000

 0.0000 -0.0000 -0.0000 1.0000

Verify that Q*R - A is small relative to the precision of A.

err = double(Q)*double(R) - double(A)

err =

 1.0e-03 *

 -0.1048 -0.2355 0.1829 -0.2146

3 Fixed-Point Topics

3-118

 0.3472 0.2949 0.0260 -0.2570

 0.2776 -0.1740 -0.1007 0.0966

 0.0138 -0.1558 0.0417 -0.0362

Increasing Precision in R

The previous section showed you how to prevent overflow in R while maintaining the
precision of A. If you leave the fraction length of R the same as A, then R cannot have
more precision than A, and your precision requirements may be such that the precision of
R must be greater.

An extreme example of this is to define a matrix with an integer fixed-point type (i.e.
fraction length is zero). Let matrix X have elements that are the full range for signed 8
bit integers, between -128 and +127.

 X = [-128 -128 -128 127

 -128 127 127 -128

 127 127 127 127

 127 127 -128 -128];

Define fixed-point A to be equivalent to an 8-bit integer.

A = sfi(X,8,0)

A =

 -128 -128 -128 127

 -128 127 127 -128

 127 127 127 127

 127 127 -128 -128

 DataTypeMode: Fixed-point: binary point scaling

 Signedness: Signed

 WordLength: 8

 FractionLength: 0

m = size(A,1)

m =

 4

 Perform QR Factorization Using CORDIC

3-119

The necessary growth is 1.6468 times the square-root of the number of rows of A.

bit_growth = ceil(log2(cordic_growth_constant*sqrt(m)))

bit_growth =

 2

Initialize R with the same values as A, and allow for bit growth like you did in the
previous section.

R = sfi(A, get(A,'WordLength')+bit_growth, get(A,'FractionLength'))

R =

 -128 -128 -128 127

 -128 127 127 -128

 127 127 127 127

 127 127 -128 -128

 DataTypeMode: Fixed-point: binary point scaling

 Signedness: Signed

 WordLength: 10

 FractionLength: 0

Compute the QR factorization, overwriting R.

niter = get(R,'WordLength') - 1;

[Q,R] = cordicqr(R, niter)

Q =

 -0.5039 -0.2930 -0.4063 -0.6914

 -0.5039 0.8750 0.0039 0.0078

 0.5000 0.2930 0.3984 -0.7148

 0.4922 0.2930 -0.8203 0.0039

 DataTypeMode: Fixed-point: binary point scaling

 Signedness: Signed

 WordLength: 10

 FractionLength: 8

3 Fixed-Point Topics

3-120

R =

 257 126 -1 -1

 0 225 151 -148

 0 0 211 104

 0 0 0 -180

 DataTypeMode: Fixed-point: binary point scaling

 Signedness: Signed

 WordLength: 10

 FractionLength: 0

Notice that R is returned with integer values because you left the fraction length of R at
0, the same as the fraction length of A.

The scaling of the least-significant bit (LSB) of A is 1, and you can see that the error is
proportional to the LSB.

err = double(Q)*double(R)-double(A)

err =

 -1.5039 -1.4102 -1.4531 -0.9336

 -1.5039 6.3828 6.4531 -1.9961

 1.5000 1.9180 0.8086 -0.7500

 -0.5078 0.9336 -1.3398 -1.8672

You can increase the precision in the QR factorization by increasing the fraction length.
In this example, you needed 10 bits for the integer part (8 bits to start with, plus 2 bits
growth), so when you increase the fraction length you still need to keep the 10 bits in the
integer part. For example, you can increase the word length to 32 and set the fraction
length to 22, which leaves 10 bits in the integer part.

R = sfi(A, 32, 22)

R =

 -128 -128 -128 127

 -128 127 127 -128

 127 127 127 127

 127 127 -128 -128

 Perform QR Factorization Using CORDIC

3-121

 DataTypeMode: Fixed-point: binary point scaling

 Signedness: Signed

 WordLength: 32

 FractionLength: 22

niter = get(R,'WordLength') - 1;

[Q,R] = cordicqr(R, niter)

Q =

 -0.5020 -0.2913 -0.4088 -0.7043

 -0.5020 0.8649 0.0000 0.0000

 0.4980 0.2890 0.4056 -0.7099

 0.4980 0.2890 -0.8176 0.0000

 DataTypeMode: Fixed-point: binary point scaling

 Signedness: Signed

 WordLength: 32

 FractionLength: 30

R =

 255.0020 127.0029 0.0039 0.0039

 0 220.5476 146.8413 -147.9930

 0 0 208.4793 104.2429

 0 0 0 -179.6037

 DataTypeMode: Fixed-point: binary point scaling

 Signedness: Signed

 WordLength: 32

 FractionLength: 22

Now you can see fractional parts in R, and Q*R-A is small.

err = double(Q)*double(R)-double(A)

err =

 1.0e-05 *

 -0.1234 -0.0014 -0.0845 0.0267

 -0.1234 0.2574 0.1260 -0.1094

3 Fixed-Point Topics

3-122

 0.0720 0.0289 -0.0400 -0.0684

 0.0957 0.0818 -0.1034 0.0095

The number of bits you choose for fraction length will depend on the precision
requirements for your particular algorithm.

Picking Default Number of Iterations

The number of iterations is dependent on the desired precision, but limited by the word
length of A. With each iteration, the values are right-shifted one bit. After the last bit
gets shifted off and the value becomes 0, then there is no additional value in continuing
to rotate. Hence, the most precision will be attained by choosing niter to be one less
than the word length.

For floating-point, the number of iterations is bounded by the size of the mantissa. In
double, 52 iterations is the most you can do to continue adding to something with the
same exponent. In single, it is 23. See the reference page for eps for more information
about floating-point accuracy.

Thus, we can make our code more usable by not requiring the number of iterations to be
input, and assuming that we want the most precision possible by changing cordicqr to
use this default for niter.

function [Q,R] = cordicqr(A,varargin)

 if nargin>=2 && ~isempty(varargin{1})

 niter = varargin{1};

 elseif isa(A,'double') || isfi(A) && isdouble(A)

 niter = 52;

 elseif isa(A,'single') || isfi(A) && issingle(A)

 niter = single(23);

 elseif isfi(A)

 niter = int32(get(A,'WordLength') - 1);

 else

 assert(0,'First input must be double, single, or fi.');

 end

A disadvantage of doing this is that this makes a section of our code dependent on data
type. However, an advantage is that the function is much more convenient to use because
you don't have to specify niter if you don't want to, and the main algorithm is still data-
type independent. Similar to picking an optimal output type for Q, you can do this kind
of input parsing in the beginning of a function and leave the main algorithm data-type
independent.

 Perform QR Factorization Using CORDIC

3-123

Here is an example from a previous section, without needing to specify an optimal niter.

A = [7 -7 7 7

 7 7 -7 7

 7 -7 -7 -7

 7 7 7 -7];

[Q,R] = cordicqr(A)

Q =

 0.5000 -0.5000 0.5000 0.5000

 0.5000 0.5000 -0.5000 0.5000

 0.5000 -0.5000 -0.5000 -0.5000

 0.5000 0.5000 0.5000 -0.5000

R =

 14.0000 0.0000 -0.0000 -0.0000

 0 14.0000 -0.0000 0.0000

 0 0 14.0000 0.0000

 0 0 0 14.0000

Example: QR Factorization Not Unique

When you compare the results from cordicqr and the QR function in MATLAB, you will
notice that the QR factorization is not unique. It is only important that Q is orthogonal, R
is upper triangular, and Q*R - A is small.

Here is a simple example that shows the difference.

m = 3;

A = ones(m)

A =

 1 1 1

 1 1 1

 1 1 1

The built-in QR function in MATLAB uses a different algorithm and produces:

3 Fixed-Point Topics

3-124

[Q0,R0] = qr(A)

Q0 =

 -0.5774 -0.5774 -0.5774

 -0.5774 0.7887 -0.2113

 -0.5774 -0.2113 0.7887

R0 =

 -1.7321 -1.7321 -1.7321

 0 0 0

 0 0 0

And the cordicqr function produces:

[Q,R] = cordicqr(A)

Q =

 0.5774 0.7495 0.3240

 0.5774 -0.6553 0.4871

 0.5774 -0.0942 -0.8110

R =

 1.7321 1.7321 1.7321

 0 0.0000 0.0000

 0 0 -0.0000

Notice that the elements of Q from function cordicqr are different from Q0 from built-
in QR. However, both results satisfy the requirement that Q is orthogonal:

Q0*Q0'

ans =

 1.0000 0.0000 0

 Perform QR Factorization Using CORDIC

3-125

 0.0000 1.0000 0

 0 0 1.0000

Q*Q'

ans =

 1.0000 0.0000 0.0000

 0.0000 1.0000 -0.0000

 0.0000 -0.0000 1.0000

And they both satisfy the requirement that Q*R - A is small:

Q0*R0 - A

ans =

 1.0e-15 *

 -0.1110 -0.1110 -0.1110

 -0.1110 -0.1110 -0.1110

 -0.1110 -0.1110 -0.1110

Q*R - A

ans =

 1.0e-15 *

 -0.2220 0.2220 0.2220

 0.4441 0 0

 0.2220 0.2220 0.2220

Solving Systems of Equations Without Forming Q

Given matrices A and B, you can use the QR factorization to solve for X in the following
equation:

A*X = B.

3 Fixed-Point Topics

3-126

If A has more rows than columns, then X will be the least-squares solution. If X and B
have more than one column, then several solutions can be computed at the same time. If
A = Q*R is the QR factorization of A, then the solution can be computed by back-solving

R*X = C

where C = Q'*B. Instead of forming Q and multiplying to get C = Q'*B, it is more
efficient to compute C directly. You can compute C directly by applying the rotations
to the rows of B instead of to the columns of an identity matrix. The new algorithm is
formed by the small modification of initializing C = B, and operating along the rows of C
instead of the columns of Q.

 function [R,C] = cordicrc(A,B,niter)

 Kn = inverse_cordic_growth_constant(niter);

 [m,n] = size(A);

 R = A;

 C = B;

 for j=1:n

 for i=j+1:m

 [R(j,j:end),R(i,j:end),C(j,:),C(i,:)] = ...

 cordicgivens(R(j,j:end),R(i,j:end),C(j,:),C(i,:),niter,Kn);

 end

 end

 end

You can verify the algorithm with this example. Let A be a random 3-by-3 matrix, and B
be a random 3-by-2 matrix.

A = [-0.8201 0.3573 -0.0100

 -0.7766 -0.0096 -0.7048

 -0.7274 -0.6206 -0.8901];

B = [-0.9286 0.3575

 0.6983 0.5155

 0.8680 0.4863];

Compute the QR factorization of A.

[Q,R] = cordicqr(A)

Q =

 -0.6105 0.6133 0.5012

 Perform QR Factorization Using CORDIC

3-127

 -0.5781 0.0876 -0.8113

 -0.5415 -0.7850 0.3011

R =

 1.3434 0.1235 0.8955

 0 0.7054 0.6309

 0 0 0.2988

Compute C = Q'*B directly.

[R,C] = cordicrc(A,B)

R =

 1.3434 0.1235 0.8955

 0 0.7054 0.6309

 0 0 0.2988

C =

 -0.3068 -0.7795

 -1.1897 -0.1173

 -0.7706 -0.0926

Subtract, and you will see that the error difference is on the order of roundoff.

Q'*B - C

ans =

 1.0e-15 *

 -0.0555 0.3331

 0 0

 0.1110 0.2914

Now try the example in fixed-point. Declare A and B to be fixed-point types.

3 Fixed-Point Topics

3-128

A = sfi(A)

A =

 -0.8201 0.3573 -0.0100

 -0.7766 -0.0096 -0.7048

 -0.7274 -0.6206 -0.8901

 DataTypeMode: Fixed-point: binary point scaling

 Signedness: Signed

 WordLength: 16

 FractionLength: 15

B = sfi(B)

B =

 -0.9286 0.3575

 0.6983 0.5155

 0.8680 0.4863

 DataTypeMode: Fixed-point: binary point scaling

 Signedness: Signed

 WordLength: 16

 FractionLength: 15

The necessary growth is 1.6468 times the square-root of the number of rows of A.

bit_growth = ceil(log2(cordic_growth_constant*sqrt(m)))

bit_growth =

 2

Initialize R with the same values as A, and allow for bit growth.

R = sfi(A, get(A,'WordLength')+bit_growth, get(A,'FractionLength'))

R =

 -0.8201 0.3573 -0.0100

 Perform QR Factorization Using CORDIC

3-129

 -0.7766 -0.0096 -0.7048

 -0.7274 -0.6206 -0.8901

 DataTypeMode: Fixed-point: binary point scaling

 Signedness: Signed

 WordLength: 18

 FractionLength: 15

The growth in C is the same as R, so initialize C and allow for bit growth the same way.

C = sfi(B, get(B,'WordLength')+bit_growth, get(B,'FractionLength'))

C =

 -0.9286 0.3575

 0.6983 0.5155

 0.8680 0.4863

 DataTypeMode: Fixed-point: binary point scaling

 Signedness: Signed

 WordLength: 18

 FractionLength: 15

Compute C = Q'*B directly, overwriting R and C.

[R,C] = cordicrc(R,C)

R =

 1.3435 0.1233 0.8954

 0 0.7055 0.6308

 0 0 0.2988

 DataTypeMode: Fixed-point: binary point scaling

 Signedness: Signed

 WordLength: 18

 FractionLength: 15

C =

 -0.3068 -0.7796

 -1.1898 -0.1175

 -0.7706 -0.0926

3 Fixed-Point Topics

3-130

 DataTypeMode: Fixed-point: binary point scaling

 Signedness: Signed

 WordLength: 18

 FractionLength: 15

An interesting use of this algorithm is that if you initialize B to be the identity matrix,
then output argument C is Q'. You may want to use this feature to have more control
over the data type of Q. For example,

A = [-0.8201 0.3573 -0.0100

 -0.7766 -0.0096 -0.7048

 -0.7274 -0.6206 -0.8901];

B = eye(size(A,1))

B =

 1 0 0

 0 1 0

 0 0 1

[R,C] = cordicrc(A,B)

R =

 1.3434 0.1235 0.8955

 0 0.7054 0.6309

 0 0 0.2988

C =

 -0.6105 -0.5781 -0.5415

 0.6133 0.0876 -0.7850

 0.5012 -0.8113 0.3011

Then C is orthogonal

C'*C

 Perform QR Factorization Using CORDIC

3-131

ans =

 1.0000 0.0000 0.0000

 0.0000 1.0000 -0.0000

 0.0000 -0.0000 1.0000

and R = C*A

R - C*A

ans =

 1.0e-15 *

 0.6661 -0.0139 -0.1110

 0.5551 -0.2220 0.6661

 -0.2220 -0.1110 0.2776

Links to the Documentation

Fixed-Point Designer™

• bitsra Bit shift right arithmetic
• fi Construct fixed-point numeric object
• fimath Construct fimath object
• fipref Construct fipref object
• get Property values of object
• globalfimath Configure global fimath and return handle object
• isfi Determine whether variable is fi object
• sfi Construct signed fixed-point numeric object
• upperbound Upper bound of range of fi object
• fiaccel Accelerate fixed-point code

MATLAB

• bitshift Shift bits specified number of places
• ceil Round toward positive infinity

3 Fixed-Point Topics

3-132

• double Convert to double precision floating point
• eps Floating-point relative accuracy
• eye Identity matrix
• log2 Base 2 logarithm and dissect floating-point numbers into exponent and mantissa
• prod Product of array elements
• qr Orthogonal-triangular factorization
• repmat Replicate and tile array
• single Convert to single precision floating point
• size Array dimensions
• sqrt Square root
• subsasgn Subscripted assignment

Functions Used in this Example

These are the MATLAB functions used in this example.

CORDICQR computes the QR factorization using CORDIC.

• [Q,R] = cordicqr(A) chooses the number of CORDIC iterations based on the type
of A.

• [Q,R] = cordicqr(A,niter) uses niter number of CORDIC iterations.

CORDICRC computes R from the QR factorization of A, and also returns C = Q'*B
without computing Q.

• [R,C] = cordicrc(A,B) chooses the number of CORDIC iterations based on the
type of A.

• [R,C] = cordicrc(A,B,niter) uses niter number of CORDIC iterations.

CORDIC_GROWTH_CONSTANT returns the CORDIC growth constant.

• cordic_growth = cordic_growth_constant(niter) returns the CORDIC
growth constant as a function of the number of CORDIC iterations, niter.

GIVENSQR computes the QR factorization using standard Givens rotations.

• [Q,R] = givensqr(A), where A is M-by-N, produces an M-by-N upper triangular
matrix R and an M-by-M orthogonal matrix Q so that A = Q*R.

 Perform QR Factorization Using CORDIC

3-133

CORDICQR_MAKEPLOTS makes the plots in this example by executing the following
from the MATLAB command line.

load A_3_by_3_for_cordicqr_demo.mat

niter=32;

[Q,R] = cordicqr_makeplots(A,niter)

References

1 Ray Andraka, "A survey of CORDIC algorithms for FPGA based computers," 1998,
ACM 0-89791-978-5/98/01.

2 Anthony J Cox and Nicholas J Higham, "Stability of Householder QR factorization
for weighted least squares problems," in Numerical Analysis, 1997, Proceedings of
the 17th Dundee Conference, Griffiths DF, Higham DJ, Watson GA (eds). Addison-
Wesley, Longman: Harlow, Essex, U.K., 1998; 57-73.

3 Gene H. Golub and Charles F. Van Loan, Matrix Computations, 3rd ed, Johns
Hopkins University Press, 1996, section 5.2.3 Givens QR Methods.

4 Daniel V. Rabinkin, William Song, M. Michael Vai, and Huy T. Nguyen, "Adaptive
array beamforming with fixed-point arithmetic matrix inversion using Givens
rotations," Proceedings of Society of Photo-Optical Instrumentation Engineers
(SPIE) -- Volume 4474 Advanced Signal Processing Algorithms, Architectures, and
Implementations XI, Franklin T. Luk, Editor, November 2001, pp. 294--305.

5 Jack E. Volder, "The CORDIC Trigonometric Computing Technique," Institute of
Radio Engineers (IRE) Transactions on Electronic Computers, September, 1959, pp.
330-334.

6 Musheng Wei and Qiaohua Liu, "On growth factors of the modified Gram-Schmidt
algorithm," Numerical Linear Algebra with Applications, Vol. 15, issue 7, September
2008, pp. 621-636.

Cleanup

fipref(originalFipref);

globalfimath(originalGlobalFimath);

close all

set(0, 'format', originalFormat);

3 Fixed-Point Topics

3-134

Compute Square Root Using CORDIC

This example shows how to compute square root using a CORDIC kernel algorithm in
MATLAB®. CORDIC-based algorithms are critical to many embedded applications,
including motor controls, navigation, signal processing, and wireless communications.

Introduction

CORDIC is an acronym for COordinate Rotation DIgital Computer. The Givens
rotation-based CORDIC algorithm (see [1,2]) is one of the most hardware efficient
algorithms because it only requires iterative shift-add operations. The CORDIC
algorithm eliminates the need for explicit multipliers, and is suitable for calculating
a variety of functions, such as sine, cosine, arcsine, arccosine, arctangent, vector
magnitude, divide, square root, hyperbolic and logarithmic functions.

The fixed-point CORDIC algorithm requires the following operations:

• 1 table lookup per iteration
• 2 shifts per iteration
• 3 additions per iteration

Note that for hyperbolic CORDIC-based algorithms, such as square root, certain
iterations (i = 4, 13, 40, 121, ..., k, 3k+1, ...) are repeated to achieve result convergence.

CORDIC Kernel Algorithms Using Hyperbolic Computation Modes

You can use a CORDIC computing mode algorithm to calculate hyperbolic functions, such
as hyperbolic trigonometric, square root, log, exp, etc.

CORDIC EQUATIONS IN HYPERBOLIC VECTORING MODE

The hyperbolic vectoring mode is used for computing square root.

For the vectoring mode, the CORDIC equations are as follows:

 Compute Square Root Using CORDIC

3-135

where

 if , and otherwise.

This mode provides the following result as approaches :

•

•

•

where

.

Typically is chosen to be a large-enough constant value. Thus, may be pre-
computed.

Note also that for square root we will use only the result.

MATLAB Implementation of a CORDIC Hyperbolic Vectoring Algorithm

A MATLAB code implementation example of the CORDIC Hyperbolic Vectoring Kernel
algorithm follows (for the case of scalar x, y, and z). This same code can be used for both
fixed-point and floating-point data types.

CORDIC Hyperbolic Vectoring Kernel

k = 4; % Used for the repeated (3*k + 1) iteration steps

for idx = 1:n

 xtmp = bitsra(x, idx); % multiply by 2^(-idx)

 ytmp = bitsra(y, idx); % multiply by 2^(-idx)

 if y < 0

 x(:) = x + ytmp;

 y(:) = y + xtmp;

3 Fixed-Point Topics

3-136

 z(:) = z - atanhLookupTable(idx);

 else

 x(:) = x - ytmp;

 y(:) = y - xtmp;

 z(:) = z + atanhLookupTable(idx);

 end

 if idx==k

 xtmp = bitsra(x, idx); % multiply by 2^(-idx)

 ytmp = bitsra(y, idx); % multiply by 2^(-idx)

 if y < 0

 x(:) = x + ytmp;

 y(:) = y + xtmp;

 z(:) = z - atanhLookupTable(idx);

 else

 x(:) = x - ytmp;

 y(:) = y - xtmp;

 z(:) = z + atanhLookupTable(idx);

 end

 k = 3*k + 1;

 end

 end % idx loop

CORDIC-Based Square Root Computation

Square Root Computation Using the CORDIC Hyperbolic Vectoring Kernel

The judicious choice of initial values allows the CORDIC kernel hyperbolic vectoring
mode algorithm to compute square root.

First, the following initialization steps are performed:

• is set to .
• is set to .

After iterations, these initial values lead to the following output as approaches :

This may be further simplified as follows:

 Compute Square Root Using CORDIC

3-137

where is the CORDIC gain as defined above.

Note: for square root, and atanhLookupTable have no impact on the result. Hence,
and atanhLookupTable are not used.

MATLAB Implementation of a CORDIC Square Root Kernel

A MATLAB code implementation example of the CORDIC Square Root Kernel algorithm
follows (for the case of scalar x and y). This same code can be used for both fixed-point
and floating-point data types.

CORDIC Square Root Kernel

k = 4; % Used for the repeated (3*k + 1) iteration steps

for idx = 1:n

 xtmp = bitsra(x, idx); % multiply by 2^(-idx)

 ytmp = bitsra(y, idx); % multiply by 2^(-idx)

 if y < 0

 x(:) = x + ytmp;

 y(:) = y + xtmp;

 else

 x(:) = x - ytmp;

 y(:) = y - xtmp;

 end

 if idx==k

 xtmp = bitsra(x, idx); % multiply by 2^(-idx)

 ytmp = bitsra(y, idx); % multiply by 2^(-idx)

 if y < 0

 x(:) = x + ytmp;

 y(:) = y + xtmp;

 else

 x(:) = x - ytmp;

 y(:) = y - xtmp;

 end

 k = 3*k + 1;

 end

 end % idx loop

This code is identical to the CORDIC Hyperbolic Vectoring Kernel implementation
above, except that z and atanhLookupTable are not used. This is a cost savings of 1
table lookup and 1 addition per iteration.

3 Fixed-Point Topics

3-138

Example

Use the CORDICSQRT function to compute the approximate square root of v_fix using
ten CORDIC kernel iterations:

step = 2^-7;

v_fix = fi(0.5:step:(2-step), 1, 20); % fixed-point inputs in range [.5, 2)

niter = 10; % number of CORDIC iterations

x_sqr = cordicsqrt(v_fix, niter);

% Get the Real World Value (RWV) of the CORDIC outputs for comparison

% and plot the error between the MATLAB reference and CORDIC sqrt values

x_cdc = double(x_sqr); % CORDIC results (scaled by An_hp)

v_ref = double(v_fix); % Reference floating-point input values

x_ref = sqrt(v_ref); % MATLAB reference floating-point results

figure;

subplot(211);

plot(v_ref, x_cdc, 'r.', v_ref, x_ref, 'b-');

legend('CORDIC', 'Reference', 'Location', 'SouthEast');

title('CORDIC Square Root (In-Range) and MATLAB Reference Results');

subplot(212);

absErr = abs(x_ref - x_cdc);

plot(v_ref, absErr);

title('Absolute Error (vs. MATLAB SQRT Reference Results)');

 Compute Square Root Using CORDIC

3-139

Overcoming Algorithm Input Range Limitations

Many square root algorithms normalize the input value, , to within the range of [0.5, 2)
range. This pre-processing is typically done using a fixed word length normalization, and
can be used to support small as well as large input value ranges.

The CORDIC-based square root algorithm implementation is particularly sensitive
to inputs outside of this range. The function CORDICSQRT overcomes this algorithm
range limitation through a normalization approach based on the following mathematical
relationships:

, for some and some even integer .

Thus:

3 Fixed-Point Topics

3-140

In the CORDICSQRT function, the values for and , described above, are found during
normalization of the input . is the number of leading zero most significant bits (MSBs)
in the binary representation of the input . These values are found through a series of
bitwise logic and shifts. Note: because must be even, if the number of leading zero
MSBs is odd, one additional bit shift is made to make even. The resulting value after
these shifts is the value .

 becomes the input to the CORDIC-based square root kernel, where an approximation to
 is calculated. The result is then scaled by so that it is back in the correct output

range. This is achieved through a simple bit shift by bits. The (left or right) shift
direction dependends on the sign of .

Example

Compute the square root of 10-bit fixed-point input data with a small non-negative range
using CORDIC. Compare the CORDIC-based algorithm results to the floating-point
MATLAB reference results over the same input range.

step = 2^-8;

u_ref = 0:step:(0.5-step); % Input array (small range of values)

u_in_arb = fi(u_ref,0,10); % 10-bit unsigned fixed-point input data values

u_len = numel(u_ref);

sqrt_ref = sqrt(double(u_in_arb)); % MATLAB sqrt reference results

niter = 10;

results = zeros(u_len, 2);

results(:,2) = sqrt_ref(:);

% Compute the equivalent Real World Value result for plotting.

% Plot the Real World Value (RWV) of CORDIC and MATLAB reference results.

x_out = cordicsqrt(u_in_arb, niter);

results(:,1) = double(x_out);

figure;

subplot(211);

plot(u_ref, results(:,1), 'r.', u_ref, results(:,2), 'b-');

legend('CORDIC', 'Reference', 'Location', 'SouthEast');

title('CORDIC Square Root (Small Input Range) and MATLAB Reference Results');

axis([0 0.5 0 0.75]);

subplot(212);

absErr = abs(results(:,2) - results(:,1));

plot(u_ref, absErr);

title('Absolute Error (vs. MATLAB SQRT Reference Results)');

 Compute Square Root Using CORDIC

3-141

Example

Compute the square root of 16-bit fixed-point input data with a large positive range using
CORDIC. Compare the CORDIC-based algorithm results to the floating-point MATLAB
reference results over the same input range.

u_ref = 0:5:2500; % Input array (larger range of values)

u_in_arb = fi(u_ref,0,16); % 16-bit unsigned fixed-point input data values

u_len = numel(u_ref);

sqrt_ref = sqrt(double(u_in_arb)); % MATLAB sqrt reference results

niter = 16;

results = zeros(u_len, 2);

results(:,2) = sqrt_ref(:);

3 Fixed-Point Topics

3-142

% Compute the equivalent Real World Value result for plotting.

% Plot the Real World Value (RWV) of CORDIC and MATLAB reference results.

x_out = cordicsqrt(u_in_arb, niter);

results(:,1) = double(x_out);

figure;

subplot(211);

plot(u_ref, results(:,1), 'r.', u_ref, results(:,2), 'b-');

legend('CORDIC', 'Reference', 'Location', 'SouthEast');

title('CORDIC Square Root (Large Input Range) and MATLAB Reference Results');

axis([0 2500 0 55]);

subplot(212);

absErr = abs(results(:,2) - results(:,1));

plot(u_ref, absErr);

title('Absolute Error (vs. MATLAB SQRT Reference Results)');

 Compute Square Root Using CORDIC

3-143

References

1 Jack E. Volder, The CORDIC Trigonometric Computing Technique, IRE
Transactions on Electronic Computers, Volume EC-8, September 1959, pp330-334.

2 Ray Andraka, A survey of CORDIC algorithm for FPGA based computers,
Proceedings of the 1998 ACM/SIGDA sixth international symposium on Field
programmable gate arrays, Feb. 22-24, 1998, pp191-200

3 Fixed-Point Topics

3-144

Convert Cartesian to Polar Using CORDIC Vectoring Kernel

This example shows how to convert Cartesian to polar coordinates using a CORDIC
vectoring kernel algorithm in MATLAB®. CORDIC-based algorithms are critical to many
embedded applications, including motor controls, navigation, signal processing, and
wireless communications.

Introduction

CORDIC is an acronym for COordinate Rotation DIgital Computer. The Givens
rotation-based CORDIC algorithm (see [1,2]) is one of the most hardware efficient
algorithms because it only requires iterative shift-add operations. The CORDIC
algorithm eliminates the need for explicit multipliers, and is suitable for calculating
a variety of functions, such as sine, cosine, arcsine, arccosine, arctangent, vector
magnitude, divide, square root, hyperbolic and logarithmic functions.

The fixed-point CORDIC algorithm requires the following operations:

• 1 table lookup per iteration
• 2 shifts per iteration
• 3 additions per iteration

CORDIC Kernel Algorithm Using the Vectoring Computation Mode

You can use a CORDIC vectoring computing mode algorithm to calculate atan(y/x),
compute cartesian-polar to cartesian conversions, and for other operations. In vectoring
mode, the CORDIC rotator rotates the input vector towards the positive X-axis to
minimize the component of the residual vector. For each iteration, if the coordinate
of the residual vector is positive, the CORDIC rotator rotates clockwise (using a negative
angle); otherwise, it rotates counter-clockwise (using a positive angle). Each rotation uses
a progressively smaller angle value. If the angle accumulator is initialized to 0, at the
end of the iterations, the accumulated rotation angle is the angle of the original input
vector.

In vectoring mode, the CORDIC equations are:

 Convert Cartesian to Polar Using CORDIC Vectoring Kernel

3-145

 is the angle accumulator

where if , and otherwise;

, and is the total number of iterations.

As approaches :

Where:

.

Typically is chosen to be a large-enough constant value. Thus, may be pre-
computed.

Efficient MATLAB Implementation of a CORDIC Vectoring Kernel Algorithm

A MATLAB code implementation example of the CORDIC Vectoring Kernel algorithm
follows (for the case of scalar x, y, and z). This same code can be used for both fixed-point
and floating-point operation.

CORDIC Vectoring Kernel

function [x, y, z] = cordic_vectoring_kernel(x, y, z, inpLUT, n)

% Perform CORDIC vectoring kernel algorithm for N iterations.

xtmp = x;

ytmp = y;

for idx = 1:n

 if y < 0

 x(:) = accumneg(x, ytmp);

 y(:) = accumpos(y, xtmp);

3 Fixed-Point Topics

3-146

 z(:) = accumneg(z, inpLUT(idx));

 else

 x(:) = accumpos(x, ytmp);

 y(:) = accumneg(y, xtmp);

 z(:) = accumpos(z, inpLUT(idx));

 end

 xtmp = bitsra(x, idx); % bit-shift-right for multiply by 2^(-idx)

 ytmp = bitsra(y, idx); % bit-shift-right for multiply by 2^(-idx)

end

CORDIC-Based Cartesian to Polar Conversion Using Normalized Input Units

Cartesian to Polar Computation Using the CORDIC Vectoring Kernel

The judicious choice of initial values allows the CORDIC kernel vectoring mode

algorithm to directly compute the magnitude and angle .

The input accumulators are initialized to the input coordinate values:

•

•

The angle accumulator is initialized to zero:

•

After iterations, these initial values lead to the following outputs as approaches
:

•

•

Other vectoring-kernel-based function approximations are possible via pre- and post-
processing and using other initial conditions (see [1,2]).

Example

Suppose that you have some measurements of Cartesian (X,Y) data, normalized to values
between [-1, 1), that you want to convert into polar (magnitude, angle) coordinates.

 Convert Cartesian to Polar Using CORDIC Vectoring Kernel

3-147

Also suppose that you have a 16-bit integer arithmetic unit that can perform add,
subtract, shift, and memory operations. With such a device, you could implement the
CORDIC vectoring kernel to efficiently compute magnitude and angle from the input
(X,Y) coordinate values, without the use of multiplies or large lookup tables.

sumWL = 16; % CORDIC sum word length

thNorm = -1.0:(2^-8):1.0; % Also using normalized [-1.0, 1.0] angle values

theta = fi(thNorm, 1, sumWL); % Fixed-point angle values (best precision)

z_NT = numerictype(theta); % Data type for Z

xyCPNT = numerictype(1,16,15); % Using normalized X-Y range [-1.0, 1.0)

thetaRadians = pi/2 .* thNorm; % real-world range [-pi/2 pi/2] angle values

inXfix = fi(0.50 .* cos(thetaRadians), xyCPNT); % X coordinate values

inYfix = fi(0.25 .* sin(thetaRadians), xyCPNT); % Y coordinate values

niters = 13; % Number of CORDIC iterations

inpLUT = fi(atan(2 .^ (-((0:(niters-1))'))) .* (2/pi), z_NT); % Normalized

z_c2p = fi(zeros(size(theta)), z_NT); % Z array pre-allocation

x_c2p = fi(zeros(size(theta)), xyCPNT); % X array pre-allocation

y_c2p = fi(zeros(size(theta)), xyCPNT); % Y array pre-allocation

for idx = 1:length(inXfix)

 % CORDIC vectoring kernel iterations

 [x_c2p(idx), y_c2p(idx), z_c2p(idx)] = ...

 fidemo.cordic_vectoring_kernel(...

 inXfix(idx), inYfix(idx), fi(0, z_NT), inpLUT, niters);

end

% Get the Real World Value (RWV) of the CORDIC outputs for comparison

% and plot the error between the (magnitude, angle) values

AnGain = prod(sqrt(1+2.^(-2*(0:(niters-1))))); % CORDIC gain

x_c2p_RWV = (1/AnGain) .* double(x_c2p); % Magnitude (scaled by CORDIC gain)

z_c2p_RWV = (pi/2) .* double(z_c2p); % Angles (in radian units)

[thRWV,rRWV] = cart2pol(double(inXfix), double(inYfix)); % MATLAB reference

magnitudeErr = rRWV - x_c2p_RWV;

angleErr = thRWV - z_c2p_RWV;

figure;

subplot(411);

plot(thNorm, x_c2p_RWV);

axis([-1 1 0.25 0.5]);

title('CORDIC Magnitude (X) Values');

subplot(412);

plot(thNorm, magnitudeErr);

title('Error between Magnitude Reference Values and X Values');

subplot(413);

3 Fixed-Point Topics

3-148

plot(thNorm, z_c2p_RWV);

title('CORDIC Angle (Z) Values');

subplot(414);

plot(thNorm, angleErr);

title('Error between Angle Reference Values and Z Values');

References

1 Jack E. Volder, The CORDIC Trigonometric Computing Technique, IRE
Transactions on Electronic Computers, Volume EC-8, September 1959, pp330-334.

2 Ray Andraka, A survey of CORDIC algorithm for FPGA based computers,
Proceedings of the 1998 ACM/SIGDA sixth international symposium on Field
programmable gate arrays, Feb. 22-24, 1998, pp191-200

 Set Data Types Using Min/Max Instrumentation

3-149

Set Data Types Using Min/Max Instrumentation

This example shows how to set fixed-point data types by instrumenting MATLAB® code
for min/max logging and using the tools to propose data types.

The functions you will use are:

• buildInstrumentedMex - Build MEX function with instrumentation enabled
• showInstrumentationResults - Show instrumentation results
• clearInstrumentationResults - Clear instrumentation results

The Unit Under Test

The function that you convert to fixed-point in this example is a second-order direct-form
2 transposed filter. You can substitute your own function in place of this one to reproduce
these steps in your own work.

function [y,z] = fi_2nd_order_df2t_filter(b,a,x,y,z)

 for i=1:length(x)

 y(i) = b(1)*x(i) + z(1);

 z(1) = b(2)*x(i) + z(2) - a(2) * y(i);

 z(2) = b(3)*x(i) - a(3) * y(i);

 end

end

For a MATLAB® function to be instrumented, it must be suitable for code generation.
For information on code generation, see the reference page for buildInstrumentedMex. A
MATLAB® Coder™ license is not required to use buildInstrumentedMex.

In this function the variables y and z are used as both inputs and outputs. This is an
important pattern because:

• You can set the data type of y and z outside the function, thus allowing you to re-use
the function for both fixed-point and floating-point types.

• The generated C code will create y and z as references in the function argument
list. For more information about this pattern, see the documentation under Code
Generation from MATLAB® > User's Guide > Generating Efficient and Reusable
Code > Generating Efficient Code > Eliminating Redundant Copies of Function
Inputs.

Run the following code to copy the test function into a temporary directory so this
example doesn't interfere with your own work.

3 Fixed-Point Topics

3-150

tempdirObj = fidemo.fiTempdir('fi_instrumentation_fixed_point_filter_demo');

copyfile(fullfile(matlabroot,'toolbox','fixedpoint','fidemos','+fidemo',...

 'fi_2nd_order_df2t_filter.m'),'.','f');

Run the following code to capture current states, and reset the global states.

FIPREF_STATE = get(fipref);

reset(fipref)

Data Types Determined by the Requirements of the Design

In this example, the requirements of the design determine the data type of input x. These
requirements are signed, 16-bit, and fractional.

N = 256;

x = fi(zeros(N,1),1,16,15);

The requirements of the design also determine the fixed-point math for a DSP target
with a 40-bit accumulator. This example uses floor rounding and wrap overflow to
produce efficient generated code.

F = fimath('RoundingMethod','Floor',...

 'OverflowAction','Wrap',...

 'ProductMode','KeepLSB',...

 'ProductWordLength',40,...

 'SumMode','KeepLSB',...

 'SumWordLength',40);

The following coefficients correspond to a second-order lowpass filter created by

[num,den] = butter(2,0.125)

The values of the coefficients influence the range of the values that will be assigned to
the filter output and states.

num = [0.0299545822080925 0.0599091644161849 0.0299545822080925];

den = [1 -1.4542435862515900 0.5740619150839550];

The data type of the coefficients, determined by the requirements of the design, are
specified as 16-bit word length and scaled to best-precision. A pattern for creating fi
objects from constant coefficients is:

1. Cast the coefficients to fi objects using the default round-to-nearest and saturate
overflow settings, which gives the coefficients better accuracy.

 Set Data Types Using Min/Max Instrumentation

3-151

2. Attach fimath with floor rounding and wrap overflow settings to control arithmetic,
which leads to more efficient C code.

b = fi(num,1,16); b.fimath = F;

a = fi(den,1,16); a.fimath = F;

Hard-code the filter coefficients into the implementation of this filter by passing them as
constants to the buildInstrumentedMex command.

B = coder.Constant(b);

A = coder.Constant(a);

Data Types Determined by the Values of the Coefficients and Inputs

The values of the coefficients and values of the inputs determine the data types of output
y and state vector z. Create them with a scaled double datatype so their values will
attain full range and you can identify potential overflows and propose data types.

yisd = fi(zeros(N,1),1,16,15,'DataType','ScaledDouble','fimath',F);

zisd = fi(zeros(2,1),1,16,15,'DataType','ScaledDouble','fimath',F);

Instrument the MATLAB® Function as a Scaled-Double MEX Function

To instrument the MATLAB® code, you create a MEX function from the
MATLAB® function using the buildInstrumentedMex command. The
inputs to buildInstrumentedMex are the same as the inputs to fiaccel,
but buildInstrumentedMex has no fi-object restrictions. The output of
buildInstrumentedMex is a MEX function with instrumentation inserted, so when the
MEX function is run, the simulated minimum and maximum values are recorded for all
named variables and intermediate values.

Use the '-o' option to name the MEX function that is generated. If you do not use the
'-o' option, then the MEX function is the name of the MATLAB® function with '_mex'
appended. You can also name the MEX function the same as the MATLAB® function, but
you need to remember that MEX functions take precedence over MATLAB® functions
and so changes to the MATLAB® function will not run until either the MEX function is
re-generated, or the MEX function is deleted and cleared.

buildInstrumentedMex fi_2nd_order_df2t_filter ...

 -o filter_scaled_double ...

 -args {B,A,x,yisd,zisd}

3 Fixed-Point Topics

3-152

Test Bench with Chirp Input

The test bench for this system is set up to run chirp and step signals. In general, test
benches for systems should cover a wide range of input signals.

The first test bench uses a chirp input. A chirp signal is a good representative input
because it covers a wide range of frequencies.

t = linspace(0,1,N); % Time vector from 0 to 1 second

f1 = N/2; % Target frequency of chirp set to Nyquist

xchirp = sin(pi*f1*t.^2); % Linear chirp from 0 to Fs/2 Hz in 1 second

x(:) = xchirp; % Cast the chirp to fixed-point

Run the Instrumented MEX Function to Record Min/Max Values

The instrumented MEX function must be run to record minimum and maximum values
for that simulation run. Subsequent runs accumulate the instrumentation results until
they are cleared with clearInstrumentationResults.

Note that the numerator and denominator coefficients were compiled as constants so
they are not provided as input to the generated MEX function.

ychirp = filter_scaled_double(x,yisd,zisd);

The plot of the filtered chirp signal shows the lowpass behavior of the filter with these
particular coefficients. Low frequencies are passed through and higher frequencies are
attenuated.

clf

plot(t,x,'c',t,ychirp,'bo-')

title('Chirp')

legend('Input','Scaled-double output')

figure(gcf); drawnow;

 Set Data Types Using Min/Max Instrumentation

3-153

Show Instrumentation Results with Proposed Fraction Lengths for Chirp

The showInstrumentationResults command displays the code generation report with
instrumented values. The input to showInstrumentationResults is the name of the
instrumented MEX function for which you wish to show results.

This is the list of options to the showInstrumentationResults command:

• -defaultDT T Default data type to propose for doubles, where T is a numerictype
object, or one of the strings {remainFloat, double, single, int8,
int16, int32, int64, uint8, uint16, uint32, uint64}. The default is
remainFloat.

3 Fixed-Point Topics

3-154

• -nocode Do not show MATLAB code in the printable report. Display only the logged
variables tables. This option only has effect in combination with the -printable option.

• -optimizeWholeNumbers Optimize the word length of variables whose simulation
min/max logs indicate that they were always whole numbers.

• -percentSafetyMargin N Safety margin for simulation min/max, where N
represents a percent value.

• -printable Create a printable report and open in the system browser.
• -proposeFL Propose fraction lengths for specified word lengths.
• -proposeWL Propose word lengths for specified fraction lengths.

Potential overflows are only displayed for fi objects with Scaled Double data type.

This particular design is for a DSP, where the word lengths are fixed, so use the
proposeFL flag to propose fraction lengths.

showInstrumentationResults filter_scaled_double -proposeFL

Hover over expressions or variables in the instrumented code generation report to see the
simulation minimum and maximum values. In this design, the inputs fall between -1 and
+1, and the values of all variables and intermediate results also fall between -1 and +1.
This suggests that the data types can all be fractional (fraction length one bit less than
the word length). However, this will not always be true for this function for other kinds
of inputs and it is important to test many types of inputs before setting final fixed-point
data types.

 Set Data Types Using Min/Max Instrumentation

3-155

Test Bench with Step Input

The next test bench is run with a step input. A step input is a good representative input
because it is often used to characterize the behavior of a system.

xstep = [ones(N/2,1);-ones(N/2,1)];

x(:) = xstep;

Run the Instrumented MEX Function with Step Input

The instrumentation results are accumulated until they are cleared with
clearInstrumentationResults.

ystep = filter_scaled_double(x,yisd,zisd);

clf

plot(t,x,'c',t,ystep,'bo-')

title('Step')

legend('Input','Scaled-double output')

figure(gcf); drawnow;

3 Fixed-Point Topics

3-156

Show Accumulated Instrumentation Results

Even though the inputs for step and chirp inputs are both full range as indicated by x
at 100 percent current range in the instrumented code generation report, the step input
causes overflow while the chirp input did not. This is an illustration of the necessity to
have many different inputs for your test bench. For the purposes of this example, only
two inputs were used, but real test benches should be more thorough.

showInstrumentationResults filter_scaled_double -proposeFL

 Set Data Types Using Min/Max Instrumentation

3-157

Apply Proposed Fixed-Point Properties

To prevent overflow, set proposed fixed-point properties based on the proposed fraction
lengths of 14-bits for y and z from the instrumented code generation report.

At this point in the workflow, you use true fixed-point types (as opposed to the scaled
double types that were used in the earlier step of determining data types).

yi = fi(zeros(N,1),1,16,14,'fimath',F);

zi = fi(zeros(2,1),1,16,14,'fimath',F);

Instrument the MATLAB® Function as a Fixed-Point MEX Function

Create an instrumented fixed-point MEX function by using fixed-point inputs and the
buildInstrumentedMex command.

buildInstrumentedMex fi_2nd_order_df2t_filter ...

 -o filter_fixed_point ...

 -args {B,A,x,yi,zi}

3 Fixed-Point Topics

3-158

Validate the Fixed-Point Algorithm

After converting to fixed-point, run the test bench again with fixed-point inputs to
validate the design.

Validate with Chirp Input

Run the fixed-point algorithm with a chirp input to validate the design.

x(:) = xchirp;

[y,z] = filter_fixed_point(x,yi,zi);

[ysd,zsd] = filter_scaled_double(x,yisd,zisd);

err = double(y) - double(ysd);

Compare the fixed-point outputs to the scaled-double outputs to verify that they meet
your design criteria.

clf

subplot(211);plot(t,x,'c',t,ysd,'bo-',t,y,'mx')

xlabel('Time (s)');

ylabel('Amplitude')

legend('Input','Scaled-double output','Fixed-point output');

title('Fixed-Point Chirp')

subplot(212);plot(t,err,'r');title('Error');xlabel('t'); ylabel('err');

figure(gcf); drawnow;

 Set Data Types Using Min/Max Instrumentation

3-159

Inspect the variables and intermediate results to ensure that the min/max values are
within range.

showInstrumentationResults filter_fixed_point

3 Fixed-Point Topics

3-160

Validate with Step Inputs

Run the fixed-point algorithm with a step input to validate the design.

Run the following code to clear the previous instrumentation results to see only the
effects of running the step input.

clearInstrumentationResults filter_fixed_point

Run the step input through the fixed-point filter and compare with the output of the
scaled double filter.

x(:) = xstep;

[y,z] = filter_fixed_point(x,yi,zi);

[ysd,zsd] = filter_scaled_double(x,yisd,zisd);

err = double(y) - double(ysd);

Plot the fixed-point outputs against the scaled-double outputs to verify that they meet
your design criteria.

clf

 Set Data Types Using Min/Max Instrumentation

3-161

subplot(211);plot(t,x,'c',t,ysd,'bo-',t,y,'mx')

title('Fixed-Point Step');

legend('Input','Scaled-double output','Fixed-point output')

subplot(212);plot(t,err,'r');title('Error');xlabel('t'); ylabel('err');

figure(gcf); drawnow;

Inspect the variables and intermediate results to ensure that the min/max values are
within range.

showInstrumentationResults filter_fixed_point

3 Fixed-Point Topics

3-162

Run the following code to restore the global states.

fipref(FIPREF_STATE);

clearInstrumentationResults filter_fixed_point

clearInstrumentationResults filter_scaled_double

clear fi_2nd_order_df2t_filter_fixed_instrumented

clear fi_2nd_order_df2t_filter_float_instrumented

Run the following code to delete the temporary directory.

tempdirObj.cleanUp;

 Convert Fast Fourier Transform (FFT) to Fixed Point

3-163

Convert Fast Fourier Transform (FFT) to Fixed Point

This example shows how to convert a textbook version of the Fast Fourier Transform
(FFT) algorithm into fixed-point MATLAB® code.

Run the following code to copy functions from the Fixed-Point Designer™ examples
directory into a temporary directory so this example doesn't interfere with your own
work.

tempdirObj = fidemo.fiTempdir('fi_radix2fft_demo');

copyfile(fullfile(matlabroot,'toolbox','fixedpoint','fidemos','+fidemo',...

 'fi_m_radix2fft_algorithm1_6_2.m'),'.','f');

copyfile(fullfile(matlabroot,'toolbox','fixedpoint','fidemos',...

 'fi_m_radix2fft_withscaling.m'),'.','f');

Run the following code to capture current states, and reset the global states.

FIPREF_STATE = get(fipref);

reset(fipref)

Textbook FFT Algorithm

FFT is a complex-valued linear transformation from the time domain to the frequency
domain. For example, if you construct a vector as the sum of two sinusoids and transform
it with the FFT, you can see the peaks of the frequencies in the FFT magnitude plot.

n = 64; % Number of points

Fs = 4; % Sampling frequency in Hz

t = (0:(n-1))/Fs; % Time vector

f = linspace(0,Fs,n); % Frequency vector

f0 = .2; f1 = .5; % Frequencies, in Hz

x0 = cos(2*pi*f0*t) + 0.55*cos(2*pi*f1*t); % Time-domain signal

x0 = complex(x0); % The textbook algorithm requires

 % the input to be complex

y = fft(x0); % Frequency-domain transformation

figure(gcf); clf

subplot(211); plot(t,real(x0),'b.-'); xlabel('Time (s)'); ylabel('Amplitude');legend('x0')

subplot(212); plot(f,abs(y),'m.-'); xlabel('Frequency (Hz)'); ylabel('Magnitude');legend('abs(fft(x0))')

3 Fixed-Point Topics

3-164

The peaks at 0.2 and 0.5 Hz in the frequency plot correspond to the two sinusoids of the
time-domain signal at those frequencies.

Note the reflected peaks at 3.5 and 3.8 Hz. When the input to an FFT is real-valued, as it
is in this case, then the output y is conjugate-symmetric:

There are many different implementations of the FFT, each having its own costs and
benefits. You may find that a different algorithm is better for your application than the
one given here. This algorithm is used to provide you with an example of how you might
begin your own exploration.

 Convert Fast Fourier Transform (FFT) to Fixed Point

3-165

This example uses the decimation-in-time unit-stride FFT shown in Algorithm 1.6.2
on page 45 of the book Computational Frameworks for the Fast Fourier Transform by
Charles Van Loan.

In pseudo-code, the algorithm in the textbook is as follows.

Algorithm 1.6.2. If is a complex vector of length and , then the following
algorithm overwrites with .

The textbook algorithm uses zero-based indexing. is an n-by-n Fourier-transform
matrix, is an n-by-n bit-reversal permutation matrix, and is a complex vector of
twiddle factors. The twiddle factors, , are complex roots of unity computed by the
following algorithm:

function w = fi_radix2twiddles(n)

t = log2(n);

if floor(t) ~= t

 error('N must be an exact power of two.');

end

w = zeros(n-1,1);

k=1;

L=2;

% Equation 1.4.11, p. 34

while L<=n

 theta = 2*pi/L;

 % Algorithm 1.4.1, p. 23

 for j=0:(L/2 - 1)

 w(k) = complex(cos(j*theta), -sin(j*theta));

3 Fixed-Point Topics

3-166

 k = k + 1;

 end

 L = L*2;

end

figure(gcf);clf

w0 = fidemo.fi_radix2twiddles(n);

polar(angle(w0),abs(w0),'o')

title('Twiddle Factors: Complex roots of unity')

Verify Floating-Point Code

To implement the algorithm in MATLAB, you can use the fidemo.fi_bitreverse
function to bit-reverse the input sequence, and you must add one to the indices to convert
them from zero-based to one-based.

 Convert Fast Fourier Transform (FFT) to Fixed Point

3-167

function x = fi_m_radix2fft_algorithm1_6_2(x, w)

n = length(x); t = log2(n);

x = fidemo.fi_bitreverse(x,n);

for q=1:t

 L = 2^q; r = n/L; L2 = L/2;

 for k=0:(r-1)

 for j=0:(L2-1)

 temp = w(L2-1+j+1) * x(k*L+j+L2+1);

 x(k*L+j+L2+1) = x(k*L+j+1) - temp;

 x(k*L+j+1) = x(k*L+j+1) + temp;

 end

 end

end

To verify that you correctly implemented the algorithm in MATLAB, run a known
signal through it and compare the results to the results produced by the MATLAB FFT
function.

y = fi_m_radix2fft_algorithm1_6_2(x0, w0);

y0 = fft(x0); % MATLAB's built-in FFT for comparison

fidemo.fi_fft_demo_plot(real(x0),y,y0,Fs,'Double data', {'FFT Algorithm 1.6.2','Built-in FFT'});

3 Fixed-Point Topics

3-168

Because the error is within tolerance of the MATLAB built-in FFT function, you know
you have correctly implemented the algorithm.

Identify Fixed-Point Issues

Now, try converting the data to fixed-point and see if the algorithm still looks good.
In this first pass, you use all the defaults for signed fixed-point data by using the sfi
constructor.

x = sfi(x0); % Convert to signed fixed-point

w = sfi(w0); % Convert to signed fixed-point

% Re-run the same algorithm with the fixed-point inputs

y = fi_m_radix2fft_algorithm1_6_2(x,w);

 Convert Fast Fourier Transform (FFT) to Fixed Point

3-169

fidemo.fi_fft_demo_plot(real(x),y,y0,Fs,'Fixed-point data', ...

 {'Fixed-point FFT Algorithm 1.6.2','Built-in'});

Note that the magnitude plot (center) of the fixed-point FFT does not resemble the plot
of the built-in FFT. The error (bottom plot) is much larger than what you would expect to
see for round off error, so it is likely that overflow has occurred.

Use Min/Max Instrumentation to Identify Overflows

To instrument the MATLAB® code, you create a MEX function from the
MATLAB® function using the buildInstrumentedMex command. The
inputs to buildInstrumentedMex are the same as the inputs to fiaccel,
but buildInstrumentedMex has no fi-object restrictions. The output of

3 Fixed-Point Topics

3-170

buildInstrumentedMex is a MEX function with instrumentation inserted, so when the
MEX function is run, the simulated minimum and maximum values are recorded for all
named variables and intermediate values.

The '-o' option is used to name the MEX function that is generated. If the '-o' option
is not used, then the MEX function is the name of the MATLAB® function with '_mex'
appended. You can also name the MEX function the same as the MATLAB® function, but
you need to remember that MEX functions take precedence over MATLAB® functions
and so changes to the MATLAB® function will not run until either the MEX function is
re-generated, or the MEX function is deleted and cleared.

Create the input with a scaled double datatype so its values will attain full range and
you can identify potential overflows.

x_scaled_double = fi(x0,'DataType','ScaledDouble');

buildInstrumentedMex fi_m_radix2fft_algorithm1_6_2 ...

 -o fft_instrumented -args {x_scaled_double w}

Run the instrumented MEX function to record min/max values.

y_scaled_double = fft_instrumented(x_scaled_double,w);

Show the instrumentation results.

showInstrumentationResults fft_instrumented

You can see from the instrumentation results that there were overflows when assigning
into the variable x.

 Convert Fast Fourier Transform (FFT) to Fixed Point

3-171

Modify the Algorithm to Address Fixed-Point Issues

The magnitude of an individual bin in the FFT grows, at most, by a factor of n, where n is
the length of the FFT. Hence, by scaling your data by 1/n, you can prevent overflow from
occurring for any input.

3 Fixed-Point Topics

3-172

When you scale only the input to the first stage of a length-n FFT by 1/n, you obtain a
noise-to-signal ratio proportional to n^2 [Oppenheim & Schafer 1989, equation 9.101],
[Welch 1969].

However, if you scale the input to each of the stages of the FFT by 1/2, you can obtain an
overall scaling of 1/n and produce a noise-to-signal ratio proportional to n [Oppenheim &
Schafer 1989, equation 9.105], [Welch 1969].

An efficient way to scale by 1/2 in fixed-point is to right-shift the data. To do this, you use
the bit shift right arithmetic function bitsra. After scaling each stage of the FFT, and
optimizing the index variable computation, your algorithm becomes:

function x = fi_m_radix2fft_withscaling(x, w)

n = length(x); t = log2(n);

x = fidemo.fi_bitreverse(x,n);

% Generate index variables as integer constants so they are not computed in

% the loop.

LL = int32(2.^(1:t)); rr = int32(n./LL); LL2 = int32(LL./2);

for q=1:t

 L = LL(q); r = rr(q); L2 = LL2(q);

 for k=0:(r-1)

 for j=0:(L2-1)

 temp = w(L2-1+j+1) * x(k*L+j+L2+1);

 x(k*L+j+L2+1) = bitsra(x(k*L+j+1) - temp, 1);

 x(k*L+j+1) = bitsra(x(k*L+j+1) + temp, 1);

 end

 end

end

Run the scaled algorithm with fixed-point data.

x = sfi(x0);

w = sfi(w0);

y = fi_m_radix2fft_withscaling(x,w);

fidemo.fi_fft_demo_plot(real(x), y, y0/n, Fs, 'Fixed-point data', ...

 {'Fixed-point FFT with scaling','Scaled built-in'});

 Convert Fast Fourier Transform (FFT) to Fixed Point

3-173

You can see that the scaled fixed-point FFT algorithm now matches the built-in FFT to a
tolerance that is expected for 16-bit fixed-point data.

References

Charles Van Loan, Computational Frameworks for the Fast Fourier Transform, SIAM,
1992.

Cleve Moler, Numerical Computing with MATLAB, SIAM, 2004, Chapter 8 Fourier
Analysis.

Alan V. Oppenheim and Ronald W. Schafer, Discrete-Time Signal Processing, Prentice
Hall, 1989.

3 Fixed-Point Topics

3-174

Peter D. Welch, "A Fixed-Point Fast Fourier Transform Error Analysis," IEEE®
Transactions on Audio and Electroacoustics, Vol. AU-17, No. 2, June 1969, pp. 151-157.

Run the following code to restore the global states.

fipref(FIPREF_STATE);

clearInstrumentationResults fft_instrumented

clear fft_instrumented

Run the following code to delete the temporary directory.

tempdirObj.cleanUp;

 Detect Limit Cycles in Fixed-Point State-Space Systems

3-175

Detect Limit Cycles in Fixed-Point State-Space Systems

This example shows how to analyze a fixed-point state-space system to detect limit
cycles.

The example focuses on detecting large scale limit cycles due to overflow with zero inputs
and highlights the conditions that are sufficient to prevent such oscillations.

References:

[1] Richard A. Roberts and Clifford T. Mullis, "Digital Signal Processing", Addison-
Wesley, Reading, Massachusetts, 1987, ISBN 0-201-16350-0, Section 9.3.

[2] S. K. Mitra, "Digital Signal Processing: A Computer Based Approach", McGraw-Hill,
New York, 1998, ISBN 0-07-042953-7.

Select a State-Space Representation of the System.

We observe that the system is stable by observing that the eigenvalues of the state-
transition matrix A have magnitudes less than 1.

originalFormat = get(0, 'format');

format

A = [0 1; -.5 1]; B = [0; 1]; C = [1 0]; D = 0;

eig(A)

ans =

 0.5000 + 0.5000i

 0.5000 - 0.5000i

Filter Implementation

type(fullfile(matlabroot,'toolbox','fixedpoint','fidemos','+fidemo','fisisostatespacefilter.m'))

function [y,z] = fisisostatespacefilter(A,B,C,D,x,z)

%FISISOSTATESPACEFILTER Single-input, single-output statespace filter

% [Y,Zf] = FISISOSTATESPACEFILTER(A,B,C,D,X,Zi) filters data X with

% initial conditions Zi with the state-space filter defined by matrices

3 Fixed-Point Topics

3-176

% A, B, C, D. Output Y and final conditions Zf are returned.

% Copyright 2004-2011 The MathWorks, Inc.

y = x;

z(:,2:length(x)+1) = 0;

for k=1:length(x)

 y(k) = C*z(:,k) + D*x(k);

 z(:,k+1) = A*z(:,k) + B*x(k);

end

Floating-Point Filter

Create a floating-point filter and observe the trajectory of the states.

First, we choose random states within the unit square and observe where they are
projected after one step of being multiplied by the state-transition matrix A.

rng('default');

clf

x1 = [-1 1 1 -1 -1];

y1 = [-1 -1 1 1 -1];

plot(x1,y1,'c')

axis([-1.5 1.5 -1.5 1.5]); axis square; grid;

hold on

% Plot the projection of the square

p = A*[x1;y1];

plot(p(1,:),p(2,:),'r')

r = 2*rand(2,1000)-1;

pr = A*r;

plot(pr(1,:),pr(2,:),'.')

 Detect Limit Cycles in Fixed-Point State-Space Systems

3-177

Random Initial States Followed Through Time

Drive the filter with a random initial state, normalized to be inside the unit square, with
the input all zero, and run the filter.

Note that some of the states wander outside the unit square, and that they eventually
wind down to the zero state at the origin, z=[0;0].

x = zeros(10,1);

zi = [0;0];

q = quantizer([16 15]);

for k=1:20

 y = x;

3 Fixed-Point Topics

3-178

 zi(:) = randquant(q,size(A,1),1);

 [y,zf] = fidemo.fisisostatespacefilter(A,B,C,D,x,zi);

 plot(zf(1,:), zf(2,:),'go-','markersize',8);

end

title('Double-Precision State Sequence Plot');

xlabel('z1'); ylabel('z2')

State Trajectory

Because the eigenvalues are less than one in magnitude, the system is stable, and all
initial states wind down to the origin with zero input. However, the eigenvalues don't tell
the whole story about the trajectory of the states, as in this example, where the states
were projected outward first, before they start to contract.

 Detect Limit Cycles in Fixed-Point State-Space Systems

3-179

The singular values of A give us a better indication of the overall state trajectory.
The largest singular value is about 1.46, which indicates that states aligned with the
corresponding singular vector will be projected away from the origin.

svd(A)

ans =

 1.4604

 0.3424

Fixed-Point Filter Creation

Create a fixed-point filter and check for limit cycles.

The MATLAB® code for the filter remains the same. It becomes a fixed-point filter
because we drive it with fixed-point inputs.

For the sake of illustrating overflow oscillation, we are choosing product and sum data
types that will overflow.

rng('default');

F = fimath('OverflowAction','Wrap',...

 'ProductMode','SpecifyPrecision',...

 'ProductWordLength',16,'ProductFractionLength',15,...

 'SumMode','SpecifyPrecision',...

 'SumWordLength',16,'SumFractionLength',15);

A = fi(A,'fimath',F)

B = fi(B,'fimath',F)

C = fi(C,'fimath',F)

D = fi(D,'fimath',F)

A =

 0 1.0000

 -0.5000 1.0000

 DataTypeMode: Fixed-point: binary point scaling

 Signedness: Signed

 WordLength: 16

 FractionLength: 14

3 Fixed-Point Topics

3-180

 RoundingMethod: Nearest

 OverflowAction: Wrap

 ProductMode: SpecifyPrecision

 ProductWordLength: 16

 ProductFractionLength: 15

 SumMode: SpecifyPrecision

 SumWordLength: 16

 SumFractionLength: 15

 CastBeforeSum: true

B =

 0

 1

 DataTypeMode: Fixed-point: binary point scaling

 Signedness: Signed

 WordLength: 16

 FractionLength: 14

 RoundingMethod: Nearest

 OverflowAction: Wrap

 ProductMode: SpecifyPrecision

 ProductWordLength: 16

 ProductFractionLength: 15

 SumMode: SpecifyPrecision

 SumWordLength: 16

 SumFractionLength: 15

 CastBeforeSum: true

C =

 1 0

 DataTypeMode: Fixed-point: binary point scaling

 Signedness: Signed

 WordLength: 16

 FractionLength: 14

 RoundingMethod: Nearest

 OverflowAction: Wrap

 ProductMode: SpecifyPrecision

 ProductWordLength: 16

 ProductFractionLength: 15

 Detect Limit Cycles in Fixed-Point State-Space Systems

3-181

 SumMode: SpecifyPrecision

 SumWordLength: 16

 SumFractionLength: 15

 CastBeforeSum: true

D =

 0

 DataTypeMode: Fixed-point: binary point scaling

 Signedness: Signed

 WordLength: 16

 FractionLength: 15

 RoundingMethod: Nearest

 OverflowAction: Wrap

 ProductMode: SpecifyPrecision

 ProductWordLength: 16

 ProductFractionLength: 15

 SumMode: SpecifyPrecision

 SumWordLength: 16

 SumFractionLength: 15

 CastBeforeSum: true

Plot the Projection of the Square in Fixed-Point

Again, we choose random states within the unit square and observe where they are
projected after one step of being multiplied by the state-transition matrix A. The
difference is that this time matrix A is fixed-point.

Note that the triangles that projected out of the square before in floating-point, are now
wrapped back into the interior of the square.

clf

r = 2*rand(2,1000)-1;

pr = A*r;

plot([-1 1 1 -1 -1],[-1 -1 1 1 -1],'c')

axis([-1.5 1.5 -1.5 1.5]); axis square; grid;

hold on

plot(pr(1,:),pr(2,:),'.')

3 Fixed-Point Topics

3-182

Execute the Fixed-Point Filter.

The only difference between this and the previous code is that we are driving it with
fixed-point data types.

x = fi(zeros(10,1),1,16,15,'fimath',F);

zi = fi([0;0],1,16,15,'fimath',F);

q = assignmentquantizer(zi);

e = double(eps(zi));

rng('default');

for k=1:20

 y = x;

 zi(:) = randquant(q,size(A,1),1);

 [y,zf] = fidemo.fisisostatespacefilter(A,B,C,D,x,zi);

 Detect Limit Cycles in Fixed-Point State-Space Systems

3-183

 if abs(double(zf(end)))>0.5, c='ro-'; else, c='go-'; end

 plot(zf(1,:), zf(2,:),c,'markersize',8);

end

title('Fixed-Point State Sequence Plot');

xlabel('z1'); ylabel('z2')

Trying this for other randomly chosen initial states illustrates that once a state enters
one of the triangular regions, then it is projected into the other triangular region, and
back and forth, and never escapes.

Sufficient Conditions for Preventing Overflow Limit Cycles

There are two sufficient conditions to prevent overflow limit cycles in a system:

3 Fixed-Point Topics

3-184

• the system is stable i.e., abs(eig(A))<1,
• the matrix A is normal i.e., A'*A = A*A'.

Note that for the current representation, the second condition does not hold.

Apply Similarity Transform to Create a Normal A

We now apply a similarity transformation to the original system that will create a
normal state-transition matrix A2.

T = [-2 0;-1 1];

Tinv = [-.5 0;-.5 1];

A2 = Tinv*A*T; B2 = Tinv*B; C2 = C*T; D2 = D;

Similarity transformations preserve eigenvalues, as a result of which the system transfer
function of the transformed system remains same as before. However, the transformed
state transformation matrix A2 is normal.

Check for Limit Cycles on the Transformed System.

Plot the Projection of the Square of the Normal-Form System

Now the projection of random initial states inside the unit square all contract uniformly.
This is the result of the state transition matrix A2 being normal. The states are also
rotated by 90 degrees counterclockwise.

clf

r = 2*rand(2,1000)-1;

pr = A2*r;

plot([-1 1 1 -1 -1],[-1 -1 1 1 -1],'c')

axis([-1.5 1.5 -1.5 1.5]); axis square; grid;

hold on

plot(pr(1,:),pr(2,:),'.')

 Detect Limit Cycles in Fixed-Point State-Space Systems

3-185

Plot the State Sequence

Plotting the state sequences again for the same initial states as before we see that the
outputs now spiral towards the origin.

x = fi(zeros(10,1),1,16,15,'fimath',F);

zi = fi([0;0],1,16,15,'fimath',F);

q = assignmentquantizer(zi);

e = double(eps(zi));

rng('default');

for k=1:20

 y = x;

 zi(:) = randquant(q,size(A,1),1);

 [y,zf] = fidemo.fisisostatespacefilter(A2,B2,C2,D2,x,zi);

3 Fixed-Point Topics

3-186

 if abs(double(zf(end)))>0.5, c='ro-'; else, c='go-'; end

 plot(zf(1,:), zf(2,:),c,'markersize',8);

end

title('Normal-Form Fixed-Point State Sequence Plot');

xlabel('z1'); ylabel('z2')

Trying this for other randomly chosen initial states illustrates that there is no region
from which the filter is unable to recover.

set(0, 'format', originalFormat);

 Compute Quantization Error

3-187

Compute Quantization Error

This example shows how to compute and compare the statistics of the signal quantization
error when using various rounding methods.

First, a random signal is created that spans the range of the quantizer.

Next, the signal is quantized, respectively, with rounding methods 'fix', 'floor', 'ceil',
'nearest', and 'convergent', and the statistics of the signal are estimated.

The theoretical probability density function of the quantization error will be computed
with ERRPDF, the theoretical mean of the quantization error will be computed with
ERRMEAN, and the theoretical variance of the quantization error will be computed with
ERRVAR.

Uniformly Distributed Random Signal

First we create a uniformly distributed random signal that spans the domain -1 to 1 of
the fixed-point quantizers that we will look at.

q = quantizer([8 7]);

r = realmax(q);

u = r*(2*rand(50000,1) - 1); % Uniformly distributed (-1,1)

xi=linspace(-2*eps(q),2*eps(q),256);

Fix: Round Towards Zero.

Notice that with 'fix' rounding, the probability density function is twice as wide as the
others. For this reason, the variance is four times that of the others.

q = quantizer('fix',[8 7]);

err = quantize(q,u) - u;

f_t = errpdf(q,xi);

mu_t = errmean(q);

v_t = errvar(q);

% Theoretical variance = eps(q)^2 / 3

% Theoretical mean = 0

fidemo.qerrordemoplot(q,f_t,xi,mu_t,v_t,err)

Estimated error variance (dB) = -46.8586

Theoretical error variance (dB) = -46.9154

Estimated mean = 7.788e-06

Theoretical mean = 0

3 Fixed-Point Topics

3-188

Floor: Round Towards Minus Infinity.

Floor rounding is often called truncation when used with integers and fixed-point
numbers that are represented in two's complement. It is the most common rounding
mode of DSP processors because it requires no hardware to implement. Floor does not
produce quantized values that are as close to the true values as ROUND will, but it
has the same variance, and small signals that vary in sign will be detected, whereas in
ROUND they will be lost.

q = quantizer('floor',[8 7]);

err = quantize(q,u) - u;

f_t = errpdf(q,xi);

mu_t = errmean(q);

v_t = errvar(q);

 Compute Quantization Error

3-189

% Theoretical variance = eps(q)^2 / 12

% Theoretical mean = -eps(q)/2

fidemo.qerrordemoplot(q,f_t,xi,mu_t,v_t,err)

Estimated error variance (dB) = -52.9148

Theoretical error variance (dB) = -52.936

Estimated mean = -0.0038956

Theoretical mean = -0.0039063

Ceil: Round Towards Plus Infinity.

q = quantizer('ceil',[8 7]);

err = quantize(q,u) - u;

f_t = errpdf(q,xi);

mu_t = errmean(q);

3 Fixed-Point Topics

3-190

v_t = errvar(q);

% Theoretical variance = eps(q)^2 / 12

% Theoretical mean = eps(q)/2

fidemo.qerrordemoplot(q,f_t,xi,mu_t,v_t,err)

Estimated error variance (dB) = -52.9148

Theoretical error variance (dB) = -52.936

Estimated mean = 0.0039169

Theoretical mean = 0.0039063

Round: Round to Nearest. In a Tie, Round to Largest Magnitude.

Round is more accurate than floor, but all values smaller than eps(q) get rounded to zero
and so are lost.

 Compute Quantization Error

3-191

q = quantizer('nearest',[8 7]);

err = quantize(q,u) - u;

f_t = errpdf(q,xi);

mu_t = errmean(q);

v_t = errvar(q);

% Theoretical variance = eps(q)^2 / 12

% Theoretical mean = 0

fidemo.qerrordemoplot(q,f_t,xi,mu_t,v_t,err)

Estimated error variance (dB) = -52.9579

Theoretical error variance (dB) = -52.936

Estimated mean = -2.212e-06

Theoretical mean = 0

3 Fixed-Point Topics

3-192

Convergent: Round to Nearest. In a Tie, Round to Even.

Convergent rounding eliminates the bias introduced by ordinary "round" caused by
always rounding the tie in the same direction.

q = quantizer('convergent',[8 7]);

err = quantize(q,u) - u;

f_t = errpdf(q,xi);

mu_t = errmean(q);

v_t = errvar(q);

% Theoretical variance = eps(q)^2 / 12

% Theoretical mean = 0

fidemo.qerrordemoplot(q,f_t,xi,mu_t,v_t,err)

Estimated error variance (dB) = -52.9579

Theoretical error variance (dB) = -52.936

Estimated mean = -2.212e-06

Theoretical mean = 0

 Compute Quantization Error

3-193

Comparison of Nearest vs. Convergent

The error probability density function for convergent rounding is difficult to distinguish
from that of round-to-nearest by looking at the plot.

The error p.d.f. of convergent is

f(err) = 1/eps(q), for -eps(q)/2 <= err <= eps(q)/2, and 0 otherwise

while the error p.d.f. of round is

f(err) = 1/eps(q), for -eps(q)/2 < err <= eps(q)/2, and 0 otherwise

Note that the error p.d.f. of convergent is symmetric, while round is slightly biased
towards the positive.

3 Fixed-Point Topics

3-194

The only difference is the direction of rounding in a tie.

x=[-3.5:3.5]';

[x convergent(x) nearest(x)]

ans =

 -3.5000 -4.0000 -3.0000

 -2.5000 -2.0000 -2.0000

 -1.5000 -2.0000 -1.0000

 -0.5000 0 0

 0.5000 0 1.0000

 1.5000 2.0000 2.0000

 2.5000 2.0000 3.0000

 3.5000 4.0000 4.0000

Plot Helper Function

The helper function that was used to generate the plots in this example is listed below.

type(fullfile(matlabroot,'toolbox','fixedpoint','fidemos','+fidemo','qerrordemoplot.m'))

function qerrordemoplot(q,f_t,xi,mu_t,v_t,err)

%QERRORDEMOPLOT Plot function for QERRORDEMO.

% QERRORDEMOPLOT(Q,F_T,XI,MU_T,V_T,ERR) produces the plot and display

% used by the example function QERRORDEMO, where Q is the quantizer

% whose attributes are being analyzed; F_T is the theoretical

% quantization error probability density function for quantizer Q

% computed by ERRPDF; XI is the domain of values being evaluated by

% ERRPDF; MU_T is the theoretical quantization error mean of quantizer Q

% computed by ERRMEAN; V_T is the theoretical quantization error

% variance of quantizer Q computed by ERRVAR; and ERR is the error

% generated by quantizing a random signal by quantizer Q.

%

% See QERRORDEMO for examples of use.

% Copyright 1999-2014 The MathWorks, Inc.

v=10*log10(var(err));

disp(['Estimated error variance (dB) = ',num2str(v)]);

disp(['Theoretical error variance (dB) = ',num2str(10*log10(v_t))]);

disp(['Estimated mean = ',num2str(mean(err))]);

 Compute Quantization Error

3-195

disp(['Theoretical mean = ',num2str(mu_t)]);

[n,c]=hist(err);

figure(gcf)

bar(c,n/(length(err)*(c(2)-c(1))),'hist');

line(xi,f_t,'linewidth',2,'color','r');

% Set the ylim uniformly on all plots

set(gca,'ylim',[0 max(errpdf(quantizer(q.format,'nearest'),xi)*1.1)])

legend('Estimated','Theoretical')

xlabel('err'); ylabel('errpdf')

3 Fixed-Point Topics

3-196

Normalize Data for Lookup Tables
This example shows how to normalize data for use in lookup tables.

Lookup tables are a very efficient way to write computationally-intense functions for
fixed-point embedded devices. For example, you can efficiently implement logarithm,
sine, cosine, tangent, and square-root using lookup tables. You normalize the inputs to
these functions to produce a smaller lookup table, and then you scale the outputs by the
normalization factor. This example shows how to implement the normalization function
that is used in examples Implement Fixed-Point Square Root Using Lookup Table and
Implement Fixed-Point Log2 Using Lookup Table.

Setup

To assure that this example does not change your preferences or settings, this code stores
the original state, and you will restore it at the end.

originalFormat = get(0, 'format'); format long g

originalWarningState = warning('off','fixed:fi:underflow');

originalFiprefState = get(fipref); reset(fipref)

Function to Normalize Unsigned Data

This algorithm normalizes unsigned data with 8-bit bytes. Given input u > 0, the output
x is normalized such that

u = x * 2^n

where 1 <= x < 2 and n is an integer. Note that n may be positive, negative, or zero.

Function fi_normalize_unsigned_8_bit_byte looks at the 8 most-significant-bits
of the input at a time, and left shifts the bits until the most-significant bit is a 1. The
number of bits to shift for each 8-bit byte is read from the number-of-leading-zeros lookup
table, NLZLUT.

function [x,n] = fi_normalize_unsigned_8_bit_byte(u) %#codegen

 assert(isscalar(u),'Input must be scalar');

 assert(all(u>0),'Input must be positive.');

 assert(isfi(u) && isfixed(u),'Input must be a fi object with fixed-point data type.');

 u = removefimath(u);

 NLZLUT = number_of_leading_zeros_look_up_table();

 word_length = u.WordLength;

 u_fraction_length = u.FractionLength;

 B = 8;

 Normalize Data for Lookup Tables

3-197

 leftshifts=int8(0);

 % Reinterpret the input as an unsigned integer.

 T_unsigned_integer = numerictype(0, word_length, 0);

 v = reinterpretcast(u,T_unsigned_integer);

 F = fimath('OverflowAction','Wrap',...

 'RoundingMethod','Floor',...

 'SumMode','KeepLSB',...

 'SumWordLength',v.WordLength);

 v = setfimath(v,F);

 % Unroll the loop in generated code so there will be no branching.

 for k = coder.unroll(1:ceil(word_length/B))

 % For each iteration, see how many leading zeros are in the high

 % byte of V, and shift them out to the left. Continue with the

 % shifted V for as many bytes as it has.

 %

 % The index is the high byte of the input plus 1 to make it a

 % one-based index.

 index = int32(bitsra(v, word_length - B) + uint8(1));

 % Index into the number-of-leading-zeros lookup table. This lookup

 % table takes in a byte and returns the number of leading zeros in the

 % binary representation.

 shiftamount = NLZLUT(index);

 % Left-shift out all the leading zeros in the high byte.

 v = bitsll(v,shiftamount);

 % Update the total number of left-shifts

 leftshifts = leftshifts+shiftamount;

 end

 % The input has been left-shifted so the most-significant-bit is a 1.

 % Reinterpret the output as unsigned with one integer bit, so

 % that 1 <= x < 2.

 T_x = numerictype(0,word_length,word_length-1);

 x = reinterpretcast(v, T_x);

 x = removefimath(x);

 % Let Q = int(u). Then u = Q*2^(-u_fraction_length),

 % and x = Q*2^leftshifts * 2^(1-word_length). Therefore,

 % u = x*2^n, where n is defined as:

 n = word_length - u_fraction_length - leftshifts - 1;

end

Number-of-Leading-Zeros Lookup Table

Function number_of_leading_zeros_look_up_table is used by
fi_normalize_unsigned_8_bit_byte and returns a table of the number of leading
zero bits in an 8-bit word.

3 Fixed-Point Topics

3-198

The first element of NLZLUT is 8 and corresponds to u=0. In 8-bit value u =
00000000_2, where subscript 2 indicates base-2, there are 8 leading zero bits.

The second element of NLZLUT is 7 and corresponds to u=1. There are 7 leading zero
bits in 8-bit value u = 00000001_2.

And so forth, until the last element of NLZLUT is 0 and corresponds to u=255. There are
0 leading zero bits in the 8-bit value u=11111111_2.

The NLZLUT table was generated by:

>> B = 8; % Number of bits in a byte

>> NLZLUT = int8(B-ceil(log2((1:2^B))))

function NLZLUT = number_of_leading_zeros_look_up_table()

% B = 8; % Number of bits in a byte

% NLZLUT = int8(B-ceil(log2((1:2^B))))

 NLZLUT = int8([8 7 6 6 5 5 5 5 ...

 4 4 4 4 4 4 4 4 ...

 3 3 3 3 3 3 3 3 ...

 3 3 3 3 3 3 3 3 ...

 2 2 2 2 2 2 2 2 ...

 2 2 2 2 2 2 2 2 ...

 2 2 2 2 2 2 2 2 ...

 2 2 2 2 2 2 2 2 ...

 1 1 1 1 1 1 1 1 ...

 1 1 1 1 1 1 1 1 ...

 1 1 1 1 1 1 1 1 ...

 1 1 1 1 1 1 1 1 ...

 1 1 1 1 1 1 1 1 ...

 1 1 1 1 1 1 1 1 ...

 1 1 1 1 1 1 1 1 ...

 1 1 1 1 1 1 1 1 ...

 0 0 0 0 0 0 0 0 ...

 0 0 0 0 0 0 0 0 ...

 0 0 0 0 0 0 0 0 ...

 0 0 0 0 0 0 0 0 ...

 0 0 0 0 0 0 0 0 ...

 0 0 0 0 0 0 0 0 ...

 0 0 0 0 0 0 0 0 ...

 0 0 0 0 0 0 0 0 ...

 0 0 0 0 0 0 0 0 ...

 0 0 0 0 0 0 0 0 ...

 0 0 0 0 0 0 0 0 ...

 Normalize Data for Lookup Tables

3-199

 0 0 0 0 0 0 0 0 ...

 0 0 0 0 0 0 0 0 ...

 0 0 0 0 0 0 0 0 ...

 0 0 0 0 0 0 0 0 ...

 0 0 0 0 0 0 0 0]);

end

Example

For example, let

u = fi(0.3, 1, 16, 8);

In binary, u = 00000000.01001101_2 = 0.30078125 (the fixed-point value is not
exactly 0.3 because of roundoff to 8 bits). The goal is to normalize such that

u = 1.001101000000000_2 * 2^(-2) = x * 2^n.

Start with u represented as an unsigned integer.

 High byte Low byte

 00000000 01001101 Start: u as unsigned integer.

The high byte is 0 = 00000000_2. Add 1 to make an index out of it: index = 0 + 1 =
1. The number-of-leading-zeros lookup table at index 1 indicates that there are 8 leading
zeros: NLZLUT(1) = 8. Left shift by this many bits.

 High byte Low byte

 01001101 00000000 Left-shifted by 8 bits.

Iterate once more to remove the leading zeros from the next byte.

The high byte is 77 = 01001101_2. Add 1 to make an index out of it: index = 77 +
1 = 78. The number-of-leading-zeros lookup table at index 78 indicates that there is 1
leading zero: NLZLUT(78) = 1. Left shift by this many bits.

 High byte Low byte

 100110100 0000000 Left-shifted by 1 additional bit, for a total of 9.

Reinterpret these bits as unsigned fixed-point with 15 fractional bits.

x = 1.001101000000000_2 = 1.203125

The value for n is the word-length of u, minus the fraction length of u, minus the number
of left shifts, minus 1.

3 Fixed-Point Topics

3-200

n = 16 - 8 - 9 - 1 = -2.

And so your result is:

[x,n] = fi_normalize_unsigned_8_bit_byte(u)

x =

 1.203125

 DataTypeMode: Fixed-point: binary point scaling

 Signedness: Unsigned

 WordLength: 16

 FractionLength: 15

n =

 -2

Comparing binary values, you can see that x has the same bits as u, left-shifted by 9 bits.

binary_representation_of_u = bin(u)

binary_representation_of_x = bin(x)

binary_representation_of_u =

0000000001001101

binary_representation_of_x =

1001101000000000

Cleanup

Restore original state.

set(0, 'format', originalFormat);

warning(originalWarningState);

fipref(originalFiprefState);

 Implement Fixed-Point Log2 Using Lookup Table

3-201

Implement Fixed-Point Log2 Using Lookup Table
This example shows how to implement fixed-point log2 using a lookup table. Lookup
tables generate efficient code for embedded devices.

Setup

To assure that this example does not change your preferences or settings, this code stores
the original state, and you will restore it at the end.

originalFormat = get(0, 'format'); format long g

originalWarningState = warning('off','fixed:fi:underflow');

originalFiprefState = get(fipref); reset(fipref)

Log2 Implementation

The log2 algorithm is summarized here.

1 Declare the number of bits in a byte, B, as a constant. In this example, B=8.
2 Use function fi_normalize_unsigned_8_bit_byte() described in example

Normalize Data for Lookup Tables to normalize the input u>0 such that u = x *
2^n and 1 <= x < 2.

3 Extract the upper B-bits of x. Let x_B denote the upper B-bits of x.
4 Generate lookup table, LOG2LUT, such that the integer i = x_B - 2^(B-1) + 1

is used as an index to LOG2LUT so that log2(x_B) can be evaluated by looking up
the index log2(x_B) = LOG2LUT(i).

5 Use the remainder, r = x - x_B, interpreted as a fraction, to linearly interpolate
between LOG2LUT(i) and the next value in the table LOG2LUT(i+1). The
remainder, r, is created by extracting the lower w - B bits of x, where w
denotes the word length of x. It is interpreted as a fraction by using function
reinterpretcast().

6 Finally, compute the output using the lookup table and linear interpolation:

log2(u) = log2(x * 2^n)

 = n + log2(x)

 = n + LOG2LUT(i) + r * (LOG2LUT(i+1) - LOG2LUT(i))

function y = fi_log2lookup_8_bit_byte(u) %#codegen

 % Load the lookup table

 LOG2LUT = log2_lookup_table();

 % Remove fimath from the input to insulate this function from math

 % settings declared outside this function.

3 Fixed-Point Topics

3-202

 u = removefimath(u);

 % Declare the output

 y = coder.nullcopy(fi(zeros(size(u)), numerictype(LOG2LUT), fimath(LOG2LUT)));

 B = 8; % Number of bits in a byte

 w = u.WordLength;

 for k = 1:numel(u)

 assert(u(k)>0,'Input must be positive.');

 % Normalize the input such that u = x * 2^n and 1 <= x < 2

 [x,n] = fi_normalize_unsigned_8_bit_byte(u(k));

 % Extract the high byte of x

 high_byte = storedInteger(bitsliceget(x, w, w - B + 1));

 % Convert the high byte into an index for LOG2LUT

 i = high_byte - 2^(B-1) + 1;

 % Interpolate between points.

 % The upper byte was used for the index into LOG2LUT

 % The remaining bits make up the fraction between points.

 T_unsigned_fraction = numerictype(0, w-B, w-B);

 r = reinterpretcast(bitsliceget(x,w-B,1), T_unsigned_fraction);

 y(k) = n + LOG2LUT(i) + ...

 r*(LOG2LUT(i+1) - LOG2LUT(i)) ;

 end

 % Remove fimath from the output to insulate the caller from math settings

 % declared inside this function.

 y = removefimath(y);

end

Log2 Lookup Table

Function log2_lookup_table loads the lookup table of log2 values. You can create the
table by running:

B = 8;

log2_table = log2((2^(B-1) : 2^(B)) / 2^(B - 1))

function LOG2LUT = log2_lookup_table()

 B = 8; % Number of bits in a byte

 % log2_table = log2((2^(B-1) : 2^(B)) / 2^(B - 1))

 log2_table = [0.000000000000000 0.011227255423254 0.022367813028454 0.033423001537450 ...

 0.044394119358453 0.055282435501190 0.066089190457773 0.076815597050831 ...

 0.087462841250339 0.098032082960527 0.108524456778169 0.118941072723507 ...

 0.129283016944966 0.139551352398794 0.149747119504682 0.159871336778389 ...

 0.169925001442312 0.179909090014934 0.189824558880017 0.199672344836364 ...

 0.209453365628950 0.219168520462162 0.228818690495881 0.238404739325079 ...

 0.247927513443586 0.257387842692652 0.266786540694901 0.276124405274238 ...

 0.285402218862248 0.294620748891627 0.303780748177103 0.312882955284355 ...

 Implement Fixed-Point Log2 Using Lookup Table

3-203

 0.321928094887362 0.330916878114617 0.339850002884625 0.348728154231078 ...

 0.357552004618084 0.366322214245816 0.375039431346925 0.383704292474052 ...

 0.392317422778760 0.400879436282184 0.409390936137702 0.417852514885898 ...

 0.426264754702098 0.434628227636725 0.442943495848728 0.451211111832329 ...

 0.459431618637297 0.467605550082997 0.475733430966398 0.483815777264256 ...

 0.491853096329675 0.499845887083205 0.507794640198696 0.515699838284042 ...

 0.523561956057013 0.531381460516312 0.539158811108031 0.546894459887637 ...

 0.554588851677637 0.562242424221073 0.569855608330948 0.577428828035749 ...

 0.584962500721156 0.592457037268080 0.599912842187128 0.607330313749611 ...

 0.614709844115208 0.622051819456376 0.629356620079610 0.636624620543649 ...

 0.643856189774725 0.651051691178929 0.658211482751795 0.665335917185176 ...

 0.672425341971496 0.679480099505446 0.686500527183218 0.693486957499325 ...

 0.700439718141092 0.707359132080883 0.714245517666123 0.721099188707185 ...

 0.727920454563199 0.734709620225838 0.741466986401147 0.748192849589460 ...

 0.754887502163469 0.761551232444479 0.768184324776926 0.774787059601173 ...

 0.781359713524660 0.787902559391432 0.794415866350106 0.800899899920305 ...

 0.807354922057604 0.813781191217037 0.820178962415188 0.826548487290915 ...

 0.832890014164742 0.839203788096944 0.845490050944375 0.851749041416058 ...

 0.857980995127572 0.864186144654280 0.870364719583405 0.876516946565000 ...

 0.882643049361841 0.888743248898259 0.894817763307943 0.900866807980749 ...

 0.906890595608518 0.912889336229962 0.918863237274595 0.924812503605781 ...

 0.930737337562886 0.936637939002571 0.942514505339240 0.948367231584678 ...

 0.954196310386875 0.960001932068081 0.965784284662087 0.971543553950772 ...

 0.977279923499916 0.982993574694310 0.988684686772166 0.994353436858858 ...

 1.000000000000000];

 % Cast to fixed point with the most accurate rounding method

 WL = 4*B; % Word length

 FL = 2*B; % Fraction length

 LOG2LUT = fi(log2_table,1,WL,FL,'RoundingMethod','Nearest');

 % Set fimath for the most efficient math operations

 F = fimath('OverflowAction','Wrap',...

 'RoundingMethod','Floor',...

 'SumMode','SpecifyPrecision',...

 'SumWordLength',WL,...

 'SumFractionLength',FL,...

 'ProductMode','SpecifyPrecision',...

 'ProductWordLength',WL,...

 'ProductFractionLength',2*FL);

 LOG2LUT = setfimath(LOG2LUT,F);

 end

Example

u = fi(linspace(0.001,20,100));

3 Fixed-Point Topics

3-204

y = fi_log2lookup_8_bit_byte(u);

y_expected = log2(double(u));

%%3

clf

subplot(211)

plot(u,y,u,y_expected)

legend('Output','Expected output','Location','Best')

subplot(212)

plot(u,double(y)-y_expected,'r')

legend('Error')

figure(gcf)

 Implement Fixed-Point Log2 Using Lookup Table

3-205

Cleanup

Restore original state.

set(0, 'format', originalFormat);

warning(originalWarningState);

fipref(originalFiprefState);

3 Fixed-Point Topics

3-206

Implement Fixed-Point Square Root Using Lookup Table
This example shows how to implement fixed-point square root using a lookup table.
Lookup tables generate efficient code for embedded devices.

Setup

To assure that this example does not change your preferences or settings, this code stores
the original state, and you will restore it at the end.

originalFormat = get(0, 'format'); format long g

originalWarningState = warning('off','fixed:fi:underflow');

originalFiprefState = get(fipref); reset(fipref)

Square Root Implementation

The square root algorithm is summarized here.

1 Declare the number of bits in a byte, B, as a constant. In this example, B=8.
2 Use function fi_normalize_unsigned_8_bit_byte() described in example

Normalize Data for Lookup Tables to normalize the input u>0 such that u = x *
2^n, 0.5 <= x < 2, and n is even.

3 Extract the upper B-bits of x. Let x_B denote the upper B-bits of x.
4 Generate lookup table, SQRTLUT, such that the integer i = x_B- 2^(B-2) + 1

is used as an index to SQRTLUT so that sqrt(x_B) can be evaluated by looking up
the index sqrt(x_B) = SQRTLUT(i).

5 Use the remainder, r = x - x_B, interpreted as a fraction, to linearly interpolate
between SQRTLUT(i) and the next value in the table SQRTLUT(i+1). The
remainder, r, is created by extracting the lower w - B bits of x, where w
denotes the word-length of x. It is interpreted as a fraction by using function
reinterpretcast().

6 Finally, compute the output using the lookup table and linear interpolation:

sqrt(u) = sqrt(x * 2^n)

 = sqrt(x) * 2^(n/2)

 = (SQRTLUT(i) + r * (SQRTLUT(i+1) - SQRTLUT(i))) * 2^(n/2)

function y = fi_sqrtlookup_8_bit_byte(u) %#codegen

 % Load the lookup table

 SQRTLUT = sqrt_lookup_table();

 % Remove fimath from the input to insulate this function from math

 % settings declared outside this function.

 Implement Fixed-Point Square Root Using Lookup Table

3-207

 u = removefimath(u);

 % Declare the output

 y = coder.nullcopy(fi(zeros(size(u)), numerictype(SQRTLUT), fimath(SQRTLUT)));

 B = 8; % Number of bits in a byte

 w = u.WordLength;

 for k = 1:numel(u)

 assert(u(k)>=0,'Input must be non-negative.');

 if u(k)==0

 y(k)=0;

 else

 % Normalize the input such that u = x * 2^n and 0.5 <= x < 2

 [x,n] = fi_normalize_unsigned_8_bit_byte(u(k));

 isodd = storedInteger(bitand(fi(1,1,8,0),fi(n)));

 x = bitsra(x,isodd);

 n = n + isodd;

 % Extract the high byte of x

 high_byte = storedInteger(bitsliceget(x, w, w - B + 1));

 % Convert the high byte into an index for SQRTLUT

 i = high_byte - 2^(B-2) + 1;

 % The upper byte was used for the index into SQRTLUT.

 % The remainder, r, interpreted as a fraction, is used to

 % linearly interpolate between points.

 T_unsigned_fraction = numerictype(0, w-B, w-B);

 r = reinterpretcast(bitsliceget(x,w-B,1), T_unsigned_fraction);

 y(k) = bitshift((SQRTLUT(i) + r*(SQRTLUT(i+1) - SQRTLUT(i))),...

 bitsra(n,1));

 end

 end

 % Remove fimath from the output to insulate the caller from math settings

 % declared inside this function.

 y = removefimath(y);

end

Square Root Lookup Table

Function sqrt_lookup_table loads the lookup table of square-root values. You can
create the table by running:

sqrt_table = sqrt((2^(B-2):2^(B))/2^(B-1));

function SQRTLUT = sqrt_lookup_table()

 B = 8; % Number of bits in a byte

 % sqrt_table = sqrt((2^(B-2):2^(B))/2^(B-1))

 sqrt_table = [0.707106781186548 0.712609640686961 0.718070330817254 0.723489806424389 ...

 0.728868986855663 0.734208757779421 0.739509972887452 0.744773455488312 ...

3 Fixed-Point Topics

3-208

 0.750000000000000 0.755190373349661 0.760345316287277 0.765465544619743 ...

 0.770551750371122 0.775604602874429 0.780624749799800 0.785612818123533 ...

 0.790569415042095 0.795495128834866 0.800390529679106 0.805256170420320 ...

 0.810092587300983 0.814900300650331 0.819679815537750 0.824431622392057 ...

 0.829156197588850 0.833854004007896 0.838525491562421 0.843171097702003 ...

 0.847791247890659 0.852386356061616 0.856956825050130 0.861503047005639 ...

 0.866025403784439 0.870524267324007 0.875000000000000 0.879452954966893 ...

 0.883883476483184 0.888291900221993 0.892678553567856 0.897043755900458 ...

 0.901387818865997 0.905711046636840 0.910013736160065 0.914296177395487 ...

 0.918558653543692 0.922801441264588 0.927024810886958 0.931229026609459 ...

 0.935414346693485 0.939581023648307 0.943729304408844 0.947859430506444 ...

 0.951971638232989 0.956066158798647 0.960143218483576 0.964203038783845 ...

 0.968245836551854 0.972271824131503 0.976281209488332 0.980274196334883 ...

 0.984250984251476 0.988211768802619 0.992156741649222 0.996086090656827 ...

 1.000000000000000 1.003898650263063 1.007782218537319 1.011650878514915 ...

 1.015504800579495 1.019344151893756 1.023169096484056 1.026979795322186 ...

 1.030776406404415 1.034559084827928 1.038327982864759 1.042083250033317 ...

 1.045825033167594 1.049553476484167 1.053268721647045 1.056970907830485 ...

 1.060660171779821 1.064336647870400 1.068000468164691 1.071651762467640 ...

 1.075290658380328 1.078917281352004 1.082531754730548 1.086134199811423 ...

 1.089724735885168 1.093303480283494 1.096870548424015 1.100426053853688 ...

 1.103970108290981 1.107502821666834 1.111024302164449 1.114534656257938 ...

 1.118033988749895 1.121522402807898 1.125000000000000 1.128466880329237 ...

 1.131923142267177 1.135368882786559 1.138804197393037 1.142229180156067 ...

 1.145643923738960 1.149048519428140 1.152443057161611 1.155827625556683 ...

 1.159202311936963 1.162567202358642 1.165922381636102 1.169267933366857 ...

 1.172603939955857 1.175930482639174 1.179247641507075 1.182555495526531 ...

 1.185854122563142 1.189143599402528 1.192424001771182 1.195695404356812 ...

 1.198957880828180 1.202211503854459 1.205456345124119 1.208692475363357 ...

 1.211919964354082 1.215138880951474 1.218349293101120 1.221551267855754 ...

 1.224744871391589 1.227930169024281 1.231107225224513 1.234276103633219 ...

 1.237436867076458 1.240589577579950 1.243734296383275 1.246871083953750 ...

 1.250000000000000 1.253121103485214 1.256234452640111 1.259340104975618 ...

 1.262438117295260 1.265528545707287 1.268611445636527 1.271686871835988 ...

 1.274754878398196 1.277815518766305 1.280868845744950 1.283914911510884 ...

 1.286953767623375 1.289985465034393 1.293010054098575 1.296027584582983 ...

 1.299038105676658 1.302041665999979 1.305038313613819 1.308028096028522 ...

 1.311011060212689 1.313987252601790 1.316956719106592 1.319919505121430 ...

 1.322875655532295 1.325825214724777 1.328768226591831 1.331704734541407 ...

 1.334634781503914 1.337558409939543 1.340475661845451 1.343386578762792 ...

 1.346291201783626 1.349189571557681 1.352081728298996 1.354967711792425 ...

 1.357847561400027 1.360721316067327 1.363589014329464 1.366450694317215 ...

 1.369306393762915 1.372156150006259 1.375000000000000 1.377837980315538 ...

 1.380670127148408 1.383496476323666 1.386317063301177 1.389131923180804 ...

 Implement Fixed-Point Square Root Using Lookup Table

3-209

 1.391941090707505 1.394744600276337 1.397542485937369 1.400334781400505 ...

 1.403121520040228 1.405902734900249 1.408678458698081 1.411448723829527 ...

 1.414213562373095];

 % Cast to fixed point with the most accurate rounding method

 WL = 4*B; % Word length

 FL = 2*B; % Fraction length

 SQRTLUT = fi(sqrt_table, 1, WL, FL, 'RoundingMethod','Nearest');

 % Set fimath for the most efficient math operations

 F = fimath('OverflowAction','Wrap',...

 'RoundingMethod','Floor',...

 'SumMode','KeepLSB',...

 'SumWordLength',WL,...

 'ProductMode','KeepLSB',...

 'ProductWordLength',WL);

 SQRTLUT = setfimath(SQRTLUT, F);

end

Example

u = fi(linspace(0,128,1000),0,16,12);

y = fi_sqrtlookup_8_bit_byte(u);

y_expected = sqrt(double(u));

clf

subplot(211)

plot(u,y,u,y_expected)

legend('Output','Expected output','Location','Best')

subplot(212)

plot(u,double(y)-y_expected,'r')

legend('Error')

figure(gcf)

3 Fixed-Point Topics

3-210

Cleanup

Restore original state.

set(0, 'format', originalFormat);

warning(originalWarningState);

fipref(originalFiprefState);

 Set Fixed-Point Math Attributes

3-211

Set Fixed-Point Math Attributes

This example shows how to set fixed point math attributes in MATLAB® code.

You can control fixed-point math attributes for assignment, addition, subtraction, and
multiplication using the fimath object. You can attach a fimath object to a fi object using
setfimath. You can remove a fimath object from a fi object using removefimath.

You can generate C code from the examples if you have MATLAB Coder™ software.

Set and Remove Fixed Point Math Attributes

You can insulate your fixed-point operations from global and local fimath settings by
using the setfimath and removefimath functions. You can also return from functions
with no fimath attached to output variables. This gives you local control over fixed-point
math settings without interfering with the settings in other functions.

MATLAB Code

function y = user_written_sum(u)

 % Setup

 F = fimath('RoundingMethod','Floor',...

 'OverflowAction','Wrap',...

 'SumMode','KeepLSB',...

 'SumWordLength',32);

 u = setfimath(u,F);

 y = fi(0,true,32,get(u,'FractionLength'),F);

 % Algorithm

 for i=1:length(u)

 y(:) = y + u(i);

 end

 % Cleanup

 y = removefimath(y);

end

Output has no Attached FIMATH

When you run the code, the fimath controls the arithmetic inside the function, but
the return value has no attached fimath. This is due to the use of setfimath and
removefimath inside the function user_written_sum.

>> u = fi(1:10,true,16,11);

>> y = user_written_sum(u)

3 Fixed-Point Topics

3-212

y =

 55

 DataTypeMode: Fixed-point: binary point scaling

 Signedness: Signed

 WordLength: 32

 FractionLength: 11

Generated C Code

If you have MATLAB Coder software, you can generate C code using the following
commands.

>> u = fi(1:10,true,16,11);

>> codegen user_written_sum -args {u} -config:lib -launchreport

Functions fimath, setfimath and removefimath control the fixed-point math, but the
underlying data contained in the variables does not change and so the generated C code
does not produce any data copies.

int32_T user_written_sum(const int16_T u[10])

{

 int32_T y;

 int32_T i;

 /* Setup */

 y = 0;

 /* Algorithm */

 for (i = 0; i < 10; i++) {

 y += u[i];

 }

 /* Cleanup */

 return y;

}

Mismatched FIMATH

When you operate on fi objects, their fimath properties must be equal, or you get an
error.

>> A = fi(pi,'ProductMode','KeepLSB');

>> B = fi(2,'ProductMode','SpecifyPrecision');

>> C = A * B

Error using embedded.fi/mtimes

The embedded.fimath of both operands must be equal.

 Set Fixed-Point Math Attributes

3-213

To avoid this error, you can remove fimath from one of the variables in the expression.
In this example, the fimath is removed from B in the context of the expression without
modifying B itself, and the product is computed using the fimath attached to A.

>> C = A * removefimath(B)

C =

 6.283203125

 DataTypeMode: Fixed-point: binary point scaling

 Signedness: Signed

 WordLength: 32

 FractionLength: 26

 RoundingMethod: Nearest

 OverflowAction: Saturate

 ProductMode: KeepLSB

 ProductWordLength: 32

 SumMode: FullPrecision

Changing FIMATH on Temporary Variables

If you have variables with no attached fimath, but you want to control a particular
operation, then you can attach a fimath in the context of the expression without
modifying the variables.

For example, the product is computed with the fimath defined by F.

>> F = fimath('ProductMode','KeepLSB','OverflowAction','Wrap','RoundingMethod','Floor');

>> A = fi(pi);

>> B = fi(2);

>> C = A * setfimath(B,F)

C =

 6.2832

 DataTypeMode: Fixed-point: binary point scaling

 Signedness: Signed

 WordLength: 32

 FractionLength: 26

 RoundingMethod: Floor

 OverflowAction: Wrap

3 Fixed-Point Topics

3-214

 ProductMode: KeepLSB

 ProductWordLength: 32

 SumMode: FullPrecision

 MaxSumWordLength: 128

Note that variable B is not changed.

>> B

B =

 2

 DataTypeMode: Fixed-point: binary point scaling

 Signedness: Signed

 WordLength: 16

 FractionLength: 13

Removing FIMATH Conflict in a Loop

You can compute products and sums to match the accumulator of a DSP with floor
rounding and wrap overflow, and use nearest rounding and saturate overflow on the
output. To avoid mismatched fimath errors, you can remove the fimath on the output
variable when it is used in a computation with the other variables.

MATLAB Code

In this example, the products are 32-bits, and the accumulator is 40-bits, keeping the
least-significant-bits with floor rounding and wrap overflow like C's native integer rules.
The output uses nearest rounding and saturate overflow.

function [y,z] = setfimath_removefimath_in_a_loop(b,a,x,z)

 % Setup

 F_floor = fimath('RoundingMethod','Floor',...

 'OverflowAction','Wrap',...

 'ProductMode','KeepLSB',...

 'ProductWordLength',32,...

 'SumMode','KeepLSB',...

 'SumWordLength',40);

 F_nearest = fimath('RoundingMethod','Nearest',...

 'OverflowAction','Wrap');

 % Set fimaths that are local to this function

 b = setfimath(b,F_floor);

 a = setfimath(a,F_floor);

 x = setfimath(x,F_floor);

 Set Fixed-Point Math Attributes

3-215

 z = setfimath(z,F_floor);

 % Create y with nearest rounding

 y = coder.nullcopy(fi(zeros(size(x)),true,16,14,F_nearest));

 % Algorithm

 for j=1:length(x)

 % Nearest assignment into y

 y(j) = b(1)*x(j) + z(1);

 % Remove y's fimath conflict with other fimaths

 z(1) = (b(2)*x(j) + z(2)) - a(2) * removefimath(y(j));

 z(2) = b(3)*x(j) - a(3) * removefimath(y(j));

 end

 % Cleanup: Remove fimath from outputs

 y = removefimath(y);

 z = removefimath(z);

end

Code Generation Instructions

If you have MATLAB Coder software, you can generate C code with the specificed
hardware characteristics using the following commands.

N = 256;

t = 1:N;

xstep = [ones(N/2,1);-ones(N/2,1)];

num = [0.0299545822080925 0.0599091644161849 0.0299545822080925];

den = [1 -1.4542435862515900 0.5740619150839550];

b = fi(num,true,16);

a = fi(den,true,16);

x = fi(xstep,true,16,15);

zi = fi(zeros(2,1),true,16,14);

B = coder.Constant(b);

A = coder.Constant(a);

config_obj = coder.config('lib');

config_obj.GenerateReport = true;

config_obj.LaunchReport = true;

config_obj.TargetLang = 'C';

config_obj.GenerateComments = true;

config_obj.GenCodeOnly = true;

config_obj.HardwareImplementation.ProdBitPerChar=8;

config_obj.HardwareImplementation.ProdBitPerShort=16;

config_obj.HardwareImplementation.ProdBitPerInt=32;

config_obj.HardwareImplementation.ProdBitPerLong=40;

3 Fixed-Point Topics

3-216

codegen -config config_obj setfimath_removefimath_in_a_loop -args {B,A,x,zi} -launchreport

Generated C Code

Functions fimath, setfimath and removefimath control the fixed-point math, but the
underlying data contained in the variables does not change and so the generated C code
does not produce any data copies.

void setfimath_removefimath_in_a_loop(const int16_T x[256], int16_T z[2],

 int16_T y[256])

{

 int32_T j;

 int40_T i0;

 int16_T b_y;

 /* Setup */

 /* Set fimaths that are local to this function */

 /* Create y with nearest rounding */

 /* Algorithm */

 for (j = 0; j < 256; j++) {

 /* Nearest assignment into y */

 i0 = 15705 * x[j] + ((int40_T)z[0] << 20);

 b_y = (int16_T)((int32_T)(i0 >> 20) + ((i0 & 524288L) != 0L));

 /* Remove y's fimath conflict with other fimaths */

 z[0] = (int16_T)(((31410 * x[j] + ((int40_T)z[1] << 20)) - ((int40_T)(-23826

 * b_y) << 6)) >> 20);

 z[1] = (int16_T)((15705 * x[j] - ((int40_T)(9405 * b_y) << 6)) >> 20);

 y[j] = b_y;

 }

 /* Cleanup: Remove fimath from outputs */

}

Polymorphic Code

You can write MATLAB code that can be used for both floating-point and fixed-point
types using setfimath and removefimath.

function y = user_written_function(u)

 % Setup

 F = fimath('RoundingMethod','Floor',...

 'OverflowAction','Wrap',...

 'SumMode','KeepLSB');

 u = setfimath(u,F);

 Set Fixed-Point Math Attributes

3-217

 % Algorithm

 y = u + u;

 % Cleanup

 y = removefimath(y);

end

Fixed Point Inputs

When the function is called with fixed-point inputs, then fimath F is used for the
arithmetic, and the output has no attached fimath.

>> u = fi(pi/8,true,16,15,'RoundingMethod','Convergent');

>> y = user_written_function(u)

y =

 0.785400390625

 DataTypeMode: Fixed-point: binary point scaling

 Signedness: Signed

 WordLength: 32

 FractionLength: 15

Generated C Code for Fixed Point

If you have MATLAB Coder software, you can generate C code using the following
commands.

>> u = fi(pi/8,true,16,15,'RoundingMethod','Convergent');

>> codegen user_written_function -args {u} -config:lib -launchreport

Functions fimath, setfimath and removefimath control the fixed-point math, but the
underlying data contained in the variables does not change and so the generated C code
does not produce any data copies.

int32_T user_written_function(int16_T u)

{

 /* Setup */

 /* Algorithm */

 /* Cleanup */

 return u + u;

}

Double Inputs

3 Fixed-Point Topics

3-218

Since setfimath and removefimath are pass-through for floating-point types, the
user_written_function example works with floating-point types, too.

function y = user_written_function(u)

 % Setup

 F = fimath('RoundingMethod','Floor',...

 'OverflowAction','Wrap',...

 'SumMode','KeepLSB');

 u = setfimath(u,F);

 % Algorithm

 y = u + u;

 % Cleanup

 y = removefimath(y);

end

Generated C Code for Double

When compiled with floating-point input, you get the following generated C code.

>> codegen user_written_function -args {0} -config:lib -launchreport

real_T user_written_function(real_T u)

{

 return u + u;

}

Where the real_T type is defined as a double:

typedef double real_T;

More Polymorphic Code

This function is written so that the output is created to be the same type as the input, so
both floating-point and fixed-point can be used with it.

function y = user_written_sum_polymorphic(u)

 % Setup

 F = fimath('RoundingMethod','Floor',...

 'OverflowAction','Wrap',...

 'SumMode','KeepLSB',...

 'SumWordLength',32);

 u = setfimath(u,F);

 if isfi(u)

 Set Fixed-Point Math Attributes

3-219

 y = fi(0,true,32,get(u,'FractionLength'),F);

 else

 y = zeros(1,1,class(u));

 end

 % Algorithm

 for i=1:length(u)

 y(:) = y + u(i);

 end

 % Cleanup

 y = removefimath(y);

end

Fixed Point Generated C Code

If you have MATLAB Coder software, you can generate fixed-point C code using the
following commands.

>> u = fi(1:10,true,16,11);

>> codegen user_written_sum_polymorphic -args {u} -config:lib -launchreport

Functions fimath, setfimath and removefimath control the fixed-point math, but the
underlying data contained in the variables does not change and so the generated C code
does not produce any data copies.

int32_T user_written_sum_polymorphic(const int16_T u[10])

{

 int32_T y;

 int32_T i;

 /* Setup */

 y = 0;

 /* Algorithm */

 for (i = 0; i < 10; i++) {

 y += u[i];

 }

 /* Cleanup */

 return y;

}

Floating Point Generated C Code

3 Fixed-Point Topics

3-220

If you have MATLAB Coder software, you can generate floating-point C code using the
following commands.

>> u = 1:10;

>> codegen user_written_sum_polymorphic -args {u} -config:lib -launchreport

real_T user_written_sum_polymorphic(const real_T u[10])

{

 real_T y;

 int32_T i;

 /* Setup */

 y = 0.0;

 /* Algorithm */

 for (i = 0; i < 10; i++) {

 y += u[i];

 }

 /* Cleanup */

 return y;

}

Where the real_T type is defined as a double:

typedef double real_T;

SETFIMATH on Integer Types

Following the established pattern of treating built-in integers like fi objects, setfimath
converts integer input to the equivalent fi with attached fimath.

>> u = int8(5);

>> codegen user_written_u_plus_u -args {u} -config:lib -launchreport

function y = user_written_u_plus_u(u)

 % Setup

 F = fimath('RoundingMethod','Floor',...

 'OverflowAction','Wrap',...

 'SumMode','KeepLSB',...

 'SumWordLength',32);

 u = setfimath(u,F);

 % Algorithm

 y = u + u;

 % Cleanup

 y = removefimath(y);

 Set Fixed-Point Math Attributes

3-221

end

The output type was specified by the fimath to be 32-bit.

int32_T user_written_u_plus_u(int8_T u)

{

 /* Setup */

 /* Algorithm */

 /* Cleanup */

 return u + u;

}

4

Working with fimath Objects

• “fimath Object Construction” on page 4-2
• “fimath Object Properties” on page 4-5
• “fimath Properties Usage for Fixed-Point Arithmetic” on page 4-13
• “fimath for Rounding and Overflow Modes” on page 4-21
• “fimath for Sharing Arithmetic Rules” on page 4-23
• “fimath ProductMode and SumMode” on page 4-26
• “How Functions Use fimath” on page 4-32

4 Working with fimath Objects

4-2

fimath Object Construction

In this section...

“fimath Object Syntaxes” on page 4-2
“Building fimath Object Constructors in a GUI” on page 4-3

fimath Object Syntaxes

The arithmetic attributes of a fi object are defined by a local fimath object, which
is attached to that fi object. If a fi object has no local fimath, the following default
fimath values are used:

 RoundingMethod: Nearest

 OverflowAction: Wrap

 ProductMode: FullPrecision

 SumMode: FullPrecision

You can create fimath objects in Fixed-Point Designer software in one of two ways:

• You can use the fimath constructor function to create new fimath objects.
• You can use the fimath constructor function to copy an existing fimath object.

To get started, type

F = fimath

to create a fimath object.

F =

 RoundingMethod: Nearest

 OverflowAction: Wrap

 ProductMode: FullPrecision

 SumMode: FullPrecision

To copy a fimath object, simply use assignment as in the following example:

F = fimath;

G = F;

 fimath Object Construction

4-3

isequal(F,G)

ans =

 1

The syntax

F = fimath(...'PropertyName',PropertyValue...)

allows you to set properties for a fimath object at object creation with property name/
property value pairs. Refer to “Setting fimath Properties at Object Creation” on page
4-11.

Building fimath Object Constructors in a GUI

When you are working with files in MATLAB, you can build your fimath object
constructors using the Insert fimath Constructor dialog box. After specifying the
properties of the fimath object in the dialog box, you can insert the prepopulated
fimath object constructor string at a specific location in your file.

For example, to create a fimath object that uses convergent rounding and wraps on
overflow, perform the following steps:

1 On the Home tab, in the File section, click New > Script to open the MATLAB
Editor

2
On the Editor tab, in the Edit section, click in the Insert button group.
Click the Insert fimath... to open the Insert fimath Constructor dialog box.

3 Use the edit boxes and drop-down menus to specify the following properties of the
fimath object:

• Rounding method = Floor
• Overflow action = Wrap
• Product mode = FullPrecision
• Sum mode = FullPrecision

4 Working with fimath Objects

4-4

4 To insert the fimath object constructor string in your file, place your cursor at
the desired location in the file. Then click OK on the Insert fimath Constructor
dialog box. Clicking OK closes the Insert fimath Constructor dialog box and
automatically populates the fimath object constructor string in your file:

 fimath Object Properties

4-5

fimath Object Properties

In this section...

“Math, Rounding, and Overflow Properties” on page 4-5
“How Properties are Related” on page 4-9
“Setting fimath Object Properties” on page 4-11

Math, Rounding, and Overflow Properties

You can always write to the following properties of fimath objects:

Property Description Valid Values

CastBeforeSum Whether both
operands are
cast to the sum
data type before
addition

• 0 (default) — do not cast before sum
• 1 — cast before sum

Note: This property is hidden when the SumMode is set to
FullPrecision.

MaxProduct

WordLength

Maximum
allowable word
length for the
product data type

• 65535 (default)
• Any positive integer

MaxSum

WordLength

Maximum
allowable word
length for the sum
data type

• 65535 (default)
• Any positive integer

OverflowAction Action to take on
overflow

• Saturate (default) — Saturate to maximum or
minimum value of the fixed-point range on overflow.

• Wrap — Wrap on overflow. This mode is also known as
two's complement overflow.

ProductBias Bias of the product
data type

• 0 (default)
• Any floating-point number

ProductFixed

Exponent

Fixed exponent of
the product data
type

• -30 (default)
• Any positive or negative integer

4 Working with fimath Objects

4-6

Property Description Valid Values

Note: The ProductFractionLength is the negative of the
ProductFixedExponent. Changing one property changes
the other.

ProductFraction

Length

Fraction length, in
bits, of the product
data type

• 30 (default)
• Any positive or negative integer

Note: The ProductFractionLength is the negative of the
ProductFixedExponent. Changing one property changes
the other.

ProductMode Defines how the
product data type
is determined

• FullPrecision (default) — The full precision of the
result is kept.

• KeepLSB— Keep least significant bits. Specify the
product word length, while the fraction length is set to
maintain the least significant bits of the product.

• KeepMSB — Keep most significant bits. Specify the
product word length, while the fraction length is set to
maintain the most significant bits of the product.

• SpecifyPrecision— specify the word and fraction
lengths or slope and bias of the product.

ProductSlope Slope of the
product data type

• 9.3132e-010 (default)
• Any floating-point number

Note:

ProductSlope ProductSlopeAdjustmentFactor
ProductFixedExp

= ¥2
oonent

Changing one of these properties affects the others.

 fimath Object Properties

4-7

Property Description Valid Values

ProductSlope

AdjustmentFactor

Slope adjustment
factor of the
product data type

• 1 (default)
• Any floating-point number greater than or equal to 1

and less than 2

Note:

ProductSlope ProductSlopeAdjustmentFactor
ProductFixedExp

= ¥2
oonent

Changing one of these properties affects the others.
ProductWord

Length

Word length, in
bits, of the product
data type

• 32 (default)
• Any positive integer

RoundingMethod Rounding method • Nearest (default) — Round toward nearest. Ties round
toward positive infinity.

• Ceiling — Round toward positive infinity.
• Convergent — Round toward nearest. Ties round to

the nearest even stored integer (least biased).
• Zero — Round toward zero.
• Floor — Round toward negative infinity.
• Round — Round toward nearest. Ties round toward

negative infinity for negative numbers, and toward
positive infinity for positive numbers.

SumBias Bias of the sum
data type

• 0 (default)
• Any floating-point number

SumFixed

Exponent

Fixed exponent of
the sum data type

• -30 (default)
• Any positive or negative integer

Note: The SumFractionLength is the negative of the
SumFixedExponent. Changing one property changes the
other.

4 Working with fimath Objects

4-8

Property Description Valid Values

SumFraction

Length

Fraction length,
in bits, of the sum
data type

• 30 (default)
• Any positive or negative integer

Note: The SumFractionLength is the negative of the
SumFixedExponent. Changing one property changes the
other.

SumMode Defines how the
sum data type is
determined

• FullPrecision (default) — The full precision of the
result is kept.

• KeepLSB — Keep least significant bits. Specify the sum
data type word length, while the fraction length is set to
maintain the least significant bits of the sum.

• KeepMSB — Keep most significant bits. Specify the sum
data type word length, while the fraction length is set
to maintain the most significant bits of the sum and no
more fractional bits than necessary

• SpecifyPrecision — Specify the word and fraction
lengths or the slope and bias of the sum data type.

SumSlope Slope of the sum
data type

• 9.3132e-010 (default)
• Any floating-point number

Note:

SumSlope SumSlopeAdjustmentFactor
SumFixedExponent

= ¥ 2

Changing one of these properties affects the others.

 fimath Object Properties

4-9

Property Description Valid Values

SumSlope

AdjustmentFactor

Slope adjustment
factor of the sum
data type

• 1 (default)
• Any floating-point number greater than or equal to 1

and less than 2

Note:

SumSlope SumSlopeAdjustmentFactor
SumFixedExponent

= ¥ 2

Changing one of these properties affects the others.
SumWord

Length

Word length, in
bits, of the sum
data type

• 32 (default)
• Any positive integer

For details about these properties, refer to the “fi Object Properties”. To learn how to
specify properties for fimath objects in Fixed-Point Designer software, refer to “Setting
fimath Object Properties” on page 4-11.

How Properties are Related

Sum data type properties

The slope of the sum of two fi objects is related to the SumSlopeAdjustmentFactor
and SumFixedExponent properties by

SumSlope SumSlopeAdjustmentFactor
SumFixedExponent

= ¥ 2

If any of these properties are updated, the others are modified accordingly.

In a FullPrecision sum, the resulting word length is represented by

W F
s s

= +integer length

where

integer length = - -()+ ()max , ceil logW F W F NumberOfSummandsa a b b 2(()

4 Working with fimath Objects

4-10

and

F F F
s a b

= max(,)

When the SumMode is set to KeepLSB, the resulting word length and fraction length is
determined by

W

F F F

s

s a b

=

=

specified in the property SumWordLength

max(,)

When the SumMode is set to KeepMSB, the resulting word length and fraction length is
determined by

W

F W

s

s s

=

= -

specified in the property

integer le

SumWordLength

nngth

where

integer length = - -()+ ()max , ceil logW F W F NumberOfSummandsa a b b 2(()

When the SumMode is set to SpecifyPrecision, you specify both the word and
fraction length or slope and bias of the sum data type with the SumWordLength and
SumFractionLength, or SumSlope and SumBias properties respectively.

Product data type properties

The slope of the product of two fi objects is related to the
ProductSlopeAdjustmentFactor and ProductFixedExponent properties by

ProductSlope ProductSlopeAdjustmentFactor
ProductFixedExp

= ¥2
oonent

If any of these properties are updated, the others are modified accordingly.

In a FullPrecision multiply, the resulting word length and fraction length are
represented by

W W W

F F F

p a b

p a b

= +

= +

 fimath Object Properties

4-11

When the ProductMode is KeepLSB the word length and fraction length are determined
by

W

F F F

p

p a b

=

= +

specified in the propertyProductWordLength

When the ProductMode is KeepMSB the word length and fraction length are

W

F W

p

p p

=

= -

specified in the property

intege

ProductWordLength

rr length

where

integer length = + - -() ()W W F F
a b a b

When the ProductMode is set to SpecifyPrecision, you specify both the word and
fraction length or slope and bias of the product data type with the ProductWordLength
and ProductFractionLength, or ProductSlope and ProductBias properties
respectively.

For more information about how certain functions use the fimath properties, see

Setting fimath Object Properties

• “Setting fimath Properties at Object Creation” on page 4-11
• “Using Direct Property Referencing with fimath” on page 4-12

Setting fimath Properties at Object Creation

You can set properties of fimath objects at the time of object creation by including
properties after the arguments of the fimath constructor function.

For example, to set the overflow action to Saturate and the rounding method to
Convergent,

F = fimath('OverflowAction','Saturate','RoundingMethod','Convergent')

F =

4 Working with fimath Objects

4-12

 RoundingMethod: Convergent

 OverflowAction: Saturate

 ProductMode: FullPrecision

 SumMode: FullPrecision

In addition to creating a fimath object at the command line, you can also set fimath
properties using the Insert fimath Constructor dialog box. For an example of this
approach, see “Building fimath Object Constructors in a GUI” on page 4-3.

Using Direct Property Referencing with fimath

You can reference directly into a property for setting or retrieving fimath object
property values using MATLAB structure-like referencing. You do so by using a period to
index into a property by name.

For example, to get the RoundingMethod of F,

F.RoundingMethod

ans =

Convergent

To set the OverflowAction of F,

F.OverflowAction = 'Wrap'

F =

 RoundingMethod: Convergent

 OverflowAction: Wrap

 ProductMode: FullPrecision

 SumMode: FullPrecision

 fimath Properties Usage for Fixed-Point Arithmetic

4-13

fimath Properties Usage for Fixed-Point Arithmetic

In this section...

“fimath Rules for Fixed-Point Arithmetic” on page 4-13
“Binary-Point Arithmetic” on page 4-15
“[Slope Bias] Arithmetic” on page 4-18

fimath Rules for Fixed-Point Arithmetic

fimath properties define the rules for performing arithmetic operations on fi objects.
The fimath properties that govern fixed-point arithmetic operations can come from a
local fimath object or the fimath default values.

To determine whether a fi object has a local fimath object, use the isfimathlocal
function.

The following sections discuss how fi objects with local fimath objects interact with fi
objects without local fimath.

Binary Operations

In binary fixed-point operations such as c = a + b, the following rules apply:

• If both a and b have no local fimath, the operation uses default fimath values to
perform the fixed-point arithmetic. The output fi object c also has no local fimath.

• If either a or b has a local fimath object, the operation uses that fimath object to
perform the fixed-point arithmetic. The output fi object c has the same local fimath
object as the input.

Unary Operations

In unary fixed-point operations such as b = abs(a), the following rules apply:

• If a has no local fimath, the operation uses default fimath values to perform the fixed-
point arithmetic. The output fi object b has no local fimath.

• If a has a local fimath object, the operation uses that fimath object to perform the
fixed-point arithmetic. The output fi object b has the same local fimath object as the
input a.

4 Working with fimath Objects

4-14

When you specify a fimath object in the function call of a unary fixed-point operation,
the operation uses the fimath object you specify to perform the fixed-point arithmetic.
For example, when you use a syntax such as b = abs(a,F) or b = sqrt(a,F), the
abs and sqrt operations use the fimath object F to compute intermediate quantities.
The output fi object b always has no local fimath.

Concatenation Operations

In fixed-point concatenation operations such as c = [a b], c = [a;b] and c =
bitconcat(a,b), the following rule applies:

• The fimath properties of the leftmost fi object in the operation determine the
fimath properties of the output fi object c.

For example, consider the following scenarios for the operation d = [a b c]:

• If a is a fi object with no local fimath, the output fi object d also has no local fimath.
• If a has a local fimath object, the output fi object d has the same local fimath

object.
• If a is not a fi object, the output fi object d inherits the fimath properties of the

next leftmost fi object. For example, if b is a fi object with a local fimath object, the
output fi object d has the same local fimath object as the input fi object b.

fimath Object Operations: add, mpy, sub

The output of the fimath object operations add, mpy, and sub always have no local
fimath. The operations use the fimath object you specify in the function call, but the
output fi object never has a local fimath object.

MATLAB Function Block Operations

Fixed-point operations performed with the MATLAB Function block use the same rules
as fixed-point operations performed in MATLAB.

All input signals to the MATLAB Function block that you treat as fi objects associate
with whatever you specify for the MATLAB Function block fimath parameter. When
you set this parameter to Same as MATLAB, your fi objects do not have local fimath.
When you set the MATLAB Function block fimath parameter to Specify other,
you can define your own set of fimath properties for all fi objects in the MATLAB
Function block to associate with. You can choose to treat only fixed-point input signals as
fi objects or both fixed-point and integer input signals as fi objects. See “Using fimath
Objects in MATLAB Function Blocks” on page 13-65.

 fimath Properties Usage for Fixed-Point Arithmetic

4-15

Binary-Point Arithmetic

The fimath object encapsulates the math properties of Fixed-Point Designer software.

fi objects only have a local fimath object when you explicitly specify fimath properties
in the fi constructor. When you use the sfi or ufi constructor or do not specify any
fimath properties in the fi constructor, the resulting fi object does not have any local
fimath and uses default fimath values.

a = fi(pi)

a =

 3.1416

 DataTypeMode: Fixed-point: binary point scaling

 Signedness: Signed

 WordLength: 16

 FractionLength: 13

a.fimath

isfimathlocal(a)

ans =

 RoundingMethod: Nearest

 OverflowAction: Saturate

 ProductMode: FullPrecision

 SumMode: FullPrecision

ans =

 0

To perform arithmetic with +, -, .*, or * on two fi operands with local fimath objects,
the local fimath objects must be identical. If one of the fi operands does not have a local
fimath, the fimath properties of the two operands need not be identical. See “fimath
Rules for Fixed-Point Arithmetic” on page 4-13 for more information.

a = fi(pi);

b = fi(8);

isequal(a.fimath, b.fimath)

ans =

4 Working with fimath Objects

4-16

 1

a + b

ans =

 11.1416

 DataTypeMode: Fixed-point: binary point scaling

 Signedness: Signed

 WordLength: 19

 FractionLength: 13

To perform arithmetic with +, -, .*, or *, two fi operands must also have the same data
type. For example, you can add two fi objects with data type double, but you can not
add an object with data type double and one with data type single:

a = fi(3, 'DataType', 'double')

a =

 3

 DataTypeMode: Double

b = fi(27, 'DataType', 'double')

b =

 27

 DataTypeMode: Double

a + b

 ans =

 30

 DataTypeMode: Double

c = fi(12, 'DataType', 'single')

c =

 12

 fimath Properties Usage for Fixed-Point Arithmetic

4-17

 DataTypeMode: Single

a + c

Math operations are not allowed on FI objects with different data types.

Fixed-point fi object operands do not have to have the same scaling. You can perform
binary math operations on a fi object with a fixed-point data type and a fi object with a
scaled doubles data type. In this sense, the scaled double data type acts as a fixed-point
data type:

a = fi(pi)

a =

 3.1416

 DataTypeMode: Fixed-point: binary point scaling

 Signedness: Signed

 WordLength: 16

 FractionLength: 13

b = fi(magic(2), ...

'DataTypeMode', 'Scaled double: binary point scaling')

b =

 1 3

 4 2

 DataTypeMode: Scaled double: binary point scaling

 Signedness: Signed

 WordLength: 16

 FractionLength: 12

a + b

ans =

 4.1416 6.1416

 7.1416 5.1416

 DataTypeMode: Scaled double: binary point scaling

4 Working with fimath Objects

4-18

 Signedness: Signed

 WordLength: 18

 FractionLength: 13

Use the divide function to perform division with doubles, singles, or binary point-only
scaling fi objects.

[Slope Bias] Arithmetic

Fixed-Point Designer software supports fixed-point arithmetic using the local fimath
object or default fimath for all binary point-only signals. The toolbox also supports
arithmetic for [Slope Bias] signals with the following restrictions:

• [Slope Bias] signals must be real.
• You must set the SumMode and ProductMode properties of the governing fimath to

'SpecifyPrecision' for sum and multiply operations, respectively.
• You must set the CastBeforeSum property of the governing fimath to 'true'.
• Fixed-Point Designer does not support the divide function for [Slope Bias] signals.

f = fimath('SumMode', 'SpecifyPrecision', ...

 'SumFractionLength', 16)

f =

 RoundingMethod: Nearest

 OverflowAction: Saturate

 ProductMode: FullPrecision

 SumMode: SpecifyPrecision

 SumWordLength: 32

 SumFractionLength: 16

 CastBeforeSum: true

a = fi(pi, 'fimath', f)

a =

 3.1416

 DataTypeMode: Fixed-point: binary point scaling

 Signedness: Signed

 WordLength: 16

 fimath Properties Usage for Fixed-Point Arithmetic

4-19

 FractionLength: 13

 RoundingMethod: Nearest

 OverflowAction: Saturate

 ProductMode: FullPrecision

 SumMode: SpecifyPrecision

 SumWordLength: 32

 SumFractionLength: 16

 CastBeforeSum: true

b = fi(22, true, 16, 2^-8, 3, 'fimath', f)

b =

 22

 DataTypeMode: Fixed-point: slope and bias scaling

 Signedness: Signed

 WordLength: 16

 Slope: 0.00390625

 Bias: 3

 RoundingMethod: Nearest

 OverflowAction: Saturate

 ProductMode: FullPrecision

 SumMode: SpecifyPrecision

 SumWordLength: 32

 SumFractionLength: 16

 CastBeforeSum: true

a + b

ans =

 25.1416

 DataTypeMode: Fixed-point: binary point scaling

 Signedness: Signed

 WordLength: 32

 FractionLength: 16

 RoundingMethod: Nearest

 OverflowAction: Saturate

 ProductMode: FullPrecision

 SumMode: SpecifyPrecision

4 Working with fimath Objects

4-20

 SumWordLength: 32

 SumFractionLength: 16

 CastBeforeSum: true

Setting the SumMode and ProductMode properties to SpecifyPrecision are mutually
exclusive except when performing the * operation between matrices. In this case, you
must set both the SumMode and ProductMode properties to SpecifyPrecision for
[Slope Bias] signals. Doing so is necessary because the * operation performs both sum
and multiply operations to calculate the result.

 fimath for Rounding and Overflow Modes

4-21

fimath for Rounding and Overflow Modes

Only rounding methods and overflow actions set prior to an operation with fi objects
affect the outcome of those operations. Once you create a fi object in MATLAB, changing
its rounding or overflow settings does not affect its value. For example, consider the fi
objects a and b:

p = fipref('NumberDisplay', 'RealWorldValue',...

'NumericTypeDisplay', 'none', 'FimathDisplay', 'none');

T = numerictype('WordLength',8,'FractionLength',7);

F = fimath('RoundingMethod','Floor','OverflowAction','Wrap');

a = fi(1,T,F)

a =

 -1

b = fi(1,T)

b =

 0.9922

Because you create a with a fimath object F that has OverflowAction set to
Wrap, the value of a wraps to -1. Conversely, because you create b with the default
OverflowAction value of Saturate, its value saturates to 0.9922.

Now, assign the fimath object F to b:

b.fimath = F

b =

 0.9922

Because the assignment operation and corresponding overflow and saturation happened
when you created b, its value does not change when you assign it the new fimath object
F.

Note: fi objects with no local fimath and created from a floating-point value always
get constructed with a RoundingMethod of Nearest and an OverflowAction
of Saturate. To construct fi objects with different RoundingMethod and

4 Working with fimath Objects

4-22

OverflowAction properties, specify the desired RoundingMethod and
OverflowAction properties in the fi constructor.

For more information about the fimath object and its properties, see “fimath Object
Properties” on page 4-5

 fimath for Sharing Arithmetic Rules

4-23

fimath for Sharing Arithmetic Rules

There are two ways of sharing fimath properties in Fixed-Point Designer software:

• “Default fimath Usage to Share Arithmetic Rules” on page 4-23
• “Local fimath Usage to Share Arithmetic Rules” on page 4-23

Sharing fimath properties across fi objects ensures that the fi objects are using the
same arithmetic rules and helps you avoid “mismatched fimath” errors.

Default fimath Usage to Share Arithmetic Rules

You can ensure that your fi objects are all using the same fimath properties by not
specifying any local fimath. To assure no local fimath is associated with a fi object, you
can:

• Create a fi object using the fi constructor without specifying any fimath properties
in the constructor call. For example:

a = fi(pi)

• Create a fi object using the sfi or ufi constructor. All fi objects created with these
constructors have no local fimath.

b = sfi(pi)

• Use removefimath to remove a local fimath object from an existing fi object.

Local fimath Usage to Share Arithmetic Rules

You can also use a fimath object to define common arithmetic rules that you would
like to use for multiple fi objects. You can then create your fi objects, using the same
fimath object for each. To do so, you must also create a numerictype object to define
a common data type and scaling. Refer to “numerictype Object Construction” for more
information on numerictype objects. The following example shows the creation of a
numerictype object and fimath object, and then uses those objects to create two fi
objects with the same numerictype and fimath attributes:

T = numerictype('WordLength',32,'FractionLength',30)

T =

4 Working with fimath Objects

4-24

 DataTypeMode: Fixed-point: binary point scaling

 Signedness: Signed

 WordLength: 32

 FractionLength: 30

F = fimath('RoundingMethod','Floor',...

 'OverflowAction','Wrap')

F =

 RoundingMethod: Floor

 OverflowAction: Wrap

 ProductMode: FullPrecision

 SumMode: FullPrecision

a = fi(pi, T, F)

a =

 -0.8584

 DataTypeMode: Fixed-point: binary point scaling

 Signedness: Signed

 WordLength: 32

 FractionLength: 30

 RoundingMethod: Floor

 OverflowAction: Wrap

 ProductMode: FullPrecision

 SumMode: FullPrecision

b = fi(pi/2, T, F)

b =

 1.5708

 DataTypeMode: Fixed-point: binary point scaling

 Signedness: Signed

 WordLength: 32

 FractionLength: 30

 fimath for Sharing Arithmetic Rules

4-25

 RoundingMethod: Floor

 OverflowAction: Wrap

 ProductMode: FullPrecision

 SumMode: FullPrecision

4 Working with fimath Objects

4-26

fimath ProductMode and SumMode

In this section...

“Example Setup” on page 4-26
“FullPrecision” on page 4-27
“KeepLSB” on page 4-28
“KeepMSB” on page 4-29
“SpecifyPrecision” on page 4-30

Example Setup

The examples in the sections of this topic show the differences among the four settings of
the ProductMode and SumMode properties:

• FullPrecision

• KeepLSB

• KeepMSB

• SpecifyPrecision

To follow along, first set the following preferences:

p = fipref;

p.NumericTypeDisplay = 'short';

p.FimathDisplay = 'none';

p.LoggingMode = 'on';

F = fimath('OverflowAction','Wrap',...

 'RoundingMethod','Floor',...

 'CastBeforeSum',false);

warning off

format compact

Next, define fi objects a and b. Both have signed 8-bit data types. The fraction length
gets chosen automatically for each fi object to yield the best possible precision:

a = fi(pi, true, 8)

a =

 3.1563

 s8,5

 fimath ProductMode and SumMode

4-27

b = fi(exp(1), true, 8)

b =

 2.7188

 s8,5

FullPrecision

Now, set ProductMode and SumMode for a and b to FullPrecision and look at some
results:

F.ProductMode = 'FullPrecision';

F.SumMode = 'FullPrecision';

a.fimath = F;

b.fimath = F;

a

a =

 3.1563 %011.00101

 s8,5

b

b =

 2.7188 %010.10111

 s8,5

a*b

ans =

 8.5811 %001000.1001010011

 s16,10

a+b

ans =

 5.8750 %0101.11100

 s9,5

In FullPrecision mode, the product word length grows to the sum of the word lengths
of the operands. In this case, each operand has 8 bits, so the product word length is 16
bits. The product fraction length is the sum of the fraction lengths of the operands, in this
case 5 + 5 = 10 bits.

The sum word length grows by one most significant bit to accommodate the possibility of
a carry bit. The sum fraction length aligns with the fraction lengths of the operands, and

4 Working with fimath Objects

4-28

all fractional bits are kept for full precision. In this case, both operands have 5 fractional
bits, so the sum has 5 fractional bits.

KeepLSB

Now, set ProductMode and SumMode for a and b to KeepLSB and look at some results:

F.ProductMode = 'KeepLSB';

F.ProductWordLength = 12;

F.SumMode = 'KeepLSB';

F.SumWordLength = 12;

a.fimath = F;

b.fimath = F;

a

a =

 3.1563 %011.00101

 s8,5

b

b =

 2.7188 %010.10111

 s8,5

a*b

ans =

 0.5811 %00.1001010011

 s12,10

a+b

ans =

 5.8750 %0000101.11100

 s12,5

In KeepLSB mode, you specify the word lengths and the least significant bits of results
are automatically kept. This mode models the behavior of integer operations in the C
language.

The product fraction length is the sum of the fraction lengths of the operands. In this
case, each operand has 5 fractional bits, so the product fraction length is 10 bits. In this
mode, all 10 fractional bits are kept. Overflow occurs because the full-precision result
requires 6 integer bits, and only 2 integer bits remain in the product.

 fimath ProductMode and SumMode

4-29

The sum fraction length aligns with the fraction lengths of the operands, and in this
model all least significant bits are kept. In this case, both operands had 5 fractional bits,
so the sum has 5 fractional bits. The full-precision result requires 4 integer bits, and 7
integer bits remain in the sum, so no overflow occurs in the sum.

KeepMSB

Now, set ProductMode and SumMode for a and b to KeepMSB and look at some results:

F.ProductMode = 'KeepMSB';

F.ProductWordLength = 12;

F.SumMode = 'KeepMSB';

F.SumWordLength = 12;

a.fimath = F;

b.fimath = F;

a

a =

 3.1563 %011.00101

 s8,5

b

b =

 2.7188 %010.10111

 s8,5

a*b

ans =

 8.5781 %001000.100101

 s12,6

a+b

ans =

 5.8750 %0101.11100000

 s12,8

In KeepMSB mode, you specify the word lengths and the most significant bits of sum
and product results are automatically kept. This mode models the behavior of many
DSP devices where the product and sum are kept in double-wide registers, and the
programmer chooses to transfer the most significant bits from the registers to memory
after each operation.

4 Working with fimath Objects

4-30

The full-precision product requires 6 integer bits, and the fraction length of the product
is adjusted to accommodate all 6 integer bits in this mode. No overflow occurs. However,
the full-precision product requires 10 fractional bits, and only 6 are available. Therefore,
precision is lost.

The full-precision sum requires 4 integer bits, and the fraction length of the sum is
adjusted to accommodate all 4 integer bits in this mode. The full-precision sum requires
only 5 fractional bits; in this case there are 8, so there is no loss of precision.

This example shows that, in KeepMSB mode the fraction length changes regardless of
whether an overflow occurs. The fraction length is set to the amount needed to represent
the product in case both terms use the maximum possible value (18+18-16=20 in this
example).

F = fimath('SumMode','KeepMSB','ProductMode','KeepMSB',...

 'ProductWordLength',16,'SumWordLength',16);

a = fi(100,1,16,-2,'fimath',F);

a*a

ans =

 0

 DataTypeMode: Fixed-point: binary point scaling

 Signedness: Signed

 WordLength: 16

 FractionLength: -20

 RoundingMethod: Nearest

 OverflowAction: Saturate

 ProductMode: KeepMSB

 ProductWordLength: 16

 SumMode: KeepMSB

 SumWordLength: 16

 CastBeforeSum: true

SpecifyPrecision

Now set ProductMode and SumMode for a and b to SpecifyPrecision and look at
some results:

F.ProductMode = 'SpecifyPrecision';

F.ProductWordLength = 8;

 fimath ProductMode and SumMode

4-31

F.ProductFractionLength = 7;

F.SumMode = 'SpecifyPrecision';

F.SumWordLength = 8;

F.SumFractionLength = 7;

a.fimath = F;

b.fimath = F;

a

a =

 3.1563 %011.00101

 s8,5

b

b =

 2.7188 %010.10111

 s8,5

a*b

ans =

 0.5781 %0.1001010

 s8,7

a+b

ans =

 -0.1250 %1.1110000

 s8,7

In SpecifyPrecision mode, you must specify both word length and fraction length for
sums and products. This example unwisely uses fractional formats for the products and
sums, with 8-bit word lengths and 7-bit fraction lengths.

The full-precision product requires 6 integer bits, and the example specifies only 1, so the
product overflows. The full-precision product requires 10 fractional bits, and the example
only specifies 7, so there is precision loss in the product.

The full-precision sum requires 4 integer bits, and the example specifies only 1, so
the sum overflows. The full-precision sum requires 5 fractional bits, and the example
specifies 7, so there is no loss of precision in the sum.

For more information about the fimath object and its properties, see “fimath Object
Properties” on page 4-5

4 Working with fimath Objects

4-32

How Functions Use fimath

In this section...

“Functions that use then discard attached fimath” on page 4-32
“Functions that ignore and discard attached fimath” on page 4-32
“Functions that do not perform math” on page 4-33

Functions that use then discard attached fimath

Functions Note

conv, filter Error if attached fimaths differ.
mean, median —

Functions that ignore and discard attached fimath

Functions Note

accumneg, accumpos • By default, use Floor rounding method
and Wrap overflow

add, sub, mpy • Override and discard any fimath
objects attached to the input fi objects

• Uses the fimath from input, F, as in
add(F, a, b)

CORDIC functions — cordicabs,
cordicangle, cordicatan2,
cordiccart2pol, cordiccexp,
cordiccos, cordicpol2cart,
cordicrotate, cordicsin,
cordicsincos, cordicsqrt

CORDIC functions use their own internal
fimath:

• Rounding Mode – Floor
• Overflow Action – Wrap

mod —
qr —
quantize Uses the math settings on the quantizer

object, ignores and discards any fimath
settings on the input

 How Functions Use fimath

4-33

Functions Note

Trigonometric functions — atan2, cos,
sin

—

Functions that do not perform math

Functions Note

Built-in Types—int32, int64, int8,
uint16, uint32, uint64, uint8

Ignore any fimath settings on the input.
Always use the rounding method Round
when casting to the new data type. The
output is not a fi object so it has no
attached fimath.

bitsll, bitsra, bitsrl OverflowAction and RoundingMethod
are ignored — bits drop off the end.

bitshift RoundingMethod is ignored, but
OverflowAction property is obeyed.

5

Working with fipref Objects

• “fipref Object Construction” on page 5-2
• “fipref Object Properties” on page 5-3
• “fi Object Display Preferences Using fipref” on page 5-5
• “Underflow and Overflow Logging Using fipref” on page 5-7
• “Data Type Override Preferences Using fipref” on page 5-12

5 Working with fipref Objects

5-2

fipref Object Construction

The fipref object defines the display and logging attributes for all fi objects. You can
use the fipref constructor function to create a new object.

To get started, type

P = fipref

to create a default fipref object.

P =

 NumberDisplay: 'RealWorldValue'

 NumericTypeDisplay: 'full'

 FimathDisplay: 'full'

 LoggingMode: 'Off'

 DataTypeOverride: 'ForceOff'

The syntax

P = fipref(...'PropertyName','PropertyValue'...)

allows you to set properties for a fipref object at object creation with property name/
property value pairs.

Your fipref settings persist throughout your MATLAB session. Use reset(fipref) to
return to the default settings during your session. Use savefipref to save your display
preferences for subsequent MATLAB sessions.

 fipref Object Properties

5-3

fipref Object Properties

In this section...

“Display, Data Type Override, and Logging Properties” on page 5-3
“fipref Object Properties Setting” on page 5-3

Display, Data Type Override, and Logging Properties

The following properties of fipref objects are always writable:

• FimathDisplay — Display options for the local fimath attributes of a fi object
• DataTypeOverride — Data type override options
• LoggingMode — Logging options for operations performed on fi objects
• NumericTypeDisplay — Display options for the numeric type attributes of a fi

object
• NumberDisplay — Display options for the value of a fi object

These properties are described in detail in the “fi Object Properties”. To learn how to
specify properties for fipref objects in Fixed-Point Designer software, refer to “fipref
Object Properties Setting” on page 5-3.

fipref Object Properties Setting

Setting fipref Properties at Object Creation

You can set properties of fipref objects at the time of object creation by including
properties after the arguments of the fipref constructor function. For example, to set
NumberDisplay to bin and NumericTypeDisplay to short,

P = fipref('NumberDisplay', 'bin', ...

 'NumericTypeDisplay', 'short')

P =

 NumberDisplay: 'bin'

 NumericTypeDisplay: 'short'

 FimathDisplay: 'full'

 LoggingMode: 'Off'

 DataTypeOverride: 'ForceOff'

5 Working with fipref Objects

5-4

Using Direct Property Referencing with fipref

You can reference directly into a property for setting or retrieving fipref object
property values using MATLAB structure-like referencing. You do this by using a period
to index into a property by name.

For example, to get the NumberDisplay of P,

P.NumberDisplay

ans =

bin

To set the NumericTypeDisplay of P,

P.NumericTypeDisplay = 'full'

P =

 NumberDisplay: 'bin'

 NumericTypeDisplay: 'full'

 FimathDisplay: 'full'

 LoggingMode: 'Off'

 DataTypeOverride: 'ForceOff'

 fi Object Display Preferences Using fipref

5-5

fi Object Display Preferences Using fipref

You use the fipref object to specify three aspects of the display of fi objects: the object
value, the local fimath properties, and the numerictype properties.

For example, the following code shows the default fipref display for a fi object with a
local fimath object:

a = fi(pi, 'RoundingMethod', 'Floor', 'OverflowAction', 'Wrap')

a =

 3.1415

 DataTypeMode: Fixed-point: binary point scaling

 Signedness: Signed

 WordLength: 16

 FractionLength: 13

 RoundingMethod: Floor

 OverflowAction: Wrap

 ProductMode: FullPrecision

 SumMode: FullPrecision

The default fipref display for a fi object with no local fimath is as follows:

a = fi(pi)

a =

 3.1416

 DataTypeMode: Fixed-point: binary point scaling

 Signedness: Signed

 WordLength: 16

 FractionLength: 13

Next, change the fipref display properties:

P = fipref;

P.NumberDisplay = 'bin';

P.NumericTypeDisplay = 'short';

P.FimathDisplay = 'none'

5 Working with fipref Objects

5-6

P =

 NumberDisplay: 'bin'

 NumericTypeDisplay: 'short'

 FimathDisplay: 'none'

 LoggingMode: 'Off'

 DataTypeOverride: 'ForceOff'

a

a =

0110010010000111

 s16,13

For more information on the default fipref display, see “View Fixed-Point Data”.

 Underflow and Overflow Logging Using fipref

5-7

Underflow and Overflow Logging Using fipref

In this section...

“Logging Overflows and Underflows as Warnings” on page 5-7
“Accessing Logged Information with Functions” on page 5-9

Logging Overflows and Underflows as Warnings

Overflows and underflows are logged as warnings for all assignment, plus, minus, and
multiplication operations when the fipref LoggingMode property is set to on. For
example, try the following:

1 Create a signed fi object that is a vector of values from 1 to 5, with 8-bit word length
and 6-bit fraction length.

a = fi(1:5,1,8,6);

2 Define the fimath object associated with a, and indicate that you will specify the
sum and product word and fraction lengths.

F = a.fimath;

F.SumMode = 'SpecifyPrecision';

F.ProductMode = 'SpecifyPrecision';

a.fimath = F;

3 Define the fipref object and turn on overflow and underflow logging.

P = fipref;

P.LoggingMode = 'on';

4 Suppress the numerictype and fimath displays.

P.NumericTypeDisplay = 'none';

P.FimathDisplay = 'none';

5 Specify the sum and product word and fraction lengths.

a.SumWordLength = 16;

a.SumFractionLength = 15;

a.ProductWordLength = 16;

a.ProductFractionLength = 15;

6 Warnings are displayed for overflows and underflows in assignment operations. For
example, try:

5 Working with fipref Objects

5-8

a(1) = pi

Warning: 1 overflow occurred in the fi assignment operation.

a =

 1.9844 1.9844 1.9844 1.9844 1.9844

a(1) = double(eps(a))/10

Warning: 1 underflow occurred in the fi assignment operation.

a =

 0 1.9844 1.9844 1.9844 1.9844

7 Warnings are displayed for overflows and underflows in addition and subtraction
operations. For example, try:

a+a

Warning: 12 overflows occurred in the fi + operation.

ans =

 0 1.0000 1.0000 1.0000 1.0000

a-a

Warning: 8 overflows occurred in the fi - operation.

ans =

 0 0 0 0 0

8 Warnings are displayed for overflows and underflows in multiplication operations.
For example, try:

a.*a

Warning: 4 product overflows occurred in the fi .* operation.

ans =

 0 1.0000 1.0000 1.0000 1.0000

a*a'

Warning: 4 product overflows occurred in the fi * operation.

Warning: 3 sum overflows occurred in the fi * operation.

 Underflow and Overflow Logging Using fipref

5-9

ans =

 1.0000

The final example above is a complex multiplication that requires both multiplication
and addition operations. The warnings inform you of overflows and underflows in both.

Because overflows and underflows are logged as warnings, you can use the dbstop
MATLAB function with the syntax

dbstop if warning

to find the exact lines in a file that are causing overflows or underflows.

Use

dbstop if warning fi:underflow

to stop only on lines that cause an underflow. Use

dbstop if warning fi:overflow

to stop only on lines that cause an overflow.

Accessing Logged Information with Functions

When the fipref LoggingMode property is set to on, you can use the following
functions to return logged information about assignment and creation operations to the
MATLAB command line:

• maxlog — Returns the maximum real-world value
• minlog — Returns the minimum value
• noverflows — Returns the number of overflows
• nunderflows — Returns the number of underflows

LoggingMode must be set to on before you perform any operation in order to log
information about it. To clear the log, use the function resetlog.

For example, consider the following. First turn logging on, then perform operations, and
then finally get information about the operations:

fipref('LoggingMode','on');

5 Working with fipref Objects

5-10

x = fi([-1.5 eps 0.5], true, 16, 15);

x(1) = 3.0;

maxlog(x)

ans =

 1.0000

minlog(x)

ans =

 -1

noverflows(x)

ans =

 2

nunderflows(x)

ans =

 1

Next, reset the log and request the same information again. Note that the functions
return empty [], because logging has been reset since the operations were run:

resetlog(x)

maxlog(x)

ans =

 []

minlog(x)

ans =

 []

noverflows(x)

ans =

 Underflow and Overflow Logging Using fipref

5-11

 []

nunderflows(x)

ans =

 []

5 Working with fipref Objects

5-12

Data Type Override Preferences Using fipref

In this section...

“Overriding the Data Type of fi Objects” on page 5-12
“Data Type Override for Fixed-Point Scaling” on page 5-13

Overriding the Data Type of fi Objects

Use the fipref DataTypeOverride property to override fi objects with singles,
doubles, or scaled doubles. Data type override only occurs when the fi constructor
function is called. Objects that are created while data type override is on have the
overridden data type. They maintain that data type when data type override is later
turned off. To obtain an object with a data type that is not the override data type, you
must create an object when data type override is off:

p = fipref('DataTypeOverride', 'TrueDoubles')

p =

 NumberDisplay: 'RealWorldValue'

 NumericTypeDisplay: 'full'

 FimathDisplay: 'full'

 LoggingMode: 'Off'

 DataTypeOverride: 'TrueDoubles'

a = fi(pi)

a =

 3.1416

 DataTypeMode: Double

p = fipref('DataTypeOverride', 'ForceOff')

p =

 NumberDisplay: 'RealWorldValue'

 NumericTypeDisplay: 'full'

 FimathDisplay: 'full'

 Data Type Override Preferences Using fipref

5-13

 LoggingMode: 'Off'

 DataTypeOverride: 'ForceOff'

a

a =

 3.1416

 DataTypeMode: Double

b = fi(pi)

b =

 3.1416

 DataTypeMode: Fixed-point: binary point scaling

 Signedness: Signed

 WordLength: 16

 FractionLength: 13

Tip To reset the fipref object to its default values use reset(fipref) or reset(p),
where p is a fipref object. This is useful to ensure that data type override and logging
are off.

Data Type Override for Fixed-Point Scaling

Choosing the scaling for the fixed-point variables in your algorithms can be difficult. In
Fixed-Point Designer software, you can use a combination of data type override and min/
max logging to help you discover the numerical ranges that your fixed-point data types
need to cover. These ranges dictate the appropriate scalings for your fixed-point data
types. In general, the procedure is

1 Implement your algorithm using fixed-point fi objects, using initial “best guesses”
for word lengths and scalings.

2 Set the fipref DataTypeOverride property to ScaledDoubles, TrueSingles, or
TrueDoubles.

3 Set the fipref LoggingMode property to on.
4 Use the maxlog and minlog functions to log the maximum and minimum values

achieved by the variables in your algorithm in floating-point mode.

5 Working with fipref Objects

5-14

5 Set the fipref DataTypeOverride property to ForceOff.
6 Use the information obtained in step 4 to set the fixed-point scaling for each

variable in your algorithm such that the full numerical range of each variable is
representable by its data type and scaling.

A detailed example of this process is shown in the Fixed-Point Designer Setting Fixed-
Point Data Types Using Min/Max Instrumentation example.

6

Working with numerictype Objects

• “numerictype Object Construction” on page 6-2
• “numerictype Object Properties” on page 6-6
• “numerictype of Fixed-Point Objects” on page 6-12
• “numerictype Objects Usage to Share Data Type and Scaling Settings of fi objects” on

page 6-15

6 Working with numerictype Objects

6-2

numerictype Object Construction

In this section...

“numerictype Object Syntaxes” on page 6-2
“Example: Construct a numerictype Object with Property Name and Property Value
Pairs” on page 6-3
“Example: Copy a numerictype Object” on page 6-4
“Example: Build numerictype Object Constructors in a GUI” on page 6-4

numerictype Object Syntaxes

numerictype objects define the data type and scaling attributes of fi objects, as well as
Simulink signals and model parameters. You can create numerictype objects in Fixed-
Point Designer software in one of two ways:

• You can use the numerictype constructor function to create a new object.
• You can use the numerictype constructor function to copy an existing numerictype

object.

To get started, type

T = numerictype

to create a default numerictype object.

T =

 DataTypeMode: Fixed-point: binary point scaling

 Signedness: Signed

 WordLength: 16

 FractionLength: 15

To see all of the numerictype object syntaxes, refer to the numerictype constructor
function reference page.

The following examples show different ways of constructing numerictype objects.
For more examples of constructing numerictype objects, see the “Examples” on the
numerictype constructor function reference page.

 numerictype Object Construction

6-3

Example: Construct a numerictype Object with Property Name and
Property Value Pairs

When you create a numerictype object using property name and property value pairs,
Fixed-Point Designer software first creates a default numerictype object, and then, for
each property name you specify in the constructor, assigns the corresponding value.

This behavior differs from the behavior that occurs when you use a syntax such as T
= numerictype(s,w), where you only specify the property values in the constructor.
Using such a syntax results in no default numerictype object being created, and the
numerictype object receives only the assigned property values that are specified in the
constructor.

The following example shows how the property name/property value syntax creates a
slightly different numerictype object than the property values syntax, even when you
specify the same property values in both constructors.

To demonstrate this difference, suppose you want to create an unsigned numerictype
object with a word length of 32 bits.

First, create the numerictype object using property name/property value pairs.

T1 = numerictype('Signed',0,'WordLength',32)

T1 =

 DataTypeMode: Fixed-point: binary point scaling

 Signedness: Unsigned

 WordLength: 32

 FractionLength: 15

The numerictype object T1 has the same DataTypeMode and FractionLength
as a default numerictype object, but the WordLength and Signed properties are
overwritten with the values you specified.

Now, create another unsigned 32 bit numerictype object, but this time specify only
property values in the constructor.

T2 = numerictype(0,32)

T2 =

6 Working with numerictype Objects

6-4

 DataTypeMode: Fixed-point: unspecified scaling

 Signedness: Unsigned

 WordLength: 32

Unlike T1, T2 only has the property values you specified. The DataTypeMode of T2 is
Fixed-Point: unspecified scaling, so no fraction length is assigned.

fi objects cannot have unspecified numerictype properties. Thus, all unspecified
numerictype object properties become specified at the time of fi object creation.

Example: Copy a numerictype Object

To copy a numerictype object, simply use assignment as in the following example:

T = numerictype;

U = T;

isequal(T,U)

ans =

 1

Example: Build numerictype Object Constructors in a GUI

When you are working with files in MATLAB, you can build your numerictype
object constructors using the Insert numerictype Constructor dialog box. After
specifying the properties of the numerictype object in the dialog box, you can insert the
prepopulated numerictype object constructor string at a specific location in your file.

For example, to create a signed numerictype object with binary-point scaling, a word
length of 32 bits and a fraction length of 30 bits, perform the following steps:

1 On the Home tab, in the File section, click New > Script to open the MATLAB
Editor

2
On the Editor tab, in the Edit section, click in the Insert button group.
Click the Insert numerictype... to open the Insert numerictype Constructor
dialog box.

3 Use the edit boxes and drop-down menus to specify the following properties of the
numerictype object:

 numerictype Object Construction

6-5

• Data type mode = Fixed-point: binary point scaling
• Signedness = Signed
• Word length = 32
• Fraction length = 30

4 To insert the numerictype object constructor string in your file, place your cursor
at the desired location in the file, and click OK on the Insert numerictype
Constructor dialog box. Clicking OK closes the Insert numerictype Constructor
dialog box and automatically populates the numerictype object constructor string
in your file:

6 Working with numerictype Objects

6-6

numerictype Object Properties

In this section...

“Data Type and Scaling Properties” on page 6-6
“How Properties are Related” on page 6-9
“Set numerictype Object Properties” on page 6-10

Data Type and Scaling Properties

All properties of a numerictype object are writable. However, the numerictype
properties of a fi object become read only after the fi object has been created. Any
numerictype properties of a fi object that are unspecified at the time of fi object
creation are automatically set to their default values. The properties of a numerictype
object are:

Property Description Valid Values

Bias Bias associated with the object.

Along with the slope, the bias
forms the scaling of a fixed-point
number.

• Any floating-point number

DataType Data type category • Fixed (default) — Fixed-point or integer data
type

• boolean — Built-in MATLAB boolean data
type

• double — Built-in MATLAB double data
type

• ScaledDouble — Scaled double data type
• single — Built-in MATLAB single data

type
DataTypeModeData type and scaling associated

with the object
• Fixed-point: binary point scaling

(default) — Fixed-point data type and scaling
defined by the word length and fraction length

• Boolean — Built-in boolean
• Double — Built-in double

 numerictype Object Properties

6-7

Property Description Valid Values

• Fixed-point: slope and bias scaling

— Fixed-point data type and scaling defined
by the slope and bias

• Fixed-point: unspecified scaling —
Fixed-point data type with unspecified scaling

• Scaled double: binary point scaling

— Double data type with fixed-point word
length and fraction length information
retained

• Scaled double: slope and bias

scaling — Double data type with fixed-point
slope and bias information retained

• Scaled double: unspecified scaling

— Double data type with unspecified fixed-
point scaling

• Single — Built-in single
FixedExponentFixed-point exponent associated

with the object
• Any integer

Note: The FixedExponent property is the
negative of the FractionLength. Changing one
property changes the other.

FractionLengthFraction length of the stored
integer value, in bits

• Best precision fraction length based on value
of the object and the word length (default)

• Any integer

Note: The FractionLength property is the
negative of the FixedExponent. Changing one
property changes the other.

6 Working with numerictype Objects

6-8

Property Description Valid Values

Scaling Scaling mode of the object • BinaryPoint (default) — Scaling for the fi
object is defined by the fraction length.

• SlopeBias — Scaling for the fi object is
defined by the slope and bias.

• Unspecified — A temporary setting that is
only allowed at fi object creation, to allow for
the automatic assignment of a binary point
best-precision scaling.

Signed Whether the object is signed

Note: Although the Signed
property is still supported, the
Signedness property always
appears in the numerictype
object display. If you choose to
change or set the signedness of
your numerictype objects using
the Signed property, MATLAB
updates the corresponding value
of the Signedness property.

• true (default) — signed
• false — unsigned
• 1 — signed
• 0 — unsigned
• [] — auto

Signedness Whether the object is signed,
unsigned, or has an unspecified
sign

• Signed (default)
• Unsigned

• Auto — unspecified sign
Slope Slope associated with the object

Along with the bias, the slope
forms the scaling of a fixed-point
number.

• Any floating-point number

Note:

slope slope adjustment factor
fixed exponent

= ¥ 2

Changing one of these properties changes the
other.

 numerictype Object Properties

6-9

Property Description Valid Values

Slope

AdjustmentFactor

Slope adjustment associated
with the object

The slope adjustment is
equivalent to the fractional slope
of a fixed-point number.

• Any number greater than or equal to 1 and
less than 2

Note:

slope slope adjustment factor
fixed exponent

= ¥ 2

Changing one of these properties changes the
other.

WordLength Word length of the stored
integer value, in bits

• 16 (default)
• Any positive integer

These properties are described in detail in the “fi Object Properties”. To learn how to
specify properties for numerictype objects in Fixed-Point Designer software, refer to
“Set numerictype Object Properties” on page 6-10.

How Properties are Related

Properties that affect the slope

The Slope field of the numerictype object is related to the SlopeAdjustmentFactor
and FixedExponent properties by

slope slope adjustment factor
fixed exponent

= ¥ 2

The FixedExponent and FractionLength properties are related by

fixed exponent fraction length= -

If you set the SlopeAdjustmentFactor, FixedExponent, or FractionLength
property, the Slope field is modified.

Stored integer value and real world value

In binary point scaling the numerictype StoredIntegerValue and RealWorldValue
properties are related according to

6 Working with numerictype Objects

6-10

real world value stored integer value
-fraction length

- = ¥2

In [Slope Bias] scaling the RealWorldValue can be represented by

real world value

stored integer value slope a

-

=

¥ (ddjustment factor bias
fixed exponent

¥ +2)

which is equivalent to

real world value slope stored integer bias- = ¥ +()

If any of these properties are updated, the others are modified accordingly.

Set numerictype Object Properties

Setting numerictype Properties at Object Creation

You can set properties of numerictype objects at the time of object creation by including
properties after the arguments of the numerictype constructor function.

For example, to set the word length to 32 bits and the fraction length to 30 bits,

T = numerictype('WordLength', 32, 'FractionLength', 30)

T =

 DataTypeMode: Fixed-point: binary point scaling

 Signedness: Signed

 WordLength: 32

 FractionLength: 30

In addition to creating a numerictype object at the command line, you can also set
numerictype properties using the Insert numerictype Constructor dialog box. For
an example of this approach, see “Example: Build numerictype Object Constructors in a
GUI” on page 6-4.

Use Direct Property Referencing with numerictype Objects

You can reference directly into a property for setting or retrieving numerictype object
property values using MATLAB structure-like referencing. You do this by using a period
to index into a property by name.

 numerictype Object Properties

6-11

For example, to get the word length of T,

T.WordLength

ans =

32

To set the fraction length of T,

T.FractionLength = 31

T =

 DataTypeMode: Fixed-point: binary point scaling

 Signedness: Signed

 WordLength: 32

 FractionLength: 31

6 Working with numerictype Objects

6-12

numerictype of Fixed-Point Objects

In this section...

“Valid Values for numerictype Object Properties” on page 6-12
“Properties That Affect the Slope” on page 6-14
“Stored Integer Value and Real World Value” on page 6-14

Valid Values for numerictype Object Properties

The numerictype object contains all the data type and scaling attributes of a fixed-point
object. The numerictype object behaves like any MATLAB object, except that it only
lets you set valid values for defined fields. The following table shows the possible settings
of each field of the object.

Note When you create a fi object, any unspecified field of the numerictype object
reverts to its default value. Thus, if the DataTypeMode is set to unspecified
scaling, it defaults to binary point scaling when the fi object is created. If the
Signedness property of the numerictype object is set to Auto, it defaults to Signed
when the fi object is created.

DataTypeMode DataType Scaling Signedness Word-
Length

Fraction-
Length

Slope Bias

Fixed-point data types
Fixed-point:

binary point

scaling

Fixed BinaryPointSigned

Unsigned

Auto

Positive
integer
from
1 to
65,536

Positive
or
negative
integer

2^(-
fraction
length)

0

Fixed-point:

slope and

bias scaling

Fixed SlopeBias Signed

Unsigned

Auto

Positive
integer
from
1 to
65,536

N/A Any
floating-
point
number

Any
floating-
point
number

 numerictype of Fixed-Point Objects

6-13

DataTypeMode DataType Scaling Signedness Word-
Length

Fraction-
Length

Slope Bias

Fixed-point:

unspecified

scaling

Fixed UnspecifiedSigned

Unsigned

Auto

Positive
integer
from
1 to
65,536

N/A N/A N/A

Scaled double data types
Scaled

double:

binary point

scaling

ScaledDoubleBinaryPointSigned

Unsigned

Auto

Positive
integer
from
1 to
65,536

Positive
or
negative
integer

2^(-
fraction
length)

0

Scaled

double: slope

and bias

scaling

ScaledDoubleSlopeBias Signed

Unsigned

Auto

Positive
integer
from
1 to
65,536

N/A Any
floating-
point
number

Any
floating-
point
number

Scaled

double:

unspecified

scaling

ScaledDoubleUnspecifiedSigned

Unsigned

Auto

Positive
integer
from
1 to
65,536

N/A N/A N/A

Built-in data types
Double double N/A 1

true

64 0 1 0

Single single N/A 1

true

32 0 1 0

Boolean boolean N/A 0

false

1 0 1 0

You cannot change the numerictype properties of a fi object after fi object creation.

6 Working with numerictype Objects

6-14

Properties That Affect the Slope

The Slope field of the numerictype object is related to the SlopeAdjustmentFactor
and FixedExponent properties by

slope slope adjustment factor
fixed exponent

= ¥ 2

The FixedExponent and FractionLength properties are related by

fixed exponent fraction length= -

If you set the SlopeAdjustmentFactor, FixedExponent, or FractionLength
property, the Slope field is modified.

Stored Integer Value and Real World Value

In binary point scaling the numerictype StoredIntegerValue and RealWorldValue
properties are related according to

real world value stored integer value
-fraction length

- = ¥2

In [Slope Bias] scaling the RealWorldValue can be represented by

real world value

stored integer value slope a

-

=

¥ (ddjustment factor bias
fixed exponent

¥ +2)

which is equivalent to

real world value slope stored integer bias- = ¥ +()

If any of these properties are updated, the others are modified accordingly.

For more detail on these properties see “numerictype Object Properties” on page 6-6.

For more information on scaling see “Data Types and Scaling”

 numerictype Objects Usage to Share Data Type and Scaling Settings of fi objects

6-15

numerictype Objects Usage to Share Data Type and Scaling
Settings of fi objects

You can use a numerictype object to define common data type and scaling rules that
you would like to use for many fi objects. You can then create multiple fi objects, using
the same numerictype object for each.

Example 1

In the following example, you create a numerictype object T with word length 32 and
fraction length 28. Next, to ensure that your fi objects have the same numerictype
attributes, create fi objects a and b using your numerictype object T.

format long g

T = numerictype('WordLength',32,'FractionLength',28)

T =

 DataTypeMode: Fixed-point: binary point scaling

 Signedness: Signed

 WordLength: 32

 FractionLength: 28

a = fi(pi,T)

a =

 3.1415926553309

 DataTypeMode: Fixed-point: binary point scaling

 Signedness: Signed

 WordLength: 32

 FractionLength: 28

b = fi(pi/2, T)

b =

 1.5707963258028

6 Working with numerictype Objects

6-16

 DataTypeMode: Fixed-point: binary point scaling

 Signedness: Signed

 WordLength: 32

 FractionLength: 28

Example 2

In this example, start by creating a numerictype object T with [Slope Bias] scaling.
Next, use that object to create two fi objects, c and d with the same numerictype
attributes:

T = numerictype('Scaling','slopebias','Slope', 2^2, 'Bias', 0)

T =

 DataTypeMode: Fixed-point: slope and bias scaling

 Signedness: Signed

 WordLength: 16

 Slope: 2^2

 Bias: 0

c = fi(pi, T)

c =

 4

 DataTypeMode: Fixed-point: slope and bias scaling

 Signedness: Signed

 WordLength: 16

 Slope: 2^2

 Bias: 0

d = fi(pi/2, T)

d =

 0

 DataTypeMode: Fixed-point: slope and bias scaling

 Signedness: Signed

 WordLength: 16

 Slope: 2^2

 Bias: 0

 numerictype Objects Usage to Share Data Type and Scaling Settings of fi objects

6-17

For more detail on the properties of numerictype objects see “numerictype Object
Properties” on page 6-6.

7

Working with quantizer Objects

• “Constructing quantizer Objects” on page 7-2
• “quantizer Object Properties” on page 7-3
• “Quantizing Data with quantizer Objects” on page 7-4
• “Transformations for Quantized Data” on page 7-6

7 Working with quantizer Objects

7-2

Constructing quantizer Objects

You can use quantizer objects to quantize data sets. You can create quantizer objects
in Fixed-Point Designer software in one of two ways:

• You can use the quantizer constructor function to create a new object.
• You can use the quantizer constructor function to copy a quantizer object.

To create a quantizer object with default properties, type

q = quantizer

q =

 DataMode = fixed

 RoundingMethod = Floor

 OverflowAction = Saturate

 Format = [16 15]

To copy a quantizer object, simply use assignment as in the following example:

q = quantizer;

r = q;

isequal(q,r)

ans =

 1

A listing of all the properties of the quantizer object q you just created is displayed
along with the associated property values. All property values are set to defaults when
you construct a quantizer object this way. See “quantizer Object Properties” on page
7-3 for more details.

 quantizer Object Properties

7-3

quantizer Object Properties

The following properties of quantizer objects are always writable:

• DataMode — Type of arithmetic used in quantization
• Format — Data format of a quantizer object
• OverflowAction — Action to take on overflow
• RoundingMethod — Rounding method

See the“fi Object Properties” for more details about these properties, including their
possible values.

For example, to create a fixed-point quantizer object with

• The Format property value set to [16,14]
• The OverflowAction property value set to 'Saturate'
• The RoundingMethod property value set to 'Ceiling'

type

q = quantizer('datamode','fixed','format',[16,14],...

 'OverflowMode','saturate','RoundMode','ceil')

You do not have to include quantizer object property names when you set quantizer
object property values.

For example, you can create quantizer object q from the previous example by typing

q = quantizer('fixed',[16,14],'saturate','ceil')

Note You do not have to include default property values when you construct a
quantizer object. In this example, you could leave out 'fixed' and 'saturate'.

7 Working with quantizer Objects

7-4

Quantizing Data with quantizer Objects

You construct a quantizer object to specify the quantization parameters to use when
you quantize data sets. You can use the quantize function to quantize data according to
a quantizer object's specifications.

Once you quantize data with a quantizer object, its state values might change.

The following example shows

• How you use quantize to quantize data
• How quantization affects quantizer object states
• How you reset quantizer object states to their default values using reset

1 Construct an example data set and a quantizer object.

format long g

rng('default');

x = randn(100,4);

q = quantizer([16,14]);

2 Retrieve the values of the maxlog and noverflows states.

q.maxlog

ans =

 -1.79769313486232e+308

q.noverflows

ans =

 0

Note that maxlog is equal to -realmax, which indicates that the quantizer q is in a
reset state.

3 Quantize the data set according to the quantizer object's specifications.

y = quantize(q,x);

Warning: 626 overflow(s) occurred in the fi quantize operation.

4 Check the values of maxlog and noverflows.

 Quantizing Data with quantizer Objects

7-5

q.maxlog

ans =

 1.99993896484375

q.noverflows

ans =

 626

Note that the maximum logged value was taken after quantization, that is,
q.maxlog == max(y).

5 Reset the quantizer states and check them.

reset(q)

q.maxlog

ans =

 -1.79769313486232e+308

q.noverflows

ans =

 0

7 Working with quantizer Objects

7-6

Transformations for Quantized Data

You can convert data values from numeric to hexadecimal or binary according to a
quantizer object's specifications.

Use

• num2bin to convert data to binary
• num2hex to convert data to hexadecimal
• hex2num to convert hexadecimal data to numeric
• bin2num to convert binary data to numeric

For example,

q = quantizer([3 2]);

x = [0.75 -0.25

 0.50 -0.50

 0.25 -0.75

 0 -1];

b = num2bin(q,x)

b =

011

010

001

000

111

110

101

100

produces all two's complement fractional representations of 3-bit fixed-point numbers.

8

Automated Fixed-Point Conversion

• “Fixed-Point Conversion Workflows” on page 8-2
• “Automated Fixed-Point Conversion” on page 8-4
• “Best Practices for Debugging Out-of-the-Box Conversion by the Fixed-Point

Converter” on page 8-25
• “MATLAB Language Features Supported for Automated Fixed-Point Conversion” on

page 8-47
• “Generated Fixed-Point Code” on page 8-50
• “Fixed-Point Code for MATLAB Classes” on page 8-56
• “Automated Fixed-Point Conversion Best Practices” on page 8-59
• “Replacing Functions Using Lookup Table Approximations” on page 8-67
• “Custom Plot Functions” on page 8-68
• “Generate Fixed-Point MATLAB Code for Multiple Entry-Point Functions” on page

8-70
• “Convert Code Containing Global Data to Fixed Point” on page 8-74
• “Convert Code Containing Global Variables to Fixed-Point” on page 8-79
• “Data Type Issues in Generated Code” on page 8-82
• “Using the Fixed-Point Converter App with System Objects” on page 8-84
• “Use the Fixed-Point Converter App with a System object” on page 8-85

8 Automated Fixed-Point Conversion

8-2

Fixed-Point Conversion Workflows

In this section...

“Choosing a Conversion Workflow” on page 8-2
“Automated Workflow” on page 8-2
“Manual Workflow” on page 8-3

Choosing a Conversion Workflow

MathWorks® provides a number of solutions for fixed-point conversion. Which conversion
method you use depends on your end goal and your level of fixed-point expertise.

Goal Conversion Method See Also

If you are new to fixed-point
modeling, use the Fixed-
Point Converter app.

“Automated Workflow” on
page 8-2

Use generated fixed-
point MATLAB code for
simulation purposes.

If you are familiar with
fixed-point modeling, and
want to quickly explore
design tradeoffs, convert
your code manually.

“Manual Workflow” on page
8-3

Generate fixed-point C
code (requires MATLAB
Coder™)

MATLAB Coder Fixed-Point
Conversion tool

Convert MATLAB Code to
Fixed-Point C Code

Generated HDL code
(requires HDL Coder™)

HDL Coder Workflow
Advisor

Floating-Point to Fixed-Point
Conversion

Integrate fixed-point
MATLAB code in larger
applications for system-level
simulation.

Generate a MEX function
from the fixed-point
algorithm and call the MEX
function instead of the
original MATLAB function.

“Propose Data Types Based
on Simulation Ranges” and
“Propose Data Types Based
on Derived Ranges”

Automated Workflow

If you are new to fixed-point modeling and you are looking for a direct path from floating-
point MATLAB to fixed-point MATLAB code, use the automated workflow. Using this

http://www-jobarchive.mathworks.com/Bdoc14b/latest_pass/matlab/help/coder/ug/convert-matlab-code-to-fixed-point-c-code.html
http://www-jobarchive.mathworks.com/Bdoc14b/latest_pass/matlab/help/coder/ug/convert-matlab-code-to-fixed-point-c-code.html
http://www-jobarchive.mathworks.com/Bdoc14b/latest_pass/matlab/help/hdlcoder/ug/floating-point-to-fixed-point-conversion.html
http://www-jobarchive.mathworks.com/Bdoc14b/latest_pass/matlab/help/hdlcoder/ug/floating-point-to-fixed-point-conversion.html

 Fixed-Point Conversion Workflows

8-3

automated workflow, you can obtain data type proposals based on simulation ranges,
static ranges, or both. For more information, see “Automated Fixed-Point Conversion”,
“Propose Data Types Based on Simulation Ranges”, and “Propose Data Types Based on
Derived Ranges”.

Manual Workflow

If you have a baseline understanding of fixed-point implementation details and an
interest in exploring design tradeoffs to achieve optimized results, use the separate
algorithm/data type workflow. Separating algorithmic code from data type specifications
allows you to quickly explore design tradeoffs. This approach provides readable, portable
fixed-point code that you can easily integrated into other projects. For more information,
see “Manual Fixed-Point Conversion Workflow” and “Implement FIR Filter Algorithm for
Floating-Point and Fixed-Point Types using cast and zeros”.

8 Automated Fixed-Point Conversion

8-4

Automated Fixed-Point Conversion

In this section...

“Automated Fixed-Point Conversion Capabilities” on page 8-4
“Code Coverage” on page 8-5
“Proposing Data Types” on page 8-8
“Locking Proposed Data Types” on page 8-10
“Viewing Functions” on page 8-11
“Viewing Variables” on page 8-18
“Log Data for Histogram” on page 8-20
“Function Replacements” on page 8-22
“Validating Types” on page 8-23
“Testing Numerics” on page 8-23
“Detecting Overflows” on page 8-23

Automated Fixed-Point Conversion Capabilities

You can convert floating-point MATLAB code to fixed-point code using the Fixed-Point
Converter app or at the command line using the fiaccel function -float2fixed
option. You can choose to propose data types based on simulation range data, derived
(also known as static) range data, or both.

You can manually enter static ranges. These manually entered ranges take precedence
over simulation ranges and the app uses them when proposing data types. In addition,
you can modify and lock the proposed type so that the app cannot change it. For more
information, see “Locking Proposed Data Types” on page 8-10.

For a list of supported MATLAB features and functions, see “MATLAB Language
Features Supported for Automated Fixed-Point Conversion”.

During fixed-point conversion, you can:

• Verify that your test files cover the full intended operating range of your algorithm
using code coverage results.

• Propose fraction lengths based on default word lengths.

 Automated Fixed-Point Conversion

8-5

• Propose word lengths based on default fraction lengths.
• Optimize whole numbers.
• Specify safety margins for simulation min/max data.
• Validate that you can build your project with the proposed data types.
• Test numerics by running the test file with the fixed-point types applied.
• View a histogram of bits used by each variable.
• Detect overflows.

Code Coverage

By default, the app shows code coverage results. Your test files must exercise the
algorithm over its full operating range so that the simulation ranges are accurate. The
quality of the proposed fixed-point data types depends on how well the test files cover the
operating range of the algorithm with the accuracy that you want.

Reviewing code coverage results helps you verify that your test file is exercising the
algorithm adequately. If the code coverage is inadequate, modify the test file or add
more test files to increase coverage. If you simulate multiple test files in one run, the tool
displays cumulative coverage. However, if you specify multiple test files but run them
one at a time, the tool displays the coverage of the file that ran last.

Code coverage is on by default. Turn it off only after you have verified that you have
adequate test file coverage. Turning off code coverage might speed up simulation.

The app covers basic MATLAB control constructs and shows statement coverage for basic
blocks of code. The app displays a color-coded coverage bar to the left of the code.

Coverage Bar
Color

How Often Code is Executed During Test File Simulation

Dark green Always
Light green Sometimes
Orange Once
Red Never

8 Automated Fixed-Point Conversion

8-6

 Automated Fixed-Point Conversion

8-7

When you position your cursor over the coverage bar, the color highlighting extends over
the code and the app displays more information about how often the code is executed.
For MATLAB constructs that affect control flow (if-elseif-else, switch-case, for-continue-
break, return), it displays statement coverage as a percentage coverage for basic blocks
inside these constructs.

To verify that your test file is testing your algorithm over the intended operating range,
review the code coverage results and take action as described in the following table.

8 Automated Fixed-Point Conversion

8-8

Coverage Bar
Color

Action Required

Dark green None
Light green Review percentage coverage and verify that it is reasonable based

on your algorithm. If there are areas of code that you expect to be
executed more frequently, modify your test file or add more test files
to increase coverage.

Orange This behavior is expected for initialization code, for example, the
initialization of persistent variables. For other cases, verify that this
behavior is reasonable for your algorithm. If there are areas of code
that you expect to be executed more frequently, modify your test file or
add more test files to increase coverage.

Red If the code that is not executed is an error condition, this behavior
is acceptable. If the code should be executed, modify the test file
or add another test file to extend coverage. If the code is written
conservatively and has upper and lower boundary limits, and you
cannot modify the test file to reach this code, add static minimum and
maximum values (see “Computing Derived Ranges”).

Proposing Data Types

The app proposes fixed-point data types based on computed ranges and the word length
or fraction length setting. The computed ranges are based on simulation range data,
derived range data (also known as static ranges), or both. If you run a simulation and
compute derived ranges, the conversion tool merges the simulation and derived ranges.

Note: You cannot propose data types based on derived ranges for MATLAB classes.

You can manually enter static ranges. These manually entered ranges take precedence
over simulation ranges and the tool uses them when proposing data types. In addition,
you can modify and lock the proposed type so that the tool cannot change it. For more
information, see “Locking Proposed Data Types” on page 8-10.

Running a Simulation

During fixed-point conversion, the app generates an instrumented MEX function for
your entry-point MATLAB file. If the build completes without errors, the app displays

 Automated Fixed-Point Conversion

8-9

compiled information (type, size, complexity) for functions and variables in your code.
To navigate to local functions, click the Functions tab. If build errors occur, the app
provides error messages that link to the line of code that caused the build issues. You
must address these errors before running a simulation. Use the link to navigate to
the offending line of code in the MATLAB editor and modify the code to fix the issue.
If your code uses functions that are not supported for fixed-point conversion, the app
displays them on the Function Replacements tab. See “Function Replacements” on
page 8-22.

Before running a simulation, specify the test file or files that you want to run. When you
run a simulation, the app runs the test file, calling the instrumented MEX function. If
you modify the MATLAB design code, the app automatically generates an updated MEX
function before running a test file.

If the test file runs successfully, the simulation minimum and maximum values and the
proposed types are displayed on the Variables tab. If you manually enter static ranges
for a variable, the manually entered ranges take precedence over the simulation ranges.
If you manually modify the proposed types by typing or using the histogram, the data
types are locked so that the app cannot modify them.

If the test file fails, the errors are displayed on the Simulation Output tab.

Test files must exercise your algorithm over its full operating range. The quality of the
proposed fixed-point data types depends on how well the test file covers the operating
range of the algorithm with the accuracy that you want. You can add test files and select
to run more than one test file during the simulation. If you run multiple test files, the
app merges the simulation results.

Optionally, you can select to log data for histograms. After running a simulation, you
can view the histogram for each variable. For more information, see “Log Data for
Histogram” on page 8-20.

Computing Derived Ranges

The advantage of proposing data types based on derived ranges is that you do not have to
provide test files that exercise your algorithm over its full operating range. Running such
test files often takes a very long time.

To compute derived ranges and propose data types based on these ranges, provide
static minimum and maximum values or proposed data types for all input variables.
To improve the analysis, enter as much static range information as possible for other

8 Automated Fixed-Point Conversion

8-10

variables. You can manually enter ranges or promote simulation ranges to use as static
ranges. Manually entered static ranges always take precedence over simulation ranges.

If you know what data type your hardware target uses, set the proposed data types to
match this type. Manually entered data types are locked so that the app cannot modify
them. The app uses these data types to calculate the input minimum and maximum
values and to derive ranges for other variables. For more information, see “Locking
Proposed Data Types” on page 8-10.

When you select Compute Derived Ranges, the app runs a derived range analysis to
compute static ranges for variables in your MATLAB algorithm. When the analysis is
complete, the static ranges are displayed on the Variables tab. If the run produces +/-
Inf derived ranges, consider defining ranges for all persistent variables.

Optionally, you can select Quick derived range analysis. With this option, the app
performs faster static analysis. The computed ranges might be larger than necessary.
Select this option in cases where the static analysis takes more time than you can afford.

If the derived range analysis for your project is taking a long time, you can optionally set
a timeout. When the timeout is reached, the app aborts the analysis.

Locking Proposed Data Types

You can lock proposed data types against changes by the app using one of the following
methods:

• Manually setting a proposed data type in the app.
• Right-clicking a type proposed by the tool and selecting Lock computed value.

The app displays locked data types in bold so that they are easy to identify. You can
unlock a type using one of the following methods:

• Manually overwriting it.
• Right-clicking it and selecting Undo changes. This action unlocks only the selected

type.
• Right-clicking and selecting Undo changes for all variables. This action

unlocks all locked proposed types.

 Automated Fixed-Point Conversion

8-11

Viewing Functions

During the Convert to Fixed Point step of the fixed-point conversion process, you can
view a list of functions in your project in the left pane. This list also includes function
specializations and class methods. When you select a function from the list, the MATLAB
code for that function or class method is displayed in the code window and the variables
that they use are displayed on the Variables tab.

After conversion, the left pane also displays a list of output files including the fixed-
point version of the original algorithm. If your function is not specialized, the app
retains the original function name in the fixed-point file name and appends the fixed-
point suffix. For example, here the fixed-point version of fun_with_matlab.m is
fun_with_matlab_fixpt.m.

8 Automated Fixed-Point Conversion

8-12

Classes

The app displays information for the class and each of its methods. For example, consider
a class, Counter, that has a static method, MAX_VALUE, and a method, next.

If you select the class, the app displays the class and its properties on the Variables tab.

 Automated Fixed-Point Conversion

8-13

If you select a method, the app displays only the variables that the method uses.

8 Automated Fixed-Point Conversion

8-14

Specializations

If a function is specialized, the app lists each specialization and numbers them
sequentially. For example, consider a function, dut, that calls subfunctions, foo and
bar, multiple times with different input types.

function y = dut(u, v)

tt1 = foo(u);

tt2 = foo([u v]);

tt3 = foo(complex(u,v));

ss1 = bar(u);

ss2 = bar([u v]);

ss3 = bar(complex(u,v));

y = (tt1 + ss1) + sum(tt2 + ss2) + real(tt3) + real(ss3);

 Automated Fixed-Point Conversion

8-15

end

function y = foo(u)

 y = u * 2;

end

function y = bar(u)

 y = u * 4;

end

If you select the top-level function, the app displays all the variables on the Variables
tab.

If you select the tree view, the app also displays the line numbers for the call to each
specialization.

8 Automated Fixed-Point Conversion

8-16

If you select a specialization, the app displays only the variables that the specialization
uses.

 Automated Fixed-Point Conversion

8-17

In the generated fixed-point code, the number of each fixed-point specialization matches
the number in the Source Code list, which makes it easy to trace between the floating-
point and fixed-point versions of your code. For example, the generated fixed-point
function for foo > 1 is named foo_s1.

8 Automated Fixed-Point Conversion

8-18

Viewing Variables

The Variables tab provides the following information for each variable in the function
selected in the Navigation pane:

• Type — The original data type of the variable in the MATLAB algorithm.
• Sim Min and Sim Max — The minimum and maximum values assigned to the

variable during simulation.

You can edit the simulation minimum and maximum values. Edited fields are shown
in bold. Editing these fields does not trigger static range analysis, but the tool uses
the edited values in subsequent analyses. You can revert to the types proposed by the
app.

• Static Min and Static Max — The static minimum and maximum values.

 Automated Fixed-Point Conversion

8-19

To compute derived ranges and propose data types based on these ranges, provide
static minimum and maximum values for all input variables. To improve the analysis,
enter as much static range information as possible for other variables.

When you compute derived ranges, the app runs a static analysis to compute static
ranges for variables in your code. When the analysis is complete, the static ranges are
displayed. You can edit the computed results. Edited fields are shown in bold. Editing
these fields does not trigger static range analysis, but the tool uses the edited values
in subsequent analyses. You can revert to the types proposed by the app.

• Whole Number — Whether all values assigned to the variable during simulation are
integers.

The app determines whether a variable is always a whole number. You can modify
this field. Edited fields are shown in bold. Editing these fields does not trigger static
range analysis, but the app uses the edited values in subsequent analyses. You can
revert to the types proposed by the app.

• The proposed fixed-point data type for the specified word (or fraction)
length. Proposed data types use the numerictype notation. For example,
numerictype(1,16,12) denotes a signed fixed-point type with a word length of 16
and a fraction length of 12. numerictype(0,16,12) denotes an unsigned fixed-point
type with a word length of 16 and a fraction length of 12.

Because the app does not apply data types to expressions, it does not display proposed
types for them. Instead, it displays their original data types.

You can also view and edit variable information in the code pane by placing your cursor
over a variable name.

You can use Ctrl+F to search for variables in the MATLAB code and on the Variables
tab. The app highlights occurrences in the code and displays only the variable with the
specified name on the Variables tab.

Viewing Information for MATLAB Classes

The app displays:

• Code for MATLAB classes and code coverage for class methods in the code window.
Use the Source Code list on the Convert to Fixed Point page to select which class
or class method to view. If you select a class method, the app highlights the method in
the code window.

8 Automated Fixed-Point Conversion

8-20

• Information about MATLAB classes on the Variables tab.

Log Data for Histogram

To log data for histograms:

• On the Convert to Fixed Point page, click the Simulate arrow .

 Automated Fixed-Point Conversion

8-21

• Select Log data for histogram.

• Click Simulate.

After simulation, to view the histogram for a variable, on the Variables tab, click the
Proposed Type field for that variable.

The histogram provides the range of the proposed data type and the percentage of
simulation values that the proposed data type covers. The bit weights are displayed along
the X-axis, and the percentage of occurrences along the Y-axis. Each bin in the histogram
corresponds to a bit in the binary word. For example, this histogram displays the range
for a variable of type numerictype(1,16,14).

You can view the effect of changing the proposed data types by:

• Dragging the edges of the bounding box in the histogram window to change the
proposed data type.

8 Automated Fixed-Point Conversion

8-22

• Selecting or clearing Signed.

To revert to the types proposed by the automatic conversion, in the histogram window,

click .

Function Replacements

If your MATLAB code uses functions that do not have fixed-point support, the app
lists these functions on the Function Replacements tab. You can choose to replace
unsupported functions with a custom function replacement or with a lookup table.

You can add and remove function replacements from this list. If you enter a function
replacement for a function, the replacement function is used when you build the
project. If you do not enter a replacement, the app uses the type specified in the original
MATLAB code for the function.

 Automated Fixed-Point Conversion

8-23

Note: Using this table, you can replace the names of the functions but you cannot replace
argument patterns.

Validating Types

Converting the code to fixed point validates the build using the proposed fixed-point data
types. If the validation is successful, you are ready to test the numerical behavior of the
fixed-point MATLAB algorithm.

If the errors or warnings occur during validation, they are displayed on the Type
Validation Output tab. If errors or warning occur:

• On the Variables tab, inspect the proposed types and manually modified types to
verify that they are valid.

• On the Function Replacements tab, verify that you have provided function
replacements for unsupported functions.

Testing Numerics

After converting code to fixed point and validating the proposed fixed-point data types,
click Test to verify the behavior of the fixed-point MATLAB algorithm. By default, if
you added a test file to define inputs or run a simulation, the app uses this test file to
test numerics. Optionally, you can add test files and select to run more than one test file.
The app compares the numerical behavior of the generated fixed-point MATLAB code
with the original floating-point MATLAB code. If you select to log inputs and outputs for
comparison plots, the app generates an additional plot for each scalar output. This plot
shows the floating-point and fixed-point results and the difference between them. For
non-scalar outputs, only the error information is shown.

After fixed-point simulation, if the numerical results do not meet the accuracy that you
want, modify fixed-point data type settings and repeat the type validation and numerical
testing steps. You might have to iterate through these steps multiple times to achieve the
results that you want.

Detecting Overflows

When testing numerics, selecting Use scaled doubles to detect overflows enables
overflow detection. When this option is selected, the conversion app runs the simulation
using scaled double versions of the proposed fixed-point types. Because scaled doubles

8 Automated Fixed-Point Conversion

8-24

store their data in double-precision floating-point, they carry out arithmetic in full range.
They also retain their fixed-point settings, so they are able to report when a computation
goes out of the range of the fixed-point type. For more information, see “Scaled Doubles”.

If the app detects overflows, on its Overflow tab, it provides:

• A list of variables and expressions that overflowed
• Information on how much each variable overflowed
• A link to the variables or expressions in the code window

If your original algorithm uses scaled doubles, the app also provides overflow information
for these expressions.

See Also

“Detect Overflows”

 Best Practices for Debugging Out-of-the-Box Conversion by the Fixed-Point Converter

8-25

Best Practices for Debugging Out-of-the-Box Conversion by the
Fixed-Point Converter

This example shows some best practices for debugging your fixed-point code when you
need more than out of the box conversion. This flowchart summarizes steps you can take
to debug the conversion.

8 Automated Fixed-Point Conversion

8-26

 Best Practices for Debugging Out-of-the-Box Conversion by the Fixed-Point Converter

8-27

In this section...

“Prerequisites” on page 8-27
“Convert to Fixed Point Using Default Configuration” on page 8-31
“Determine Where Numerical Issues Originated” on page 8-34
“Adjust fimath Settings” on page 8-38
“Convert kalman_filter Function Using New fimath Settings” on page 8-41
“Adjust Word Length Settings” on page 8-42
“Replace Constant Functions” on page 8-44

Prerequisites

1 Create a local working folder, for example, c:\kalman_filter.
2 In your local working folder, create the following files.

• kalman_filter function

This is the main entry-point function for your project.

function [y] = kalman_filter(z,N0)

 %#codegen

 A = kalman_stm();

 % Measurement Matrix

 H = [1 0];

 % Process noise variance

 Q = 0;

 % Measurement noise variance

 R = N0 ;

 persistent x_est p_est

 if isempty(x_est)

 % Estimated state

 x_est = [0; 1];

 % Estimated error covariance

 p_est = N0 * eye(2, 2);

 end

 % Kalman algorithm

 % Predicted state and covariance

8 Automated Fixed-Point Conversion

8-28

 x_prd = A * x_est;

 p_prd = A * p_est * A' + Q;

 % Estimation

 S = H * p_prd' * H' + R;

 B = H * p_prd';

 klm_gain = matrix_solve(S,B)';

 % Estimated state and covariance

 x_est = x_prd + klm_gain * (z - H * x_prd);

 p_est = p_prd - klm_gain * H * p_prd;

 % Compute the estimated measurements

 y = H * x_est;

end

• kalman_stm function

This function is called by the kalman_filter function and computes the state
transition matrix.

function A = kalman_stm()

 f0 = 200;

 dt = 1/1e4;

 % Kalman filter initialization

 % State transition Matrix

 A = [cos(2*pi*f0*dt), -sin(2*pi*f0*dt);

 sin(2*pi*f0*dt), cos(2*pi*f0*dt)];

end

• matrix_solve function

This function is a more efficient implementation of a matrix left divide.

function x = matrix_solve(a,b)

 %fixed-point conversion friendly matrix solve: a * x = b

 % initialize x

 x = zeros(size(a,1),size(b,2));

 % compute lu decomposition of a

 [l, u] = lu_replacement(a);

 % solve x = a\b for every column of b

 through forward and backward substitution

 for col = 1:size(b,2)

 bcol = b(:,col);

 Best Practices for Debugging Out-of-the-Box Conversion by the Fixed-Point Converter

8-29

 y = forward_substitute(l,bcol);

 x(:,col) = back_substitute(u,y);

 end

end

• lu_replacement function

This function is called by the matrix_solve function.

function [l,A]=lu_replacement(A)

 N=size(A,1);

 l = eye(N);

 for n=1:N-1

 piv = A(n,n);

 for k=n+1:N

 mult = divide_no_zero(A(k,n),piv);

 A(k,:) = -mult*A(n,:) + A(k,:);

 l(k,n) = mult;

 end

 end

end

• forward_substitute function

This function is called by the matrix_solve function.

function y = forward_substitute(l,b)

 % forward substitution

 N = size(b,1);

 y = zeros(N,1);

 % forward substitution

 y(1) = divide_no_zero(b(1),l(1,1));

 for n = 2:N

 acc = 0;

 for k = 1:n-1

 acc(:) = acc + y(k)*l(n,k);

 end

 y(n) = divide_no_zero((b(n)-acc),l(n,n));

 end

end

• back_substitute function

This function is called by the matrix_solve function.

8 Automated Fixed-Point Conversion

8-30

function x = back_substitute(u,y)

 % backwards substitution

 N = size(u,1);

 x = zeros(N,1);

 % backward substitution

 x(N) = divide_no_zero(y(N),u(N,N));

 for n = (N-1):(-1):(1)

 acc = 0;

 for k = n:(N)

 acc(:) = acc + x(k)*u(n,k);

 end

 x(n) = divide_no_zero((y(n) - acc),u(n,n));

 end

end

• divide_no_zero function

This function is called by the lu_replacement, forward_substitute and
back_substitute functions.

function y = divide_no_zero(num, den)

 % Divide and avoid division by zero

 if den == 0

 y = 0;

 else

 y = num/den;

 end

end

• kalman_filter_tb test file

This script generates a noisy sine wave, and calls the kalman_filter function to
filter the noisy signal. It then plots the signals for comparison.

%KALMAN FILTER EXAMPLE TEST BENCH

clear all

step = ((400*pi)/1000)/10;

TIME_STEPS = 400;

X = 0:step:TIME_STEPS;

rng default;

rng(1);

Orig_Signal = sin(X);

 Best Practices for Debugging Out-of-the-Box Conversion by the Fixed-Point Converter

8-31

Noisy_Signal = Orig_Signal + randn(size(X));

Clean_Signal = zeros(size(X));

for i = 1:length(X)

Clean_Signal(i) = kalman_filter(Noisy_Signal(i), 1);

end

figure

subplot(5,1,1)

plot(X,rand(size(X)))

axis([1 TIME_STEPS 0 1.25]);

title('Noise')

% Plot Noisy Signal

subplot(5,1,2)

plot(X,Noisy_Signal)

axis([1 TIME_STEPS -4 4]);

title('Noisy Signal')

% Plot Filtered Clean Signal

subplot(5,1,3)

plot(X,Clean_Signal)

axis([1 TIME_STEPS -2 2]);

title('Filtered Signal')

% Plot Original Signal

subplot(5,1,4)

plot(X,Orig_Signal)

axis([1 TIME_STEPS -2 2]);

title('Original Signal')

% Plot Error

subplot(5,1,5)

plot(X, (Clean_Signal - Orig_Signal))

axis([1 TIME_STEPS -1 1]);

title('Error')

figure(gcf)

Convert to Fixed Point Using Default Configuration

1 From the apps gallery, open the Fixed-Point Converter app.
2 On the Select Source Files page, browse to the kalman_filter.m file and click

Open.
3 Click Next. On the Define Input Types page, browse to the kalman_filter_tb

file. Click Autodefine Input Types.

8 Automated Fixed-Point Conversion

8-32

The test file runs and plots the input noisy signal, the filtered signal, the ideal
filtered signal, and the difference between the filtered and the ideal filtered signal.

4 Click Next. On the Check for Run-Time Issues page, click Check for Issues.
5 Click Next. On the Convert to Fixed Point page, click Simulate to gather range

information and data type proposals using the default settings.
6 Click Convert to apply the proposed data types.

 Best Practices for Debugging Out-of-the-Box Conversion by the Fixed-Point Converter

8-33

7 Click the Test arrow and select the Log inputs and outputs for comparison
plots check box. Click Test. The Fixed-Point Converter runs the test file
kalman_filter_tb.m to test the generated fixed-point code. Floating-point and
fixed-point simulations are run, with errors calculated for the input and output
variables.

The generated plots show that the current fixed-point implementation does not
produce good results.

8 Automated Fixed-Point Conversion

8-34

The error for the output variable y is extremely high, at over 282 percent.

Determine Where Numerical Issues Originated

Add any variables that you suspect are the cause of numerical issues to the output
arguments of your selected function. Adding these variables to the output arguments
enables you to log the signals for comparison plots.

 Best Practices for Debugging Out-of-the-Box Conversion by the Fixed-Point Converter

8-35

1 Click kalman_filter in the Source Code pane to return to the floating-point code.

The kalman_filter function calls the matrix_solve function, which contains
calls to several other functions. To investigate whether numerical issues are
originating in the matrix_solve function, within the editor, add klm_gain,
the output variable of the matrix_solve function, to the output arguments of
kalman_filter.

function [y, klm_gain] = kalman_filter(z,N0)

2 Click Simulate to refresh the results, and then click Convert.
3 Click Test and log all inputs and outputs. Because klm_gain is now an output

argument, the Fixed-Point Converter logs the signal and plots the error of the
matrix_solve function.

The generated plot shows a large error for the klm_gain variable. Investigate the
matrix_solve function further.

8 Automated Fixed-Point Conversion

8-36

4 Close the Fixed-Point Converter and start a new project. On the Select Source
Files page, browse to the matrix_solve file and click Open.

5 On the Define Input Types page, enter the kalman_filter_tb test file and click
Autodefine Input Types. On the Check for Run-Time Issues page, click Check
for Issues.

6 On the Convert to Fixed Point page, add l, u, and y, the outputs of the other
functions called by matrix_solve, to the output arguments of the matrix_solve
function to enable plotting during the Test step.

 Best Practices for Debugging Out-of-the-Box Conversion by the Fixed-Point Converter

8-37

function [x, l, u, y] = matrix_solve(a,b)

7 Click Simulate to gather data type proposals, and then click Convert.
8 Click the arrow next to Test and ensure that Log inputs and outputs for

comparison plots is selected. Click Test.

Examine the output plots.

8 Automated Fixed-Point Conversion

8-38

Several outputs of the matrix_solve function have a very high error. Adjust some
of the project settings to address this error.

Adjust fimath Settings

Adjust the rounding method and the overflow action used in the generated fixed-point
code by changing the fimath settings.

 Best Practices for Debugging Out-of-the-Box Conversion by the Fixed-Point Converter

8-39

1 In the same project, click Settings.
2 Under fimath, set the Rounding method to Nearest. Set the Overflow action to

Saturate. Click Convert to apply the new fimath settings.
3 Click Test. Using the new fimath settings, the error is now on the order of 10-5.

8 Automated Fixed-Point Conversion

8-40

After you determine the fimath settings that address the issues in the
matrix_solve function, apply these settings when converting the kalman_filter
function.

4 Close the Fixed Point Converter.

 Best Practices for Debugging Out-of-the-Box Conversion by the Fixed-Point Converter

8-41

Convert kalman_filter Function Using New fimath Settings

1 Remove the additional variables that you added to the output arguments of the
kalman_filter and matrix_solve functions. Save the files.

2 Open the Fixed-Point Converter.
3 On the Select Source Files page, specify kalman_filter as the entry-point file.
4 On the Define Input Types page, add kalman_filter_tb as the test file, and

click Autodefine Input Types. On the next page, click Check for Issues.
5 On the Convert to Fixed Point page, click Settings.

Use the same settings that you used when converting the matrix_solve function.
Under fimath, set the Rounding method to Nearest. Set the Overflow action to
Saturate.

6 Click Simulate to gather data type proposals, and then click Convert to apply the
proposals.

7 Click the arrow next to Test and ensure that Log inputs and outputs for
comparison plots is selected. Click Test.

Examine the plot for output variable, y.

8 Automated Fixed-Point Conversion

8-42

The new fimath settings improve the output, but some error still remains.

Adjust Word Length Settings

Adjusting the default word length improves the accuracy of the generated fixed-point
design.

 Best Practices for Debugging Out-of-the-Box Conversion by the Fixed-Point Converter

8-43

1 Click Settings and change the default word length to 32. Click Convert to apply
the new settings.

2 Click Test. The error for the output variable y is accumulating.

3 Close the Fixed-Point Converter.

8 Automated Fixed-Point Conversion

8-44

Replace Constant Functions

The kalman_stm function computes the state transition matrix, which is a constant. You
do not need to convert this function to fixed point. To avoid unnecessary quantization
through computation, replace this function with a double-precision constant. By
replacing the function with a constant, the state transition matrix undergoes
quantization only once.

1 Edit the kalman_filter function. Replace the call to the kalman_stm function
with the equivalent double constant.

A = [0.992114701314478, -0.125333233564304;...

 0.125333233564304, 0.992114701314478];

2 Open the Fixed-Point Converter app. On the Select Source Files page, select
kalman_filter.

3 On the Define Input Types page, select kalman_filter_tb as the test file. On
the Check for Run-Time Issues page, click Check for Issues.

4 On the Convert to Fixed Point page, click Settings.

Use the same settings as before. Under fimath, set the Rounding method to
Nearest. Set the Overflow action to Saturate. Set the default word length to 32.

5 Click Simulate, and then click Convert.
6 Click the Test arrow and select the Log inputs and outputs for comparison

plots check box. Click Test.

The error on the plot for the functions output y is now on the order of 10-6, which is
acceptable for this design.

 Best Practices for Debugging Out-of-the-Box Conversion by the Fixed-Point Converter

8-45

8 Automated Fixed-Point Conversion

8-46

 MATLAB Language Features Supported for Automated Fixed-Point Conversion

8-47

MATLAB Language Features Supported for Automated Fixed-Point
Conversion

In this section...

“MATLAB Language Features Supported for Automated Fixed-Point Conversion” on
page 8-47
“MATLAB Language Features Not Supported for Automated Fixed-Point Conversion”
on page 8-49

MATLAB Language Features Supported for Automated Fixed-Point
Conversion

Fixed-Point Designer supports the following MATLAB language features in automated
fixed-point conversion:

• N-dimensional arrays
• Matrix operations, including deletion of rows and columns
• Variable-sized data (see “Generate Code for Variable-Size Data”). Range computation

for variable–sized data is supported via simulation mode only. Variable-sized data is
not supported for comparison plotting.

• Subscripting (see “Incompatibility with MATLAB in Matrix Indexing Operations for
Code Generation”)

• Complex numbers (see “Code Generation for Complex Data”)
• Numeric classes (see “Supported Variable Types”)
• Double-precision, single-precision, and integer math
• Fixed-point arithmetic (see “Code Acceleration and Code Generation from MATLAB”)
• Program control statements if, switch, for, while, and break
• Arithmetic, relational, and logical operators
• Local functions
• Global variables
• Persistent variables (see “Define and Initialize Persistent Variables”)
• Structures. Range computation for structures is supported via simulation mode only.
• Characters

8 Automated Fixed-Point Conversion

8-48

The complete set of Unicode® characters is not supported for code generation.
Characters are restricted to 8 bits of precision in generated code. Because many
mathematical operations require more than 8 bits of precision, it is recommended that
you do not perform arithmetic with characters if you intend to convert your MATLAB
algorithm to fixed point.

• MATLAB classes. Range computation for MATLAB classes is supported via
simulation mode only.

Automated conversion supports:

• Class properties
• Constructors
• Methods
• Specializations

It does not support class inheritance or packages. For more information, see “Fixed-
Point Code for MATLAB Classes”.

• Ability to call functions (see “Resolution of Function Calls for Code Generation” on
page 15-2)

• Subset of MATLAB toolbox functions (see “Functions Supported for Code Acceleration
or C Code Generation”).

• Subset of DSP System Toolbox™ System objects.

The DSP System Toolbox System objects supported for automated conversion are:

• dsp.ArrayVectorAdder

• dsp.BiquadFilter

• dsp.FIRDecimator

• dsp.FIRInterpolator

• dsp.FIRFilter (Direct Form and Direct Form Transposed only)
• dsp.FIRRateConverter

• dsp.LowerTriangularSolver

• dsp.LUFactor

• dsp.UpperTriangularSolver

• dsp.VariableFractionalDelay

 MATLAB Language Features Supported for Automated Fixed-Point Conversion

8-49

• dsp.Window

MATLAB Language Features Not Supported for Automated Fixed-Point
Conversion

Fixed-Point Designer does not support the following features in automated fixed-point
conversion:

• Anonymous functions
• Cell arrays
• Function handles
• Java®

• Nested functions
• Recursion
• Sparse matrices
• try/catch statements
• varargin and varargout

8 Automated Fixed-Point Conversion

8-50

Generated Fixed-Point Code

In this section...

“Location of Generated Fixed-Point Files” on page 8-50
“Minimizing fi-casts to Improve Code Readability” on page 8-51
“Avoiding Overflows in the Generated Fixed-Point Code” on page 8-51
“Controlling Bit Growth” on page 8-52
“Avoiding Loss of Range or Precision” on page 8-52
“Handling Non-Constant mpower Exponents” on page 8-54

Location of Generated Fixed-Point Files

By default, the fixed-point conversion process generates files in a folder named
codegen/fcn_name/fixpt in your local working folder. fcn_name is the name of the
MATLAB function that you are converting to fixed point.

File name Description

fcn_name_fixpt.m Generated fixed-point MATLAB code.

To integrate this fixed-point code into a
larger application, consider generating a
MEX-function for the function and calling
this MEX-function in place of the original
MATLAB code.

fcn_name_fixpt_exVal.mat MAT-file containing:

• A structure for the input arguments.
• The name of the fixed-point file.

fcn_name_fixpt_report.html Link to the type proposal report that
displays the generated fixed-point code and
the proposed type information.

fcn_name_report.html Link to the type proposal report that
displays the original MATLAB code and the
proposed type information.

 Generated Fixed-Point Code

8-51

File name Description

fcn_name_wrapper_fixpt.m File that converts the floating-point data
values supplied by the test file to the fixed-
point types determined for the inputs
during the conversion step. These fixed-
point values are fed into the converted
fixed-point function, fcn_name_fixpt.

Minimizing fi-casts to Improve Code Readability

The conversion process tries to reduce the number of fi-casts by analyzing the floating-
point code. If an arithmetic operation is comprised of only compile-time constants, the
conversion process does not cast the operands to fixed point individually. Instead, it casts
the entire expression to fixed point.

For example, here is the fixed-point code generated for the constant expression x = 1/
sqrt(2) when the selected word length is 14.

Original MATLAB Code Generated Fixed-Point Code

x = 1/sqrt(2); x = fi(1/sqrt(2), 0, 14, 14, fm);

fm is the local fimath.

Avoiding Overflows in the Generated Fixed-Point Code

The conversion process avoids overflows by:

• Using full-precision arithmetic unless you specify otherwise.
• Avoiding arithmetic operations that involve double and fi data types. Otherwise, if

the word length of the fi data type is not able to represent the value in the double
constant expression, overflows occur.

• Avoiding overflows when adding and subtracting non fixed-point variables and fixed-
point variables.

The fixed-point conversion process casts non-fi expressions to the corresponding fi
type.

For example, consider the following MATLAB algorithm.

8 Automated Fixed-Point Conversion

8-52

% A = 5;

% B = ones(300, 1)

function y = fi_plus_non_fi(A, B)

 % '1024' is non-fi, cast it

 y = A + 1024;

 % 'size(B, 1)*length(A)' is a non-fi, cast it

 y = A + size(B, 1)*length(A);

end

The generated fixed-point code is:

%#codegen

% A = 5;

% B = ones(300, 1)

function y = fi_plus_non_fi_fixpt(A, B)

 % '1024' is non-fi, cast it

 fm = fimath('RoundingMethod', 'Floor', 'OverflowAction', 'Wrap',...

 'ProductMode', 'FullPrecision', 'MaxProductWordLength', 128,...

 'SumMode', 'FullPrecision', 'MaxSumWordLength', 128);

 y = fi(A + fi(1024, 0, 11, 0, fm), 0, 11, 0, fm);

 % 'size(B, 1)*length(A)' is a non-fi, cast it

 y(:) = A + fi(size(B, fi(1, 0, 1, 0, fm))*length(A), 0, 9, 0, fm);

end

Controlling Bit Growth

The conversion process controls bit growth by using subscripted assignments, that
is, assignments that use the colon (:) operator, in the generated code. When you use
subscripted assignments, MATLAB overwrites the value of the left-hand side argument
but retains the existing data type and array size. Using subscripted assignment keeps
fixed-point variables fixed point rather than inadvertently turning them into doubles.
Maintaining the fixed-point type reduces the number of type declarations in the
generated code. Subscripted assignment also prevents bit growth which is useful when
you want to maintain a particular data type for the output.

Avoiding Loss of Range or Precision

Avoiding Loss of Range or Precision in Unsigned Subtraction Operations

When the result of the subtraction is negative, the conversion process promotes the left
operand to a signed type.

 Generated Fixed-Point Code

8-53

For example, consider the following MATLAB algorithm.

% A = 1;

% B = 5

function [y,z] = unsigned_subtraction(A,B)

 y = A - B;

 C = -20;

 z = C - B;

end

In the original code, both A and B are unsigned and the result of A-B can be negative. In
the generated fixed-point code, A is promoted to signed. In the original code, C is signed,
so does not require promotion in the generated code.

%#codegen

% A = 1;

% B = 5

function [y,z] = unsigned_subtraction_fixpt(A,B)

fm = fimath('RoundingMethod', 'Floor', 'OverflowAction', 'Wrap',...

 'ProductMode', 'FullPrecision', 'MaxProductWordLength', 128,...

 'SumMode', 'FullPrecision', 'MaxSumWordLength', 128);

y = fi(fi_signed(A) - B, 1, 3, 0, fm);

C = fi(-20, 1, 6, 0, fm);

z = fi(C - B, 1, 6, 0, fm);

end

function y = fi_signed(a)

coder.inline('always');

if isfi(a) && ~(issigned(a))

 nt = numerictype(a);

 new_nt = numerictype(1, nt.WordLength + 1, nt.FractionLength);

 y = fi(a, new_nt, fimath(a));

else

 y = a;

end

end

Avoiding Loss of Range When Concatenating Arrays of Fixed-Point Numbers

If you concatenate matrices using vertcat and horzcat, the conversion process uses
the largest numerictype among the expressions of a row and casts the leftmost element to
that type. This type is then used for the concatenated matrix to avoid loss of range.

8 Automated Fixed-Point Conversion

8-54

For example, consider the following MATLAB algorithm.

% A = 1, B = 100, C = 1000

function [y, z] = lb_node(A, B, C)

 %% single rows

 y = [A B C];

 %% multiple rows

 z = [A 5; A B; A C];

end

In the generated fixed-point code:

• For the expression y = [A B C], the leftmost element, A, is cast to the type of C
because C has the largest type in the row.

• For the expression [A 5; A B; A C]:

• In the first row, A is cast to the type of C because C has the largest type of the
whole expression.

• In the second row, A is cast to the type of B because B has the larger type in the
row.

• In the third row, A is cast to the type of C because C has the larger type in the row.

%#codegen

% A = 1, B = 100, C = 1000

function [y, z] = lb_node_fixpt(A, B, C)

 %% single rows

 fm = fimath('RoundingMethod', 'Floor', 'OverflowAction', 'Wrap',...

 'ProductMode', 'FullPrecision', 'MaxProductWordLength', 128, ...

 'SumMode', 'FullPrecision', 'MaxSumWordLength', 128);

 y = fi([fi(A, 0, 10, 0, fm) B C], 0, 10, 0, fm);

 %% multiple rows

 z = fi([fi(A, 0, 10, 0, fm) 5; fi(A, 0, 7, 0, fm) B;...

 fi(A, 0, 10, 0, fm) C], 0, 10, 0, fm);

end

Handling Non-Constant mpower Exponents

If the function that you are converting has a scalar input, and the mpower exponent
input is not constant, the conversion process sets the fimath ProductMode to

 Generated Fixed-Point Code

8-55

SpecifyPrecision in the generated code. With this setting , the output data type can
be determined at compile time.

For example, consider the following MATLAB algorithm.

% a = 1

% b = 3

function y = exp_operator(a, b)

 % exponent is a constant so no need to specify precision

 y = a^3;

 % exponent is not a constant, use 'SpecifyPrecision' for 'ProductMode'

 y = b^a;

end

In the generated fixed-point code, for the expression y = a^3 , the exponent is a
constant, so there is no need to specify precision. For the expression, y = b^a, the
exponent is not constant, so the ProductMode is set to SpecifyPrecision.

%#codegen

% a = 1

% b = 3

function y = exp_operator_fixpt(a, b)

 % exponent is a constant so no need to specify precision

 fm = fimath('RoundingMethod', 'Floor', 'OverflowAction', 'Wrap',...

 'ProductMode', 'FullPrecision', 'MaxProductWordLength', 128,...

 'SumMode', 'FullPrecision', 'MaxSumWordLength', 128);

 y = fi(a^3, 0, 2, 0, fm);

 % exponent is not a constant, use 'SpecifyPrecision' for 'ProductMode'

 y(:) = fi(b, 'ProductMode', 'SpecifyPrecision',...

 'ProductWordLength', 2, 'ProductFractionLength', 0)^a;

end

8 Automated Fixed-Point Conversion

8-56

Fixed-Point Code for MATLAB Classes

In this section...

“Automated Conversion Support for MATLAB Classes” on page 8-56
“Unsupported Constructs” on page 8-56
“Coding Style Best Practices” on page 8-57

Automated Conversion Support for MATLAB Classes

The automated fixed-point conversion process:

• Proposes fixed-point data types based on simulation ranges for MATLAB classes. It
does not propose data types based on derived ranges for MATLAB classes.

After simulation, the Fixed-Point Converter app:

• Function list contains class constructors, methods, and specializations.
• Code window displays the objects used in each function.
• Provides code coverage for methods.

For more information, see “Viewing Information for MATLAB Classes”.
• Supports class methods, properties, and specializations. For each specialization of a

class, class_name, the conversion generates a separate class_name_fixpt.m file.
For every instantiation of a class, the generated fixed-point code contains a call to the
constructor of the appropriate specialization.

• Supports classes that have get and set methods such as get.PropertyName,
set.PropertyName. These methods are called when properties are read or assigned.
The set methods can be specialized. Sometimes, in the generated fixed-point code,
assignment statements are transformed to function calls.

Unsupported Constructs

The automated conversion process does not support:

• Class inheritance.
• Packages.
• Constructors that use nargin and varargin.

 Fixed-Point Code for MATLAB Classes

8-57

Coding Style Best Practices

When you write MATLAB code that uses MATLAB classes:

• Initialize properties in the class constructor.
• Replace constant properties with static methods.

For example, consider the counter class.

classdef Counter < handle

 properties

 Value = 0;

 end

 properties(Constant)

 MAX_VALUE = 128

 end

 methods

 function out = next(this)

 out = this.Count;

 if this.Value == this.MAX_VALUE

 this.Value = 0;

 else

 this.Value = this.Value + 1;

 end

 end

 end

end

To use the automated fixed-point conversion process, rewrite the class to have a static
class that initializes the constant property MAX_VALUE and a constructor that initializes
the property Value.

classdef Counter < handle

 properties

 Value;

 end

 methods(Static)

 function t = MAX_VALUE()

 t = 128;

 end

 end

8 Automated Fixed-Point Conversion

8-58

 methods

 function this = Counter()

 this.Value = 0;

 end

 function out = next(this)

 out = this.Value;

 if this.Value == this.MAX_VALUE

 this.Value = 0;

 else

 this.Value = this.Value + 1;

 end

 end

 end

end

 Automated Fixed-Point Conversion Best Practices

8-59

Automated Fixed-Point Conversion Best Practices

In this section...

“Create a Test File” on page 8-59
“Prepare Your Algorithm for Code Acceleration or Code Generation” on page 8-60
“Check for Fixed-Point Support for Functions Used in Your Algorithm” on page 8-61
“Manage Data Types and Control Bit Growth” on page 8-61
“Convert to Fixed Point” on page 8-62
“Use the Histogram to Fine-Tune Data Type Settings” on page 8-63
“Optimize Your Algorithm” on page 8-64
“Avoid Explicit Double and Single Casts” on page 8-66

Create a Test File

A best practice for structuring your code is to separate your core algorithm from other
code that you use to test and verify the results. Create a test file to call your original
MATLAB algorithm and fixed-point versions of the algorithm. For example, as shown in
the following table, you might set up some input data to feed into your algorithm, and
then, after you process that data, create some plots to verify the results. Since you need
to convert only the algorithmic portion to fixed point, it is more efficient to structure your
code so that you have a test file, in which you create your inputs, call your algorithm, and
plot the results, and one (or more) algorithmic files, in which you do the core processing.

Original code Best Practice Modified code

% TEST INPUT

x = randn(100,1);

% ALGORITHM

y = zeros(size(x));

y(1) = x(1);

for n=2:length(x)

 y(n)=y(n-1) + x(n);

end

% VERIFY RESULTS

yExpected=cumsum(x);

plot(y-yExpected)

Issue

Generation of test input
and verification of results
are intermingled with the
algorithm code.

Fix

Create a test file that is
separate from your algorithm.

Test file

% TEST INPUT

x = randn(100,1);

% ALGORITHM

y = cumulative_sum(x);

% VERIFY RESULTS

yExpected = cumsum(x);

plot(y-yExpected)

title('Error')

8 Automated Fixed-Point Conversion

8-60

Original code Best Practice Modified code
title('Error') Put the algorithm in its own

function.
Algorithm in its own function

function y = cumulative_sum(x)

 y = zeros(size(x));

 y(1) = x(1);

 for n=2:length(x)

 y(n) = y(n-1) + x(n);

 end

end

You can use the test file to:

• Verify that your floating-point algorithm behaves as you expect before you convert it
to fixed point. The floating-point algorithm behavior is the baseline against which you
compare the behavior of the fixed-point versions of your algorithm.

• Propose fixed-point data types.
• Compare the behavior of the fixed-point versions of your algorithm to the floating-

point baseline.
• Help you determine initial values for static ranges.

By default, the Fixed-Point Converter app shows code coverage results. Your test files
should exercise the algorithm over its full operating range so that the simulation ranges
are accurate. For example, for a filter, realistic inputs are impulses, sums of sinusoids,
and chirp signals. With these inputs, using linear theory, you can verify that the outputs
are correct. Signals that produce maximum output are useful for verifying that your
system does not overflow. The quality of the proposed fixed-point data types depends on
how well the test files cover the operating range of the algorithm with the accuracy that
you want. Reviewing code coverage results help you verify that your test file is exercising
the algorithm adequately. Review code flagged with a red code coverage bar because this
code is not executed. If the code coverage is inadequate, modify the test file or add more
test files to increase coverage. See “Code Coverage”.

Prepare Your Algorithm for Code Acceleration or Code Generation

The automated conversion process instruments your code and provides data type
proposals to help you convert your algorithm to fixed point.

MATLAB algorithms that you want to convert to fixed point automatically must comply
with code generation requirements and rules. To view the subset of the MATLAB

 Automated Fixed-Point Conversion Best Practices

8-61

language that is supported for code generation, see “Functions and Objects Supported for
C and C++ Code Generation — Alphabetical List”.

To help you identify unsupported functions or constructs in your MATLAB code, add the
%#codegen pragma to the top of your MATLAB file. The MATLAB Code Analyzer flags
functions and constructs that are not available in the subset of the MATLAB language
supported for code generation. This advice appears in real time as you edit your code in
the MATLAB editor. For more information, see “Check Code Using the MATLAB Code
Analyzer”. The software provides a link to a report that identifies calls to functions and
the use of data types that are not supported for code generation. For more information,
see “Check Code Using the Code Generation Readiness Tool”.

Check for Fixed-Point Support for Functions Used in Your Algorithm

The app flags unsupported function calls found in your algorithm on the Function
Replacements tab. For example, if you use the fft function, which is not supported for
fixed point, the tool adds an entry to the table on this tab and indicates that you need to
specify a replacement function to use for fixed-point operations.

You can specify additional replacement functions. For example, functions like sin,
cos,and sqrt might support fixed point, but for better efficiency, you might want to
consider an alternative implementation like a lookup table or CORDIC-based algorithm.
The app provides an option to generate lookup table approximations for continuous
and stateless single-input, single-output functions in your original MATLAB code. See
“Replacing Functions Using Lookup Table Approximations”.

Manage Data Types and Control Bit Growth

The automated fixed-point conversion process automatically manages data types and
controls bit growth. It controls bit growth by using subscripted assignments, that

8 Automated Fixed-Point Conversion

8-62

is, assignments that use the colon (:) operator, in the generated code. When you use
subscripted assignments, MATLAB overwrites the value of the left-hand side argument
but retains the existing data type and array size. In addition to preventing bit growth,
subscripted assignment reduces the number of casts in the generated fixed-point code
and makes the code more readable.

Convert to Fixed Point

What Are Your Goals for Converting to Fixed Point?

Before you start the conversion, consider your goals for converting to fixed point. Are
you implementing your algorithm in C or HDL? What are your target constraints? The
answers to these questions determine many fixed-point properties such as the available
word length, fraction length, and math modes, as well as available math libraries.

To set up these properties, use the Advanced settings.

For more information, see “Specify Type Proposal Options”.

Run With Fixed-Point Types and Compare Results

Create a test file to validate that the floating-point algorithm works as expected
before converting it to fixed point. You can use the same test file to propose fixed-point
data types, and to compare fixed-point results to the floating-point baseline after the

 Automated Fixed-Point Conversion Best Practices

8-63

conversion. For more information, see “Running a Simulation” on page 8-8 and “Log Data
for Histogram” on page 8-20 .

Use the Histogram to Fine-Tune Data Type Settings

To fine-tune fixed-point type settings, use the histogram. To log data for histograms, in

the app, click the Simulate arrow and select Log data for histogram.

After simulation and static analysis:

• To view the histogram for a variable, on the Variables tab, click the Proposed Type
field for that variable.

You can view the effect of changing the proposed data types by dragging the edges
of the bounding box in the histogram window to change the proposed data type and
selecting or clearing the Signed option.

• If the values overflow and the range cannot fit the proposed type, the table shows
proposed types in red.

8 Automated Fixed-Point Conversion

8-64

When the tool applies data types, it generates an html report that provides overflow
information and highlights overflows in red. Review the proposed data types.

Optimize Your Algorithm

Use fimath to Get Optimal Types for C or HDL

fimath properties define the rules for performing arithmetic operations on fi
objects, including math, rounding, and overflow properties. You can use the fimath
ProductMode and SumMode properties to retain optimal data types for C or HDL. HDL
can have arbitrary word length types in the generated HDL code whereas C requires
container types (uint8, uint16, uint32). Use the Advanced settings, see “Specify
Type Proposal Options”.

C

The KeepLSB setting for ProductMode and SumMode models the behavior of integer
operations in the C language, while KeepMSB models the behavior of many DSP devices.
Different rounding methods require different amounts of overhead code. Setting
the RoundingMethod property to Floor, which is equivalent to two's complement
truncation, provides the most efficient rounding implementation. Similarly, the standard
method for handling overflows is to wrap using modulo arithmetic. Other overflow
handling methods create costly logic. Whenever possible, set OverflowAction to Wrap.

MATLAB Code Best Practice Generated C Code

Code being compiled

function y = adder(a,b)

 y = a + b;

end

Note: In the app, set
Default word length to
16.

Issue

With the default word length set to
16 and the default fimath settings,
additional code is generated to
implement saturation overflow, nearest
rounding, and full-precision arithmetic.

int adder(short a, short b)

{

 int y;

 int i0;

 int i1;

 int i2;

 int i3;

 i0 = a;

 i1 = b;

 if ((i0 & 65536) != 0) {

 i2 = i0 | -65536;

 } else {

 i2 = i0 & 65535;

 }

 if ((i1 & 65536) != 0) {

 i3 = i1 | -65536;

 Automated Fixed-Point Conversion Best Practices

8-65

MATLAB Code Best Practice Generated C Code
 } else {

 i3 = i1 & 65535;

 }

 i0 = i2 + i3;

 if ((i0 & 65536) != 0) {

 y = i0 | -65536;

 } else {

 y = i0 & 65535;

 }

 return y;

}

Fix

To make the generated C code more
efficient, choose fixed-point math
settings that match your processor
types.

To customize fixed-point type proposals,
use the app Settings. Select fimath and
then set:
Rounding method Floor
Overflow action Wrap
Product mode KeepLSB
Sum mode KeepLSB
Product word
length

32

Sum word length 32

int adder(short a, short b)

{

 return a + b;

}

HDL

For HDL code generation, set:

• ProductMode and SumMode to FullPrecision
• Overflow action to Wrap
• Rounding method to Floor

8 Automated Fixed-Point Conversion

8-66

Replace Built-in Functions with More Efficient Fixed-Point Implementations

Some MATLAB built-in functions can be made more efficient for fixed-point
implementation. For example, you can replace a built-in function with a Lookup table
implementation, or a CORDIC implementation, which requires only iterative shift-add
operations. For more information, see “Function Replacements” on page 8-22.

Reimplement Division Operations Where Possible

Often, division is not fully supported by hardware and can result in slow processing.
When your algorithm requires a division, consider replacing it with one of the following
options:

• Use bit shifting when the denominator is a power of two. For example, bitsra(x,3)
instead of x/8.

• Multiply by the inverse when the denominator is constant. For example, x*0.2
instead of x/5.

• If the divisor is not constant, use a temporary variable for the division. Doing so
results in a more efficient data type proposal and, if overflows occur, makes it easier
to see which expression is overflowing.

Eliminate Floating-Point Variables

For more efficient code, the automated fixed-point conversion process eliminates floating-
point variables. The one exception to this is loop indices because they usually become
integer types. It is good practice to inspect the fixed-point code after conversion to verify
that there are no floating-point variables in the generated fixed-point code.

Avoid Explicit Double and Single Casts

For the automated workflow, do not use explicit double or single casts in your MATLAB
algorithm to insulate functions that do not support fixed-point data types. The automated
conversion tool does not support these casts.

Instead of using casts, supply a replacement function. For more information, see
“Function Replacements” on page 8-22.

 Replacing Functions Using Lookup Table Approximations

8-67

Replacing Functions Using Lookup Table Approximations

The Fixed-Point Designer software provides an option to generate lookup table
approximations for continuous and stateless single-input, single-output functions in your
original MATLAB code. These functions must be on the MATLAB path.

You can use this capability to handle functions that are not supported for fixed point
and to replace your own custom functions. The fixed-point conversion process infers
the ranges for the function and then uses an interpolated lookup table to replace the
function. You can control the interpolation method and number of points in the lookup
table. By adjusting these settings, you can tune the behavior of replacement function to
match the behavior of the original function as closely as possible.

The fixed-point conversion process generates one lookup table approximation per call site
of the function that needs replacement.

To use lookup table approximations in the Fixed-Point Converter app, see “Replace the
exp Function with a Lookup Table” and “Replace a Custom Function with a Lookup
Table”.

To use lookup table approximations in the programmatic workflow, see
coder.approximation, “Replace the exp Function with a Lookup Table”, and “Replace
a Custom Function with a Lookup Table”.

8 Automated Fixed-Point Conversion

8-68

Custom Plot Functions

The Fixed-Point Converter app provides a default time series based plotting function.
The conversion process uses this function at the test numerics step to show the floating-
point and fixed-point results and the difference between them. However, during fixed-
point conversion you might want to visualize the numerical differences in a view that is
more suitable for your application domain. For example, plots that show eye diagrams
and bit error differences are more suitable in the communications domain and histogram
difference plots are more suitable in image processing designs.

You can choose to use a custom plot function at the test numerics step. The Fixed-Point
Converter app facilitates custom plotting by providing access to the raw logged input
and output data before and after fixed-point conversion. You supply a custom plotting
function to visualize the differences between the floating-point and fixed-point results. If
you specify a custom plot function, the fixed-point conversion process calls the function
for each input and output variable, passes in the name of the variable and the function
that uses it, and the results of the floating-point and fixed-point simulations.

Your function should accept three inputs:

• A structure that holds the name of the variable and the function that uses it.

Use this information to:

• Customize plot headings and axes.
• Choose which variables to plot.
• Generate different error metrics for different output variables.

• A cell array to hold the logged floating-point values for the variable.

This cell array contains values observed during floating-point simulation of the
algorithm during the test numerics phase. You might need to reformat this raw data.

• A cell array to hold the logged values for the variable after fixed-point conversion.

This cell array contains values observed during fixed-point simulation of the
converted design.

For example, function customComparisonPlot(varInfo, floatVarVals,
fixedPtVarVals).

 Custom Plot Functions

8-69

To use a custom plot function, in the Fixed-Point Converter app, select Advanced,
and then set Custom plot function to the name of your plot function. See “Visualize
Differences Between Floating-Point and Fixed-Point Results”.

In the programmatic workflow, set the coder.FixptConfig configuration object
PlotFunction property to the name of your plot function. See “Visualize Differences
Between Floating-Point and Fixed-Point Results”.

8 Automated Fixed-Point Conversion

8-70

Generate Fixed-Point MATLAB Code for Multiple Entry-Point
Functions

When your end goal is to generate fixed-point C/C++ library functions, generating a
single C/C++ library for more than one entry-point MATLAB function allows you to:

• Create C/C++ libraries containing multiple, compiled MATLAB files to integrate with
larger C/C++ applications. Generating C/C++ code requires a MATLAB Coder license.

• Share code efficiently between library functions.
• Communicate between library functions using shared memory.

Note: If any of the entry-point functions in a project share memory (for example,
persistent data), an error will occur. In this case, you should rewrite your code to avoid
invoking functions with persistent data from multiple entry-points.

Convert Two Entry-Point Functions to Fixed-Point Using the Fixed-Point Converter App

In this example, you convert two entry-point functions, ep1 and ep2, to fixed point.

1 In a local writable folder, create the functions ep1.m and ep2.m.

function y = ep1(u) %#codegen

y = u;

end

function y = ep2(u, v) %#codegen

y = u + v;

end

2 In the same folder, create a test file, ep_tb.m, that calls both functions.

% test file for ep1 and ep2

u = 1:100;

v = 5:104;

z = ep1(u);

y = ep2(v,z);

3 From the apps gallery, open the Fixed-Point Converter app.
4 To add the first entry-point function, ep1, to the project, on the Select Source Files

page, browse to the ep1 file, and click Open.

 Generate Fixed-Point MATLAB Code for Multiple Entry-Point Functions

8-71

By default, the app uses the name of the first entry-point function as the name of the
project.

5 Click Add Entry-Point Function and add the second entry-point function, ep2.
Click Next.

6 On the Define Input Types page, enter a test file that exercises your two entry-
point functions. Browse to select the ep_tb file. Click Autodefine Input Types.

7 Click Next. On the Check for Run-Time Issues page, click Check for Issues.

The app runs the ep_tb test file again and detects no issues.
8 Click Next. On the Convert to Fixed-Point page, click Simulate to simulate the

entry-point functions, gather range information, and get proposed data types.

8 Automated Fixed-Point Conversion

8-72

9 Click Convert.

The entry-point functions ep1 and ep2 convert to fixed point. The Output Files
pane lists the generated fixed-point and wrapper files for both entry-point functions.

 Generate Fixed-Point MATLAB Code for Multiple Entry-Point Functions

8-73

10 Click Next. The Finish Workflow page contains the project summary. The
generated Fixed-Point Conversion Report contains the reports for both entry-point
functions. The app stores the generated files in the subfolder codegen/ep1/fixpt.

8 Automated Fixed-Point Conversion

8-74

Convert Code Containing Global Data to Fixed Point

In this section...

“Workflow” on page 8-74
“Declare Global Variables” on page 8-74
“Define Global Data” on page 8-75
“Define Constant Global Data” on page 8-76
“Limitations of Using Global Data” on page 8-78

Workflow

To convert MATLAB code that uses global data to fixed-point:

1 Declare the variables as global in your code.

For more information, see “Declare Global Variables” on page 8-74
2 Before using the global data, define and initialize it.

For more information, see “Define Global Data” on page 8-75.
3 Convert code to fixed-point from the Fixed-Point Converter or using fiaccel.

The Fixed-Point Converter always synchronizes global data between MATLAB and the
generated MEX function.

Declare Global Variables

When using global data, you must first declare the global variables in your MATLAB
code. This code shows the use_globals function, which uses two global variables, AR
and B.

function y = use_globals(u)

%#codegen

% Declare AR and B as global variables

global AR;

global B;

AR(1) = u + B(1);

 Convert Code Containing Global Data to Fixed Point

8-75

y = AR * 2;

Define Global Data

You can define global data in the MATLAB global workspace, in a Fixed-Point Converter
project, or at the command line. If you do not initialize global data in a project or at the
command line, the software looks for the variable in the MATLAB global workspace.

Define Global Data in the MATLAB Global Workspace

To convert the use_globals function described in “Declare Global Variables” on page
8-74, you must first define and initialize the global data.

global AR B;

AR = ones(4);

B=[1 2 3];

Define Global Data in a Fixed-Point Converter Project

1 On the Define Input Types page, after selecting and running a test file, select Yes
next to Does this code use global variables.

By default, the Fixed-Point Converter names the first global variable in a project g.
2 Enter the names of the global variables used in your code. After adding a global

variable, specify its type.
3 Click Add global to enter more global variables.

Note: If you do not specify the type, you must create a variable with the same name
in the global workspace.

Define Global Data at the Command Line

To define global data at the command line, use the fiaccel -globals option. For
example, to convert the use_globals function described in “Declare Global Variables”
on page 8-74 to fixed-point, specify two global inputs, AR and B, at the command line.
Use the -args option to specify that the input u is a real, scalar double.

fiaccel -float2fixed cfg -global {'AR',ones(4),'B',[1 2 3]} use_globals -args {0}

Alternatively, specify the type and initial value with the -globals flag using the format
-globals {'g', {type, initial_value}}.

8 Automated Fixed-Point Conversion

8-76

To provide initial values for variable-size global data, specify the type and initial
value with the -globals flag using the format -globals {'g', {type,
initial_value}}. For example, to specify a global variable g that has an initial value
[1 1] and upper bound [2 2], enter:

fiaccel -float2fixed cfg -global {'g', {coder.typeof(0, [2 2],1),[1 1]}} myfunction

For a detailed explanation of the syntax, see coder.typeof.

Define Constant Global Data

If you know that the value of a global variable does not change at run time, you can
reduce overhead in the fixed-point code by specifying that the global variable has a
constant value. You cannot write to the constant global variable.

Define Constant Global Data in the Fixed-Point Converter

1 On the Define Input Types page, after selecting and running a test file, select Yes
next to Does this code use global variables.

2 Enter the name of the global variables used in your code.
3 Click the field to the right of the global variable.
4 Select Define Constant Value.

 Convert Code Containing Global Data to Fixed Point

8-77

5 In the field to the right of the constant global variable, enter a MATLAB expression.

Define Constant Global Data at the Command Line

To specify that a global variable is constant using the fiaccel command, use the -
globals option with the coder.Constant class.

1 Define a fixed-point conversion configuration object.

cfg = coder.config('fixpt');

8 Automated Fixed-Point Conversion

8-78

2 Use coder.Constant to specify that a global variable has a constant value. For
example, this code specifies that the global variable g has an initial value 4 and that
global variable gc has the constant value 42.

global_values = {'g', 4, 'gc', coder.Constant(42)};

3 Convert the code to fixed-point using the -globals option. For example, convert
myfunction to fixed-point, specifying that the global variables are defined in the
cell array global_values.

fiaccel -float2fixed cfg -global global_values myfunction

Constant Global Data in a Code Generation Report

The code generation report provides this information about a constant global variable:

• Type of Global on the Variables tab.
• Highlighted variable name in the Function pane.

Limitations of Using Global Data

You cannot use global data with the coder.cstructname function.

Related Examples
• “Convert Code Containing Global Variables to Fixed-Point” on page 8-79

 Convert Code Containing Global Variables to Fixed-Point

8-79

Convert Code Containing Global Variables to Fixed-Point

This example shows how to convert a MATLAB algorithm containing global variables to
fixed-point using the Fixed-Point Converter app.

1 In a local writable folder, create the function use_globals.m.

function y = use_globals(u)

%#codegen

% Declare AR and B as global variables

global AR;

global B;

AR(1) = u + B(1);

y = AR * 2;

2 In the same folder, create a test file, use_globals_tb.m that calls the function.

u = 55;

global AR B;

AR = ones(4);

B=[1 2 3];

y = use_globals(u);

3 On the MATLAB toolstrip, in the Apps tab, under Code Generation, click the
Fixed-Point Converter app icon.

4 To add the entry-point function, use_globals.m to the project, on the Select
Source Files page, browse to the file, and click Open. Click Next.

5 On the Define Input Types page, add use_globals_tb.m as the test file. Click
Autodefine Input Types.

The app determines from the test file that the input type of the input u is
double(1x1).

6 Select Yes next to Does this code use global variables. By default, the Fixed-
Point Converter app names the first global variable in a project g.

7 Type in the names of the global variables in your code. In the field to the right of the
global variable AR, specify its type as double(4x4).

8 The global variable B is not assigned in the use_globals function. Define this
variable as a global constant by clicking the field to the right of the constant and
selecting Define Constant Value. Type in the value of B as it is defined in the
test file, [1 2 3]. The app determines that B is a constant(double(1x3)).

8 Automated Fixed-Point Conversion

8-80

9 Click Next. On the Check for Run-Time Issues page, click Check for Issues.

No issues are detected.
10 Click Next. On the Convert to Fixed-Point page, click Simulate to simulate the

function, gather range information, and get proposed data types.
11 Click Convert to accept the proposed data types and convert the function to fixed-

point.

In the generated fixed-point code, the global variable AR is now AR_g.

The wrapper function contains three global variables: AR, AR_g, and B, where AR_g
is set equal to a fi-casted AR, and AR is set equal to a double casted AR_g. The global
variable B does not have a separate variable in the fixed-point code because it is a
constant.

 Convert Code Containing Global Variables to Fixed-Point

8-81

function y = use_globals_wrapper_fixpt(u)

 fm = fimath('RoundingMethod', 'Floor', 'OverflowAction', 'Wrap', 'ProductMode', 'FullPrecision', 'MaxProductWordLength', 128, 'SumMode', 'FullPrecision', 'MaxSumWordLength', 128);

 u_in = fi(u, 0, 6, 0, fm);

 global AR B AR_g

 AR_g = fi(AR, 0, 6, 0, fm);

 [y_out] = use_globals_fixpt(u_in);

 AR = double(AR_g);

 y = double(y_out);

end

More About
• “Convert Code Containing Global Data to Fixed Point” on page 8-74

8 Automated Fixed-Point Conversion

8-82

Data Type Issues in Generated Code

Within the fixed-point conversion HTML report, you have the option to highlight
MATLAB code that results in double, single, or expensive fixed-point operations.
Consider enabling these checks when trying to achieve a strict single, or fixed-point
design.

These checks are disabled by default.

Enable the Highlight Option in the Fixed-Point Converter App

1 On the Convert to Fixed Point page, to open the Settings dialog box, click the

Settings arrow .
2 Under Plotting and Reporting, set Highlight potential data type issues to

Yes.

When conversion is complete, open the fixed-point conversion HTML report to view the
highlighting. Click View report in the Type Validation Output tab.

Enable the Highlight Option at the Command Line

1 Create a fixed-point code configuration object:

cfg = coder.config('fixpt');

2 Set the HighlightPotentialDataTypeIssues property of the configuration object
to true.

cfg.HighlightPotentialDataTypeIssues = true;

Stowaway Doubles

When trying to achieve a strict-single or fixed-point design, manual inspection of code
can be time-consuming and error prone. This check highlights all expressions that result
in a double operation.

Stowaway Singles

This check highlights all expressions that result in a single operation.

 Data Type Issues in Generated Code

8-83

Expensive Fixed-Point Operations

The expensive fixed-point operations check identifies optimization opportunities
by highlighting expressions in the MATLAB code which result in cumbersome
multiplication or division, or expensive rounding in generated code. For more information
on optimizing generated fixed-point code, see “Tips for Making Generated Code More
Efficient”.

Cumbersome Operations

Cumbersome operations most often occur due to insufficient range of output. Avoid
inputs to a multiply or divide operation that has word lengths larger than the base
integer type of your processor. Operations with larger word lengths can be handled in
software, but this approach requires much more code and is much slower.

Expensive Rounding

Traditional handwritten code, especially for control applications, almost always uses
"no effort" rounding. For example, for unsigned integers and two's complement signed
integers, shifting right and dropping the bits is equivalent to rounding to floor. To get
results comparable to, or better than, what you expect from traditional handwritten code,
use the floor rounding method. This check identifies expensive rounding operations in
multiplication and division.

Expensive Comparison Operations

Comparison operations generate extra code when a casting operation is required to do
the comparison. For example, when comparing an unsigned integer to a signed integer,
one of the inputs must first be cast to the signedness of the other before the comparison
operation can be performed. Consider optimizing the data types of the input arguments
so that a cast is not required in the generated code.

8 Automated Fixed-Point Conversion

8-84

Using the Fixed-Point Converter App with System Objects

You can use the Fixed-Point Converter app to automatically propose and apply
data types for commonly used system objects. The proposed data types are based on
simulation data from the System object™.

Automated conversion is available for these DSP System Toolbox System Objects:

• dsp.ArrayVectorAdder

• dsp.BiquadFilter

• dsp.FIRDecimator

• dsp.FIRInterpolator

• dsp.FIRFilter (Direct Form and Direct Form Transposed only)
• dsp.FIRRateConverter

• dsp.LowerTriangularSolver

• dsp.LUFactor

• dsp.UpperTriangularSolver

• dsp.VariableFractionalDelay

• dsp.Window

The Fixed-Point Converter app can display simulation minimum and maximum values,
whole number information, and histogram data.

• You cannot propose data types for these System objects based on static range data.
• You must configure the System object to use 'Custom' fixed-point settings.
• The app applies the proposed data types only if the input signal is floating point, not

fixed-point.

The app treats scaled doubles as fixed-point. The scaled doubles workflow for System
objects is the same as that for regular variables.

• The app ignores the Default word length setting in the Settings menu. The app
also ignores specified rounding and overflow modes. Data-type proposals are based on
the settings of the System object.

Related Examples
• “Use the Fixed-Point Converter App with a System object”

 Use the Fixed-Point Converter App with a System object

8-85

Use the Fixed-Point Converter App with a System object

This example converts a dsp.FIRFilter System object, which filters a high-frequency
sinusoid signal, to fixed-point using the Fixed-Point Converter app. This example
requires Fixed-Point Designer and DSP System Toolbox licenses.

Create DSP Filter Function and Test Bench

Create a myFIRFilter function from a dsp.FIRFilter System object.

By default, System objects are configured to use full-precision fixed-point arithmetic.
To gather range data and get data type proposals from the Fixed-Point Converter app,
configure the System object to use ‘Custom’ settings.

Save the function to a local writable folder.

function output = myFIRFilter(input, num)

 persistent lowpassFIR;

 if isempty(lowpassFIR)

 lowpassFIR = dsp.FIRFilter('NumeratorSource', 'Input port', ...

 'FullPrecisionOverride', false, ...

 'ProductDataType', 'Full precision', ... % default

 'AccumulatorDataType', 'Custom', ...

 'CustomAccumulatorDataType', numerictype(1,16,4), ...

 'OutputDataType', 'Custom', ...

 'CustomOutputDataType', numerictype(1,8,2));

 end

 output = step(lowpassFIR, input, num);

end

Create a test bench, myFIRFilter_tb, for the filter. The test bench generates a signal
that gathers range information for conversion. Save the test bench.

% Test bench for myFIRFilter

% Remove high-frequency sinusoid using an FIR filter.

% Initialize

f1 = 1000;

f2 = 3000;

Fs = 8000;

Fcutoff = 2000;

8 Automated Fixed-Point Conversion

8-86

% Generate input

SR = dsp.SineWave('Frequency',[f1,f2],'SampleRate',Fs,...

 'SamplesPerFrame',1024);

% Filter coefficients

num = fir1(130,Fcutoff/(Fs/2));

% Visualize input and output spectra

plot = dsp.SpectrumAnalyzer('SampleRate',Fs,'PlotAsTwoSidedSpectrum',...

 false,'ShowLegend',true,'YLimits',[-120 30],...

 'Title','Input Signal (Channel 1) Output Signal (Channel 2)');

% Stream

for k = 1:100

 input = sum(step(SR),2); % Add the two sinusoids together

 filteredOutput = myFIRFilter(input, num); % Filter

 step(plot,[input,filteredOutput]); % Visualize

end

Convert the Function to Fixed-Point

1 Open the Fixed-Point Converter app.

• MATLAB Toolstrip: On the Apps tab, under Code Generation, click the app
icon.

• MATLAB command prompt: Enter

fixedPointConverter

2 To add the entry-point function myFIRFilter to the project, browse to the file
myFIRFilter.m, and then click Open.

By default, the app saves information and settings for this project in the current
folder in a file named myFirFilter.prj.

 Use the Fixed-Point Converter App with a System object

8-87

3 Click Next to go to the Define Input Types step.

The app screens myFIRFilter.m for code violations and fixed-point conversion
readiness issues. The app does not find issues in myFIRFilter.m.

4 On the Define Input Types page, to add myFIRFilter_tb as a test file, browse to
myFIRFilter_tb.m, and then click Autodefine Input Types.

The app determines from the test file that the type of input is double(1024 x 1)
and the type of num is double(1 x 131).

8 Automated Fixed-Point Conversion

8-88

5 Click Next to go to the Check for Run-Time Issues step. On the Check for Run-
Times Issues page, the app populates the test file field with myFIRFilter_tb, the
test file that you used to define the input types.

6 Click Check for Issues. The app generates instrumented MEX function. It runs
the test file myFIRFilter_tb replacing calls to myFIRFilter with calls to the
generated MEX. If the app finds issues, it provides warning and error messages. You
can click a message to highlight the problematic code in a window where you can edit
the code. In this example, the app does not detect issues.

7 Click Next to go to the Convert to Fixed Point step.
8 On the Convert to Fixed Point page, click Simulate to collect range information.

The Variables tab displays the collected range information and type proposals.
Manually edit the data type proposals as needed.

 Use the Fixed-Point Converter App with a System object

8-89

In the Variables tab, the Proposed Type field for
lowpassFIR.CustomProductDataType is Full Precision. The Fixed-
Point Converter app did not propose a data type for this field because its
'ProductDataType' setting is not set to 'Custom'.

9 Click Convert to apply the proposed data types to the function.

The Fixed-Point Converter app applies the proposed data types and generates a
fixed-point function, myFIRFilter_fixpt.

8 Automated Fixed-Point Conversion

8-90

function output = myFIRFilter_fixpt(input,num)

 fm = fimath('RoundingMethod', 'Floor',...

 'OverflowAction', 'Wrap', 'ProductMode', 'FullPrecision',...

 'MaxProductWordLength', 128, ...

 'SumMode', 'FullPrecision', 'MaxSumWordLength', 128);

 persistent lowpassFIR

 if isempty(lowpassFIR)

 lowpassFIR = dsp.FIRFilter('NumeratorSource', 'Input port',...

 'FullPrecisionOverride', false, 'ProductDataType', 'Full precision',...

 'AccumulatorDataType', 'Custom',...

 'CustomAccumulatorDataType', numerictype(1, 16, 14),...

 'OutputDataType', 'Custom', 'CustomOutputDataType', numerictype(1, 8, 6));

 % default

 end

 Use the Fixed-Point Converter App with a System object

8-91

 output = fi(step(lowpassFIR, input, num), 1, 16, 14, fm);

end

More About
• “Using the Fixed-Point Converter App with System Objects”

9

Automated Conversion Using Fixed-
Point Converter App

• “Specify Type Proposal Options” on page 9-2
• “Detect Overflows” on page 9-6
• “Propose Data Types Based on Simulation Ranges” on page 9-17
• “Propose Data Types Based on Derived Ranges” on page 9-32
• “View and Modify Variable Information” on page 9-48
• “Replace the exp Function with a Lookup Table” on page 9-52
• “Convert Fixed-Point Conversion Project to MATLAB Scripts” on page 9-62
• “Replace a Custom Function with a Lookup Table” on page 9-64
• “Visualize Differences Between Floating-Point and Fixed-Point Results” on page

9-73
• “Enable Plotting Using the Simulation Data Inspector” on page 9-84
• “Add Global Variables Using the App” on page 9-85
• “Automatically Define Input Types Using the App” on page 9-86
• “Define Constant Input Parameters Using the App” on page 9-87
• “Define or Edit Input Parameter Type Using the App” on page 9-88
• “Define Input Parameters by Example Using the App” on page 9-92
• “Specify Global Variable Type and Initial Value Using the App” on page 9-97
• “Specify Properties of Entry-Point Function Inputs Using the App” on page 9-101
• “Detect Dead and Constant-Folded Code” on page 9-102

9 Automated Conversion Using Fixed-Point Converter App

9-2

Specify Type Proposal Options

To view type proposal options, in the Fixed-Point Converter app, on the Convert to

Fixed Point page, click the Settings arrow .

The following options are available.

Basic Type Proposal Settings Values Description

Propose fraction lengths for
specified word length

Use the specified word
length for data type
proposals and propose the
minimum fraction lengths to
avoid overflows.

Fixed-point type proposal
mode

Propose word lengths for
specified fraction length
(default)

Use the specified fraction
length for data type
proposals and propose the
minimum word lengths to
avoid overflows.

Default word length 16 (default) Default word length to
use when Fixed point
type proposal mode is
set to Propose fraction
lengths for specified

word lengths

Default fraction length 4 (default) Default fraction length to use
when Fixed point type
proposal mode is set to
Propose word lengths

for specified fraction

lengths

Advanced Type Proposal Settings Values Description

ignore simulation
ranges

Propose data types based on
derived ranges.

When proposing types

Note: Manually-entered static ranges
always take precedence over simulation
ranges.

ignore derived
ranges

Propose data types based on
simulation ranges.

 Specify Type Proposal Options

9-3

Advanced Type Proposal Settings Values Description

use all collected data
(default)

Propose data types based on both
simulation and derived ranges.

Yes Propose data type with the smallest
word length that can represent the
range and is suitable for C code
generation (8,16,32, 64 …). For
example, for a variable with range
[0..7], propose a word length of 8
rather than 3.

Propose target container types

No (default) Propose data types with the
minimum word length needed to
represent the value.

No Do not use integer scaling for
variables that were whole numbers
during simulation.

Optimize whole numbers

Yes (default) Use integer scaling for variables
that were whole numbers during
simulation.

Automatic (default) Proposes signed and unsigned
data types depending on the range
information for each variable.

Signed Propose signed data types.

Signedness

Unsigned Propose unsigned data types.

9 Automated Conversion Using Fixed-Point Converter App

9-4

Advanced Type Proposal Settings Values Description

Safety margin for sim min/max (%) 0 (default) Specify safety factor for simulation
minimum and maximum values.

The simulation minimum and
maximum values are adjusted
by the percentage designated by
this parameter, allowing you to
specify a range different from that
obtained from the simulation run.
For example, a value of 55 specifies
that you want a range at least
55 percent larger. A value of -15
specifies that a range up to 15
percent smaller is acceptable.

fimath Settings Values Description

Ceiling
Convergent
Floor (default)
Nearest
Round

Rounding method

Zero
SaturateOverflow action
Wrap (default)
FullPrecision (default)
KeepLSB
KeepMSB

Product mode

SpecifyPrecision
FullPrecision (default)
KeepLSB
KeepMSB

Sum mode

SpecifyPrecision

Specify the fimath
properties for the generated
fixed-point data types.

The default fixed-point math
properties use the Floor
rounding and Wrap overflow.
These settings generate
the most efficient code but
might cause problems with
overflow.

After code generation, if
required, modify these
settings to optimize the
generated code, or example,
avoid overflow or eliminate
bias, and then rerun the
verification.

 Specify Type Proposal Options

9-5

fimath Settings Values Description

Product word length 32 (default)|any positive
integer

Word length, in bits, of the
product data type

Sum word length 32 (default)|any positive
integer

Word length, in bits, of the
sum data type

Generated File Settings Value Description

Generated fixed-point file
name suffix

_fixpt (default) Specify the suffix to add to
the generated fixed-point file
names.

Plotting and Reporting
Settings

Values Description

Custom plot function Empty string Specify the name of a custom
plot function to use for
comparison plots.

No (default)Plot with Simulation Data
Inspector Yes

Specify whether to use the
Simulation Data Inspector
for comparison plots.

No (default)Highlight potential data
type issues Yes

Specify whether to highlight
potential data types in the
generated html report. If
this option is turned on, the
report highlights single-
precision, double-precision,
and expensive fixed-point
operation usage in your
MATLAB code.

9 Automated Conversion Using Fixed-Point Converter App

9-6

Detect Overflows

This example shows how to detect overflows using the Fixed-Point Converter app. At the
numerical testing stage in the conversion process, you choose to simulate the fixed-point
code using scaled doubles. The app then reports which expressions in the generated code
produce values that overflow the fixed-point data type.

Prerequisites

This example requires the following products:

• MATLAB
• Fixed-Point Designer
• C compiler (for most platforms, a default C compiler is supplied with MATLAB) See

http://www.mathworks.com/support/compilers/current_release/.

You can use mex -setup to change the default compiler. See “Changing Default
Compiler”.

Create a New Folder and Copy Relevant Files

1 Create a local working folder, for example, c:\overflow.
2 Change to the docroot\toolbox\fixpoint\examples folder. At the MATLAB

command line, enter:

cd(fullfile(docroot, 'toolbox', 'fixpoint', 'examples'))

3 Copy the overflow.m and overflow_test.m files to your local working folder.

It is a best practice is to create a separate test script to do pre- and post-processing,
such as:

• Loading inputs.
• Setting up input values.
• Outputting test results.

For more information, see “Create a Test File”.

Type Name Description

Function code overflow.m Entry-point MATLAB function

 Detect Overflows

9-7

Type Name Description

Test file overflow_test.m MATLAB script that tests
overflow.m

The overflow Function

function y = overflow(b,x,reset)

 if nargin<3, reset = true; end

 persistent z p

 if isempty(z) || reset

 p = 0;

 z = zeros(size(b));

 end

 [y,z,p] = fir_filter(b,x,z,p);

end

function [y,z,p] = fir_filter(b,x,z,p)

 y = zeros(size(x));

 nx = length(x);

 nb = length(b);

 for n = 1:nx

 p=p+1; if p>nb, p=1; end

 z(p) = x(n);

 acc = 0;

 k = p;

 for j=1:nb

 acc = acc + b(j)*z(k);

 k=k-1; if k<1, k=nb; end

 end

 y(n) = acc;

 end

end

The overflow_test Function

You use this test file to define input types for b, x, and reset, and, later, to verify the
fixed-point version of the algorithm.

function overflow_test

 % The filter coefficients were computed using the FIR1 function from

 % Signal Processing Toolbox.

 % b = fir1(11,0.25);

 b = [-0.004465461051254

 -0.004324228005260

 +0.012676739550326

9 Automated Conversion Using Fixed-Point Converter App

9-8

 +0.074351188907780

 +0.172173206073645

 +0.249588554524763

 +0.249588554524763

 +0.172173206073645

 +0.074351188907780

 +0.012676739550326

 -0.004324228005260

 -0.004465461051254]';

 % Input signal

 nx = 256;

 t = linspace(0,10*pi,nx)';

 % Impulse

 x_impulse = zeros(nx,1); x_impulse(1) = 1;

 % Max Gain

 % The maximum gain of a filter will occur when the inputs line up with the

 % signs of the filter's impulse response.

 x_max_gain = sign(b)';

 x_max_gain = repmat(x_max_gain,ceil(nx/length(b)),1);

 x_max_gain = x_max_gain(1:nx);

 % Sums of sines

 f0=0.1; f1=2;

 x_sines = sin(2*pi*t*f0) + 0.1*sin(2*pi*t*f1);

 % Chirp

 f_chirp = 1/16; % Target frequency

 x_chirp = sin(pi*f_chirp*t.^2); % Linear chirp

 x = [x_impulse, x_max_gain, x_sines, x_chirp];

 titles = {'Impulse', 'Max gain', 'Sum of sines', 'Chirp'};

 y = zeros(size(x));

 for i=1:size(x,2)

 reset = true;

 y(:,i) = overflow(b,x(:,i),reset);

 end

 test_plot(1,titles,t,x,y)

 Detect Overflows

9-9

end

function test_plot(fig,titles,t,x,y1)

 figure(fig)

 clf

 sub_plot = 1;

 font_size = 10;

 for i=1:size(x,2)

 subplot(4,1,sub_plot)

 sub_plot = sub_plot+1;

 plot(t,x(:,i),'c',t,y1(:,i),'k')

 axis('tight')

 xlabel('t','FontSize',font_size);

 title(titles{i},'FontSize',font_size);

 ax = gca;

 ax.FontSize = 10;

 end

 figure(gcf)

end

Open the Fixed-Point Converter App

1 Navigate to the work folder that contains the file for this example.
2 On the MATLAB Toolstrip Apps tab, under Code Generation, click the app icon.

9 Automated Conversion Using Fixed-Point Converter App

9-10

Select Source Files

1 To add the entry-point function overflow to the project, browse to the file
overflow.m, and then click Open. By default, the app saves information and
settings for this project in the current folder in a file named overflow.prj.

2 Click Next to go to the Define Input Types step.

The app screens overflow.m for code violations and fixed-point conversion
readiness issues. The app does not find issues in overflow.m.

Define Input Types

1 On the Define Input Types page, to add overflow_test as a test file, browse to
overflow_test.m, and then click Open.

 Detect Overflows

9-11

2 Click Autodefine Input Types.

The test file runs and displays the outputs of the filter for each of the input signals.

The app determines from the test file that the input type of b is double(1x12), x is
double(256x1), and reset is logical(1x1).

9 Automated Conversion Using Fixed-Point Converter App

9-12

3 Click Next to go to the Check for Run-Time Issues step.

Check for Run-Time Issues

Before you can go to the Convert to Fixed Point step, you must check overflow for
run-time issues:

1 On the Check for Run-Time Issues page, the app populates the test file field with
overflow_test, the test file that you used to define the input types.

2 Click Check for Issues.

The app generates instrumented MEX function. It runs the test file overflow_test
replacing calls to overflow with calls to the generated MEX function. If the app
finds issues, it provides warning and error messages. You can click a message
to highlight the problematic code in a pane where you can edit the code. In this
example, the app does not detect issues.

3 Click Next to go to the Convert to Fixed Point step.

Convert to Fixed Point

1 The app displays compiled information — type, size, and complexity — for variables
in your code. For more information, see “View and Modify Variable Information”.

 Detect Overflows

9-13

On the Function Replacements tab the app displays functions that are not
supported for fixed-point conversion. See “Running a Simulation”.

2 To view the advanced settings, click the Settings arrow . Set the fimath Product
mode and Sum mode to KeepLSB. These settings model the behavior of integer
operations in the C language.

9 Automated Conversion Using Fixed-Point Converter App

9-14

3 Click Simulate.

The test file, overflow_test, runs. The app displays simulation minimum and
maximum ranges on the Variables tab. Using the simulation range data, the
software proposes fixed-point types for each variable based on the default type
proposal settings, and displays them in the Proposed Type column.

4 To convert the floating-point algorithm to fixed point, click Convert.

 Detect Overflows

9-15

The software validates the proposed types and generates a fixed-point version of the
entry-point function.

If errors and warnings occur during validation, the app displays them on the Type
Validation Output tab. See “Validating Types”.

Test Numerics and Check for Overflows

1 Click the Test arrow . Verify that the test file is overflow_test.m. Select Use
scaled doubles to detect overflows, and then click Test.

The app runs the test file that you used to define input types to test the fixed-point
MATLAB code. Because you selected to detect overflows, it also runs the simulation
using scaled double versions of the proposed fixed-point types. Scaled doubles
store their data in double-precision floating-point, so they carry out arithmetic in
full range. Because they retain their fixed-point settings, they can report when a
computation goes out of the range of the fixed-point type.

The simulation runs. The app detects an overflow. The app reports the overflow on
the Overflow tab. To highlight the expression that overflowed, click the overflow.

9 Automated Conversion Using Fixed-Point Converter App

9-16

2 Determine whether it was the sum or the multiplication that overflowed.

In the Advanced settings, set Product mode to FullPrecision, and then repeat
the conversion and test the fixed-point code again.

The overflow still occurs, indicating that it is the addition in the expression that is
overflowing.

 Propose Data Types Based on Simulation Ranges

9-17

Propose Data Types Based on Simulation Ranges
This example shows how to propose fixed-point data types based on simulation range
data using the Fixed-Point Converter app.

Prerequisites

This example requires the following products:

• MATLAB
• Fixed-Point Designer
• C compiler (for most platforms, a default C compiler is supplied with MATLAB). See

http://www.mathworks.com/support/compilers/current_release/

You can use mex -setup to change the default compiler. See “Changing Default
Compiler”.

Create a New Folder and Copy Relevant Files

1 Create a local working folder, for example, c:\fun_with_matlab.
2 Change to the docroot\toolbox\fixpoint\examples folder. At the MATLAB

command line, enter:

cd(fullfile(docroot, 'toolbox', 'fixpoint', 'examples'))

3 Copy the fun_with_matlab.m and fun_with_matlab_test.m files to your local
working folder.

It is a best practice is to create a separate test script to do pre- and post-processing,
such as:

• Loading inputs.
• Setting up input values.
• Outputting test results.

See “Create a Test File”.

Type Name Description

Function code fun_with_matlab.m Entry-point MATLAB function
Test file fun_with_matlab_test.m MATLAB script that tests

fun_with_matlab.m

9 Automated Conversion Using Fixed-Point Converter App

9-18

The fun_with_matlab Function

function y = fun_with_matlab(x) %#codegen

 persistent z

 if isempty(z)

 z = zeros(2,1);

 end

 % [b,a] = butter(2, 0.25)

 b = [0.0976310729378175, 0.195262145875635, 0.0976310729378175];

 a = [1, -0.942809041582063, 0.3333333333333333];

 y = zeros(size(x));

 for i = 1:length(x)

 y(i) = b(1)*x(i) + z(1);

 z(1) = b(2)*x(i) + z(2) - a(2) * y(i);

 z(2) = b(3)*x(i) - a(3) * y(i);

 end

end

The fun_with_matlab_test Script

The test script runs the fun_with_matlab function with three input signals: chirp, step,
and impulse to cover the full intended operating range of the system. The script then
plots the outputs.

% fun_with_matlab_test

%

% Define representative inputs

N = 256; % Number of points

t = linspace(0,1,N); % Time vector from 0 to 1 second

f1 = N/2; % Target frequency of chirp set to Nyquist

x_chirp = sin(pi*f1*t.^2); % Linear chirp from 0 to Fs/2 Hz in 1 second

x_step = ones(1,N); % Step

x_impulse = zeros(1,N); % Impulse

x_impulse(1) = 1;

% Run the function under test

x = [x_chirp;x_step;x_impulse];

y = zeros(size(x));

for i = 1:size(x,1)

 y(i,:) = fun_with_matlab(x(i,:));

end

 Propose Data Types Based on Simulation Ranges

9-19

% Plot the results

titles = {'Chirp','Step','Impulse'}

clf

for i = 1:size(x,1)

 subplot(size(x,1),1,i)

 plot(t,x(i,:),t,y(i,:))

 title(titles{i})

 legend('Input','Output')

end

xlabel('Time (s)')

figure(gcf)

disp('Test complete.')

Open the Fixed-Point Converter App

1 Navigate to the work folder that contains the file for this example.
2 On the MATLAB Toolstrip Apps tab, under Code Generation, click the app icon.

9 Automated Conversion Using Fixed-Point Converter App

9-20

Select Source Files

1 To add the entry-point function fun_with_matlab to the project, browse to
the file fun_with_matlab.m, and then click Open. By default, the app saves
information and settings for this project in the current folder in a file named
fun_with_matlab.prj.

2 Click Next to go to the Define Input Types step.

The app screens fun_with_matlab.m for code violations and fixed-point conversion
readiness issues. The app does not find issues in fun_with_matlab.m.

 Propose Data Types Based on Simulation Ranges

9-21

Define Input Types

1 On the Define Input Types page, to add fun_with_matlab_test as a test file,
browse to fun_with_matlab_test, and then click Open.

2 Click Autodefine Input Types.

The test file runs and displays the outputs of the filter for each of the input signals.

9 Automated Conversion Using Fixed-Point Converter App

9-22

The app determines from the test file that the input type of x is double(1x256).

3 Click Next to go to the Check for Run-Time Issues step.

Check for Run-Time Issues

Before you can go to the Convert to Fixed Point step, you must check
fun_with_matlab for run-time issues:

1 On the Check for Run-Time Issues page, the app populates the test file field with
fun_with_matlab_test, the test file that you used to define the input types.

2 Click Check for Issues.

The app generates instrumented MEX. It runs the test file fun_with_matlab_test
replacing calls to fun_with_matlab with calls to the generated MEX function.
If the app finds issues, it provides warning and error messages. You can click a
message to highlight the problematic code in a window where you can edit the code.
In this example, the app does not detect issues.

3 Click Next to go to the Convert to Fixed Point step.

Convert to Fixed Point

1 The app displays compiled information—type, size, and complexity—for variables in
your code. See “View and Modify Variable Information”.

 Propose Data Types Based on Simulation Ranges

9-23

On the Function Replacements tab, the app displays functions that are not
supported for fixed-point conversion. See “Running a Simulation”.

2 Click the Simulate arrow . Verify that the test file is fun_with_matlab_test.
You can add test files and select to run more than one test file during the simulation.
If you run multiple test files, the app merges the simulation results.

3 Select Log data for histogram.

9 Automated Conversion Using Fixed-Point Converter App

9-24

By default, the Show code coverage option is selected. This option provides
code coverage information that helps you verify that your test file is testing your
algorithm over the intended operating range.

4 Click Simulate.

The simulation runs and the app displays a color-coded code coverage bar to the left
of the MATLAB code. Review this information to verify that the test file is testing
the algorithm adequately. The dark green line to the left of the code indicates that
the code runs every time the algorithm executes. The orange bar indicates that the
code next to it executes only once. This behavior is expected for this example because
the code initializes a persistent variable. If your test file does not cover all of your
code, update the test or add more test files.

 Propose Data Types Based on Simulation Ranges

9-25

If a value has ... next to it, the value is rounded. Place your cursor over the ... to
view the actual value.

The app displays simulation minimum and maximum ranges on the Variables
tab. Using the simulation range data, the software proposes fixed-point types for
each variable based on the default type proposal settings, and displays them in the
Proposed Type column. The app enables the Convert option.

Note: You can manually enter static ranges. These manually entered ranges take
precedence over simulation ranges. The app uses the manually entered ranges to
propose data types. You can also modify and lock the proposed type.

9 Automated Conversion Using Fixed-Point Converter App

9-26

5 Examine the proposed types and verify that they cover the full simulation range. To
view logged histogram data for a variable, click its Proposed Type field.

To modify the proposed data types, either enter the required type into the Proposed
Type field or use the histogram controls. For more information about the histogram,
see “Log Data for Histogram”.

6 To convert the floating-point algorithm to fixed point, click Convert.

During the fixed-point conversion process, the software validates the proposed types
and generates the following files in the codegen\fun_with_matlab\fixpt folder
in your local working folder.

• fun_with_matlab_fixpt.m — the fixed-point version of fun_with_matlab.m.
• fun_with_matlab_wrapper_fixpt.m — this file converts the floating-point

data values supplied by the test file to the fixed-point types determined for the
inputs during conversion. These fixed-point values are fed into the converted
fixed-point design, fun_with_matlab_fixpt.m.

• fun_with_matlab_fixpt_report.html — this report shows the generated
fixed-point code and the fixed-point instrumentation results.

• fun_with_matlab_report.html — this report shows the original algorithm
and the fixed-point instrumentation results.

 Propose Data Types Based on Simulation Ranges

9-27

• fun_with_matlab_fixpt_exVal.mat — MAT-file containing a structure for
the input arguments, a structure for the output arguments and the name of the
fixed-point file.

If errors or warnings occur during validation, you see them on the Type Validation
Output tab. See “Validating Types”.

7 In the Output Files list, select fun_with_matlab_fixpt.m. The app displays the
generated fixed-point code.

8 Click the Test arrow . Select Log inputs and outputs for comparison plots,
and then click Test.

9 Automated Conversion Using Fixed-Point Converter App

9-28

To test the fixed-point MATLAB code, the app runs the test file that you used to
define input types. Optionally, you can add test files and select to run more than
one test file to test numerics. The software runs both a floating-point and a fixed-
point simulation and then calculates the errors for the output variable y. Because
you selected to log inputs and outputs for comparison plots, the app generates an
additional plot for each input and output.

 Propose Data Types Based on Simulation Ranges

9-29

The app also reports error information on the Verification Output tab. The
maximum error is less than 0.03%. For this example, this margin of error is
acceptable.

If the difference is not acceptable, modify the fixed-point data types or your original
algorithm. For more information, see “Testing Numerics”.

9 Automated Conversion Using Fixed-Point Converter App

9-30

9 On the Verification Output tab, the app provides a link to a type proposal
report. The report displays the generated fixed-point code and the proposed type
information.

10 Click Next to go to the Finish Workflow page.

On the Finish Workflow page, the app displays a project summary and links to
generated output files.

Integrate Fixed-Point Code

To integrate the fixed-point version of the code into system-level simulations, generate a
MEX function to accelerate the fixed-point algorithm. Call this MEX function instead of
the original MATLAB algorithm.

1 Copy fun_with_matlab_fixpt.m to your local working folder.
2 Generate a MEX function for fun_with_matlab_fixpt.m. Use the type proposal

report to get the fimath, fm, and fixed-point data type for input x.
fm = fimath('RoundingMethod', 'Floor', 'OverflowAction', 'Wrap', 'ProductMode', 'FullPrecision',...

 'MaxProductWordLength', 128, 'SumMode', 'FullPrecision', 'MaxSumWordLength', 128);

fiaccel fun_with_matlab_fixpt -args {fi(0, 1, 16, 14, fm)}

fiaccel generates a MEX function, fun_with_matlab_fixpt_mex, in the current
folder.

 Propose Data Types Based on Simulation Ranges

9-31

3 You can now call this MEX function in place of the original MATLAB algorithm.

9 Automated Conversion Using Fixed-Point Converter App

9-32

Propose Data Types Based on Derived Ranges

This example shows how to propose fixed-point data types based on static ranges using
the Fixed-Point Converter app. When you propose data types based on derived ranges
you, do not have to provide test files that exercise your algorithm over its full operating
range. Running such test files often takes a long time. You can save time by deriving
ranges instead.

Prerequisites

This example requires the following products:

• MATLAB
• Fixed-Point Designer
• C compiler (for most platforms, a default C compiler is supplied with MATLAB). See

http://www.mathworks.com/support/compilers/current_release/.

You can use mex -setup to change the default compiler. See “Changing Default
Compiler”.

Create a New Folder and Copy Relevant Files

1 Create a local working folder, for example, c:\dti.
2 Change to the docroot\toolbox\fixpoint\examples folder. At the MATLAB

command line, enter:

cd(fullfile(docroot, 'toolbox', 'fixpoint', 'examples'))

3 Copy the dti.m and dti_test.m files to your local working folder.

It is a best practice is to create a separate test script to do pre- and post-processing,
such as:

• Loading inputs.
• Setting up input values.
• Outputting test results.

Type Name Description

Function code dti.m Entry-point MATLAB function

 Propose Data Types Based on Derived Ranges

9-33

Type Name Description

Test file dti_test.m MATLAB script that tests
dti.m

The dti Function

The dti function implements a Discrete Time Integrator in MATLAB.

function [y, clip_status] = dti(u_in) %#codegen

% Discrete Time Integrator in MATLAB

%

% Forward Euler method, also known as Forward Rectangular, or left-hand

% approximation. The resulting expression for the output of the block at

% step 'n' is y(n) = y(n-1) + K * u(n-1)

%

init_val = 1;

gain_val = 1;

limit_upper = 500;

limit_lower = -500;

% variable to hold state between consecutive calls to this block

persistent u_state;

if isempty(u_state)

 u_state = init_val+1;

end

% Compute Output

if (u_state > limit_upper)

 y = limit_upper;

 clip_status = -2;

elseif (u_state >= limit_upper)

 y = limit_upper;

 clip_status = -1;

elseif (u_state < limit_lower)

 y = limit_lower;

 clip_status = 2;

elseif (u_state <= limit_lower)

 y = limit_lower;

 clip_status = 1;

else

 y = u_state;

 clip_status = 0;

end

9 Automated Conversion Using Fixed-Point Converter App

9-34

% Update State

tprod = gain_val * u_in;

u_state = y + tprod;

The dti_test Function

The test script runs the dti function with a sine wave input. The script then plots the
input and output signals.

% dti_test

% cleanup

clear dti

% input signal

x_in = sin(2.*pi.*(0:0.001:2)).';

pause(10);

len = length(x_in);

y_out = zeros(1,len);

is_clipped_out = zeros(1,len);

for ii=1:len

 data = x_in(ii);

 % call to the dti function

 init_val = 0;

 gain_val = 1;

 upper_limit = 500;

 lower_limit = -500;

 % call to the design that does DTI

 [y_out(ii), is_clipped_out(ii)] = dti(data);

end

figure('Name', [mfilename, '_plot']);

subplot(2,1,1)

plot(1:len,x_in)

xlabel('Time')

ylabel('Amplitude')

title('Input Signal (Sin)')

subplot(2,1,2)

plot(1:len,y_out)

xlabel('Time')

 Propose Data Types Based on Derived Ranges

9-35

ylabel('Amplitude')

title('Output Signal (DTI)')

disp('Test complete.');

Open the Fixed-Point Converter App

1 Navigate to the work folder that contains the file for this example.
2 On the MATLAB Toolstrip Apps tab, under Code Generation, click the app icon.

Select Source Files

1 To add the entry-point function dti to the project, browse to the file dti.m, and then
click Open. By default, the app saves information and settings for this project in the
current folder in a file named dti.prj.

9 Automated Conversion Using Fixed-Point Converter App

9-36

2 Click Next to go to the Define Input Types step.

The app screens dti.m for code violations and fixed-point conversion readiness
issues. The app does not find issues in dti.m.

Define Input Types

1 On the Define Input Types page, to add dti_test as a test file, browse to
dti_test.m, and then click Open.

2 Click Autodefine Input Types.

The test file runs and displays the outputs of the filter for each of the input signals.

 Propose Data Types Based on Derived Ranges

9-37

The app determines from the test file that the input type of u_in is double(1x1).

9 Automated Conversion Using Fixed-Point Converter App

9-38

3 Click Next to go to the Check for Run-Time Issues step.

Check for Run-Time Issues

Before you can go to the Convert to Fixed Point step, you must check dti for run-time
issues:

1 On the Check for Run-Time Issues page, the app populates the test file field with
dti_test, the test file that you used to define the input types.

2 Click Check for Issues.

The app generates instrumented MEX function. It runs the test file dti_test
replacing calls to dti with calls to the generated MEX. If the app finds issues, it
provides warning and error messages. You can click a message to highlight the
problematic code in a window where you can edit the code. In this example, the app
does not detect issues.

3 Click Next to go to the Convert to Fixed Point step.

Convert to Fixed Point

1 The app displays compiled information—type, size, and complexity—for variables in
your code. For more information, see “View and Modify Variable Information”.

 Propose Data Types Based on Derived Ranges

9-39

If functions are not supported for fixed-point conversion, the app displays them on
the Function Replacements tab.

2 On the Convert to Fixed Point page, on the Variables tab, for input u_in, select
Static Min and set it to -1. Set Static Max to 1.

To compute derived range information, at a minimum you must specify static
minimum and maximum values or proposed data types for all input variables.

Note: If you manually enter static ranges, these manually entered ranges take
precedence over simulation ranges. The app uses the manually entered ranges to
propose data types. You can also modify and lock the proposed type.

3 Click Derive.

9 Automated Conversion Using Fixed-Point Converter App

9-40

Range analysis computes the derived ranges and displays them in the Variables
tab. Using these derived ranges, the analysis proposes fixed-point types for each
variable based on the default type proposal settings. The app displays them in the
Proposed Type column.

In the dti function, the clip_status output has a minimum value of -2 and a
maximum of 2.

% Compute Output

if (u_state > limit_upper)

 y = limit_upper;

 clip_status = -2;

elseif (u_state >= limit_upper)

 y = limit_upper;

 clip_status = -1;

elseif (u_state < limit_lower)

 y = limit_lower;

 clip_status = 2;

elseif (u_state <= limit_lower)

 y = limit_lower;

 clip_status = 1;

else

 y = u_state;

 clip_status = 0;

end

When you derive ranges, the app analyzes the function and computes these
minimum and maximum values for clip_status.

 Propose Data Types Based on Derived Ranges

9-41

The app provides a Quick derived range analysis option and the option to specify
a timeout in case the analysis takes a long time. See “Computing Derived Ranges”.

4 To convert the floating-point algorithm to fixed point, click Convert.

During the fixed-point conversion process, the software validates the proposed types
and generates the following files in the codegen\dti\fixpt folder in your local
working folder:

• dti_fixpt.m — the fixed-point version of dti.m.
• dti_wrapper_fixpt.m — this file converts the floating-point data values

supplied by the test file to the fixed-point types determined for the inputs during

9 Automated Conversion Using Fixed-Point Converter App

9-42

conversion. The app feeds these fixed-point values into the converted fixed-point
design, dti_fixpt.m.

• dti_fixpt_report.html — this report shows the generated fixed-point code
and the fixed-point instrumentation results.

• dti_report.html — this report shows the original algorithm and the fixed-
point instrumentation results.

• dti_fixpt_exVal.mat — MAT-file containing a structure for the input
arguments, a structure for the output arguments and the name of the fixed-point
file.

If errors or warnings occur during validation, they show on the Validation results
tab. See “Validating Types”.

5 In the Output Files list, select dti_fixpt.m. The app displays the generated fixed-
point code.

6 Use the Simulation Data Inspector to plot the floating-point and fixed-point results.

a Click the Settings arrow .
b Expand the Plotting and Reporting settings and set Plot with Simulation

Data Inspector to Yes.

c Click the Test arrow . Select Log inputs and outputs for comparison
plots. Click Test.

 Propose Data Types Based on Derived Ranges

9-43

The app runs the test file that you used to define input types to test the fixed-
point MATLAB code. Optionally, you can add test files and select to run more
than one test file to test numerics. The software runs both a floating-point and
a fixed-point simulation and then calculates the errors for the output variable y.
Because you selected to log inputs and outputs for comparison plots and to use
the Simulation Data Inspector for these plots, the Simulation Data Inspector
opens.

d You can use the Simulation Data Inspector to view floating-point and fixed-point
run information and compare results. For example, to compare the floating-point

9 Automated Conversion Using Fixed-Point Converter App

9-44

and fixed-point values for the output y, on the Compare tab, select y, and then
click Compare Runs.

The Simulation Data Inspector displays a plot of the baseline floating-point run
against the fixed-point run and the difference between them.

7 On the Verification Output tab, the app provides a link to a type proposal report.

 Propose Data Types Based on Derived Ranges

9-45

To open the report, click the dti_fixpt_report.html link.

9 Automated Conversion Using Fixed-Point Converter App

9-46

8 Click Next to go to the Finish Workflow page.

On the Finish Workflow page, the app displays a project summary and links to
generated output files.

Integrate Fixed-Point Code

To integrate the fixed-point version of the code into system-level simulations, generate a
MEX function to accelerate the fixed-point algorithm. Call this MEX function instead of
the original MATLAB algorithm.

1 Copy dti_fixpt.m to your local working folder.
2 Generate a MEX function for dti_fixpt.m. Use the type proposal report to get the

fimath, fm, and fixed-point data type for input u_in.

 Propose Data Types Based on Derived Ranges

9-47

fm = fimath('RoundingMethod', 'Floor', 'OverflowAction', 'Wrap', 'ProductMode', 'FullPrecision',...

 'MaxProductWordLength', 128, 'SumMode', 'FullPrecision', 'MaxSumWordLength', 128);

fiaccel dti_fixpt -args {fi(0, 1, 16, 14, fm)}

fiaccel generates a MEX function, dti_fixpt_mex, in the current folder.
3 You can now call this MEX function in place of the original MATLAB algorithm.

9 Automated Conversion Using Fixed-Point Converter App

9-48

View and Modify Variable Information

View Variable Information

On the Convert to Fixed Point page of the Fixed-Point Converter app, you can view
information about the variables in the MATLAB functions. To view information about
the variables that you select in the Source Code pane, use the Variables tab or place
your cursor over a variable in the code window. For more information, see “Viewing
Variables” on page 8-18.

You can view the variable information:

• Variable

Variable name. Variables are classified and sorted as inputs, outputs, persistent, or
local variables.

• Type

The original size, type, and complexity of each variable.
• Sim Min

The minimum value assigned to the variable during simulation.
• Sim Max

The maximum value assigned to the variable during simulation.

To search for a variable in the MATLAB code window and on the Variables tab, use
Ctrl+F. The app highlights occurrences of the variable in the code.

Modify Variable Information

If you modify variable information, the app highlights the modified values using bold
text. You can modify the following fields:

• Static Min

You can enter a value for Static Min into the field or promote Sim Min information.
See “Promote Sim Min and Sim Max Values” on page 9-51.

 View and Modify Variable Information

9-49

Editing this field does not trigger static range analysis, but the app uses the edited
values in subsequent analyses.

• Static Max

You can enter a value for Static Max into the field or promote Sim Max information.
See “Promote Sim Min and Sim Max Values” on page 9-51.

Editing this field does not trigger static range analysis, but the app uses the edited
values in subsequent analyses.

• Whole Number

The app uses simulation data to determine whether the values assigned to a variable
during simulation were always integers. You can manually override this field.

Editing this field does not trigger static range analysis, but the app uses the edited
value in subsequent analyses.

• Proposed Type

You can modify the signedness, word length, and fraction length settings individually:

• On the Variables tab, modify the value in the ProposedType field.

• In the code window, select a variable, and then modify the ProposedType field.

9 Automated Conversion Using Fixed-Point Converter App

9-50

If you selected to log data for a histogram, the histogram dynamically updates to
reflect the modifications to the proposed type. You can also modify the proposed type
in the histogram, see “Log Data for Histogram” on page 8-20.

Revert Changes

• To clear results and revert edited values, right-click the Variables tab and select
Reset entire table.

• To revert the type of a selected variable to the type computed by the app, right-click
the field and select Undo changes.

• To revert changes to variables, right-click the field and select Undo changes for
all variables.

 View and Modify Variable Information

9-51

• To clear a static range value, right-click an edited field and select Clear this
static range.

• To clear manually entered static range values, right-click anywhere on the Variables
tab and select Clear all manually entered static ranges.

Promote Sim Min and Sim Max Values

With the Fixed-Point Converter app, you can promote simulation minimum and
maximum values to static minimum and maximum values. This capability is useful if
you have not specified static ranges and you have simulated the model with inputs that
cover the full intended operating range.

To copy:

• A simulation range for a selected variable, select a variable, right-click, and then
select Copy sim range.

• Simulation ranges for top-level inputs, right-click the Static Min or Static Max
column, and then select Copy sim ranges for all top-level inputs.

• Simulation ranges for persistent variables, right-click the Static Min or Static Max
column, and then select Copy sim ranges for all persistent variables.

9 Automated Conversion Using Fixed-Point Converter App

9-52

Replace the exp Function with a Lookup Table

This example shows how to replace the exp function with a lookup table approximation
in fixed-point code generated using the Fixed-Point Converter app.

Prerequisites

To complete this example, you must install the following products:

• MATLAB
• Fixed-Point Designer
• C compiler (for most platforms, a default C compiler is supplied with MATLAB). See

http://www.mathworks.com/support/compilers/current_release/.

You can use mex -setup to change the default compiler. See “Changing Default
Compiler”.

Create Algorithm and Test Files

1 Create a MATLAB function, my_fcn.m, that calls the exp function.

function y = my_fcn(x)

 y = exp(x);

end

2 Create a test file, my_fcn_test.m, that uses my_fcn.m.

close all

x = linspace(-10,10,1e3);

for itr = 1e3:-1:1

 y(itr) = my_fcn(x(itr));

end

plot(x, y);

Open the Fixed-Point Converter App

1 Navigate to the work folder that contains the file for this example.
2 On the MATLAB Toolstrip Apps tab, under Code Generation, click the app icon.

 Replace the exp Function with a Lookup Table

9-53

Select Source Files

1 To add the entry-point function my_fcn to the project, browse to the file my_fcn.m,
and then click Open. By default, the app saves information and settings for this
project in the current folder in a file named my_fcn.prj.

2 Click Next to go to the Define Input Types step.

The app screens my_fcn.m for code violations and fixed-point conversion readiness
issues. The app opens the Review Code Generation Readiness page.

9 Automated Conversion Using Fixed-Point Converter App

9-54

Review Code Generation Readiness

1 Click Review Issues. The app indicates that the exp function is not supported
for code generation. In a later step, you specify a lookup table replacement for this
function.

2 Click Next to go to the Define Input Types step.

Define Input Types

1 Add my_fcn_test as a test file and then click Autodefine Input Types.

The test file runs and plots the output. The app determines from the test file that x
is a scalar double.

 Replace the exp Function with a Lookup Table

9-55

2 Click Next to go to the Check for Run-Time Issues step.

Check for Run-Time Issues

Before you can go to the Convert to Fixed Point step, you must check my_fcn for run-
time issues:

1 On the Check for Run-Time Issues page, the app populates the test file field with
my_fcn_test, the test file that you used to define the input types.

9 Automated Conversion Using Fixed-Point Converter App

9-56

2 Click Check for Issues.

The app generates instrumented MEX function. It runs the test file my_fcn_test
replacing calls to my_fcn with calls to the generated MEX function. If the app finds
issues, it provides warning and error messages. You can click a message to highlight
the problematic code in a pane where you can edit the code. In this example, the app
does not detect issues.

3 Click Next to go to the Convert to Fixed Point step.

Replace exp Function with Lookup Table

1 Select the Function Replacements tab.

The app indicates that you must replace the exp function.

 Replace the exp Function with a Lookup Table

9-57

2 On the Function Replacements tab, right-click the exp function and select
Lookup Table.

9 Automated Conversion Using Fixed-Point Converter App

9-58

The app moves the exp function to the list of functions that it will replace with a
Lookup Table. By default, the lookup table uses linear interpolation and 1000 points.
Design Min and Design Max are set to Auto which means that the app uses the
design minimum and maximum values that it detects by either running a simulation
or computing derived ranges.

3 Click the Simulate arrow , select Log data for histogram, and verify that the
test file is my_fcn_test.

 Replace the exp Function with a Lookup Table

9-59

4 Click Simulate.

The simulation runs. On the Variables tab, the app displays simulation minimum
and maximum ranges. Using the simulation range data, the software proposes
fixed-point types for each variable based on the default type proposal settings, and
displays them in the Proposed Type column. The app enables the Convert option.

5 Examine the proposed types and verify that they cover the full simulation range.
To view logged histogram data for a variable, click its Proposed Type field. The
histogram provides range information and the percentage of simulation range
covered by the proposed data type.

Convert to Fixed Point

1 Click Convert.

The app validates the proposed types, and generates a fixed-point version of the
entry-point function, my_fcn_fixpt.m.

2 In the Output Files list, select my_fcn_fixpt.m.

The conversion process generates a lookup table approximation, replacement_exp,
for the exp function.

9 Automated Conversion Using Fixed-Point Converter App

9-60

The generated fixed-point function, my_fcn_fixpt.m, calls this approximation
instead of calling exp. The fixed-point conversion process infers the ranges for the
function and then uses an interpolated lookup table to replace the function. By
default, the lookup table uses linear interpolation, 1000 points, and the minimum
and maximum values detected by running the test file.
function y = my_fcn_fixpt(x)

 fm = fimath('RoundingMethod', 'Floor', 'OverflowAction', 'Wrap', 'ProductMode', 'FullPrecision',...

 'MaxProductWordLength', 128, 'SumMode', 'FullPrecision', 'MaxSumWordLength', 128);

 y = fi(replacement_exp(x), 0, 16, 1, fm);

end

You can now test the generated fixed-point code and compare the results against the
original MATLAB function. If the behavior of the generated fixed-point code does

 Replace the exp Function with a Lookup Table

9-61

not match the behavior of the original code closely enough, modify the interpolation
method or number of points used in the lookup table. Then, regenerate the code.

More About
• “Replacing Functions Using Lookup Table Approximations”

9 Automated Conversion Using Fixed-Point Converter App

9-62

Convert Fixed-Point Conversion Project to MATLAB Scripts

This example shows how to convert a Fixed-Point Converter app project to a MATLAB
script. You can use the -tocode option of the fixedPointConverter command to
create a script for fixed-point conversion. You can use the script to repeat the project
workflow in a command-line workflow. Before you convert the project to a script, you
must complete the Test step of the fixed-point conversion process.

Prerequisites

This example uses the following files:

• Project file fun_with_matlab.prj
• Entry-point file fun_with_matlab.m
• Test bench file fun_with_matlab_test.m
• Generated fixed-point MATLAB file fun_with_matlab_fixpt.m

To obtain these files, complete the example “Propose Data Types Based on Simulation
Ranges”, including the Test step.

Generate the Scripts

1 Change to the folder that contains the project file fun_with_matlab.prj.
2 Use the -tocode option of the fixedPointConverter command to convert the

project to a script. Use the -script option to specify the file name for the script.

fixedPointConverter -tocode fun_with_matlab -script fun_with_matlab_script.m

The fixedPointConverter command generates a script in the current folder.
fun_with_matlab_script.m contains the MATLAB commands to:

• Create a floating-point to fixed-point conversion configuration object that has the
same fixed-point conversion settings as the project.

• Run the fiaccel command to convert the MATLAB function fun_with_matlab
to the fixed-point MATLAB function fun_with_matlab_fixpt.

The fiaccel command overwrites existing files that have the same name as the
generated script. If you omit the -script option, the fiaccel command returns the
script in the Command Window.

 Convert Fixed-Point Conversion Project to MATLAB Scripts

9-63

Run Script That Generates Fixed-Point MATLAB Code

If you want to regenerate the fixed-point function, use the generated script.

1 Make sure that the current folder contains the entry-point function
fun_with_matlab.m and the test bench file fun_with_matlab_test.m.

2 Run the script.

 fun_with_matlab_script

The script generates fun_with_matlab_fixpt.m in the folder codegen
\fun_with_matlab\fixpt. The variables cfg and ARGS appear in the base
workspace.

See Also
coder.FixptConfig | fiaccel

Related Examples
• “Propose Data Types Based on Simulation Ranges”

9 Automated Conversion Using Fixed-Point Converter App

9-64

Replace a Custom Function with a Lookup Table

This example shows how to replace a custom function with a lookup table approximation
function using the Fixed-Point Converter app.

Prerequisites

This example requires the following products:

• MATLAB
• Fixed-Point Designer
• C compiler (for most platforms, a default C compiler is supplied with MATLAB). See

http://www.mathworks.com/support/compilers/current_release/.

You can use mex -setup to change the default compiler. See “Changing Default
Compiler”.

Create Algorithm and Test Files

In a local, writable folder:

1 Create a MATLAB function, custom_fcn.m which is the function that you want to
replace.

function y = custom_fcn(x)

 y = 1./(1+exp(-x));

end

2 Create a wrapper function, call_custom_fcn.m, that calls custom_fcn.m.

function y = call_custom_fcn(x)

 y = custom_fcn(x);

end

3 Create a test file, custom_test.m, that uses call_custom_fcn.

close all

clear all

x = linspace(-10,10,1e3);

for itr = 1e3:-1:1

 y(itr) = call_custom_fcn(x(itr));

end

plot(x, y);

 Replace a Custom Function with a Lookup Table

9-65

Open the Fixed-Point Converter App

1 Navigate to the work folder that contains the file for this example.
2 On the MATLAB Toolstrip Apps tab, under Code Generation, click the app icon.

Select Source Files

1 To add the entry-point function call_custom_fcn to the project, browse to
the file call_custom_fcn.m, and then click Open. By default, the app saves
information and settings for this project in the current folder in a file named
call_custom_fcn.prj.

2 Click Next to go to the Define Input Types step.

The app screens call_custom_fcn.m for code violations and fixed-point conversion
issues. The app opens the Review Code Generation Readiness page.

9 Automated Conversion Using Fixed-Point Converter App

9-66

Review Code Generation Readiness

1 Click Review Issues. The app indicates that the exp function is not supported
for code generation. You can ignore this warning because you are going to replace
custom_fcn, which is the function that calls exp.

2 Click Next to go to the Define Input Types step.

Define Input Types

1 Add custom_test as a test file and then click Autodefine Input Types.

The test file runs and plots the output. The app determines from the test file that x
is a scalar double.

 Replace a Custom Function with a Lookup Table

9-67

2 Click Next to go to the Check for Run-Time Issues step.

Check for Run-Time Issues

Before you can go to the Convert to Fixed Point step, you must check
call_custom_fcn for run-time issues:

1 On the Check for Run-Time Issues page, the app populates the test file field with
custom_test, the test file that you used to define the input types.

9 Automated Conversion Using Fixed-Point Converter App

9-68

2 Click Check for Issues.

The app generates instrumented MEX function. It runs the test file custom_test
replacing calls to call_custom_fcn with calls to the generated MEX function.
If the app finds issues, it provides warning and error messages. You can click a
message to highlight the problematic code in a pane where you can edit the code. In
this example, the app does not detect issues.

3 Click Next to go to the Convert to Fixed Point step.

Replace custom_fcn with Lookup Table

1 Select the Function Replacements tab.

The app indicates that you must replace the exp function.

 Replace a Custom Function with a Lookup Table

9-69

2 Enter the name of the function to replace, custom_fcn, select Lookup Table, and

then click .

The app adds custom_fcn to the list of functions that it will replace with a Lookup
Table. By default, the lookup table uses linear interpolation and 1000 points. The
app sets Design Min and Design Max to Auto which means that app uses the
design minimum and maximum values that it detects by either running a simulation
or computing derived ranges.

9 Automated Conversion Using Fixed-Point Converter App

9-70

3 Click the Simulate arrow , select Log data for histogram, and verify that the
test file is call_custom_test.

4 Click Simulate.

The simulation runs. The app displays simulation minimum and maximum ranges
on the Variables tab. Using the simulation range data, the software proposes
fixed-point types for each variable based on the default type proposal settings, and
displays them in the Proposed Type column. The Convert option is now enabled.

5 Examine the proposed types and verify that they cover the full simulation range.
To view logged histogram data for a variable, click its Proposed Type field. The
histogram provides range information and the percentage of simulation range
covered by the proposed data type.

 Replace a Custom Function with a Lookup Table

9-71

Convert to Fixed Point

1 Click Convert.

The app validates the proposed types and generates a fixed-point version of the
entry-point function, call_custom_fcn_fixpt.m.

2 In the Output Files list, select call_custom_fcn_fixpt.m.

The conversion process generates a lookup table approximation,
replacement_custom_fcn, for the custom_fcn function. The fixed-point
conversion process infers the ranges for the function and then uses an interpolated
lookup table to replace the function. By default, the lookup table uses linear
interpolation, 1000 points, and the minimum and maximum values detected by
running the test file.

9 Automated Conversion Using Fixed-Point Converter App

9-72

The generated fixed-point function, call_custom_fcn_fixpt.m, calls this
approximation instead of calling custom_fcn.
function y = call_custom_fcn_fixpt(x)

 fm = fimath('RoundingMethod', 'Floor', 'OverflowAction', 'Wrap', 'ProductMode', 'FullPrecision', ...

 'MaxProductWordLength', 128, 'SumMode', 'FullPrecision', 'MaxSumWordLength', 128);

 y = fi(replacement_custom_fcn(x), 0, 16, 16, fm);

end

You can now test the generated fixed-point code and compare the results against the
original MATLAB function. If the behavior of the generated fixed-point code does
not match the behavior of the original code closely enough, modify the interpolation
method or number of points used in the lookup table and then regenerate code.

More About
• “Replacing Functions Using Lookup Table Approximations”

 Visualize Differences Between Floating-Point and Fixed-Point Results

9-73

Visualize Differences Between Floating-Point and Fixed-Point
Results

This example shows how to configure the Fixed-Point Converter app to use a custom plot
function to compare the behavior of the generated fixed-point code against the behavior
of the original floating-point MATLAB code.

By default, when the Log inputs and outputs for comparison plots option is
enabled, the conversion process uses a time series based plotting function to show the
floating-point and fixed-point results and the difference between them. However, during
fixed-point conversion you might want to visualize the numerical differences in a view
that is more suitable for your application domain. This example shows how to customize
plotting and produce scatter plots at the test numerics step of the fixed-point conversion.

Prerequisites

This example requires the following products:

• MATLAB
• Fixed-Point Designer
• C compiler (for most platforms, a default C compiler is supplied with MATLAB). See

http://www.mathworks.com/support/compilers/current_release/.

You can use mex -setup to change the default compiler. See “Changing Default
Compiler”.

Create a New Folder and Copy Relevant Files

1 Create a local working folder, for example, c:\custom_plot.
2 Change to the docroot\toolbox\fixpoint\examples folder. At the MATLAB

command line, enter:

cd(fullfile(docroot, 'toolbox', 'fixpoint', 'examples'))

3 Copy the myFilter.m, myFilterTest.m, plotDiff.m, and filterData.mat files
to your local working folder.

It is a best practice is to create a separate test script to do pre- and post-processing,
such as:

• Loading inputs.

9 Automated Conversion Using Fixed-Point Converter App

9-74

• Setting up input values.
• Outputting test results.

For more information, see “Create a Test File”.

Type Name Description

Function code myFilter.m Entry-point MATLAB function
Test file myFilterTest.m MATLAB script that tests

myFilter.m

Plotting function plotDiff.m Custom plot function
MAT-file filterData.mat Data to filter.

The myFilter Function

function [y, ho] = myFilter(in)

persistent b h;

if isempty(b)

 b = complex(zeros(1,16));

 h = complex(zeros(1,16));

 h(8) = 1;

end

b = [in, b(1:end-1)];

y = b*h.';

errf = 1-sqrt(real(y)*real(y) + imag(y)*imag(y));

update = 0.001*conj(b)*y*errf;

h = h + update;

h(8) = 1;

ho = h;

end

The myFilterTest File

% load data

data = load('filterData.mat');

d = data.symbols;

 Visualize Differences Between Floating-Point and Fixed-Point Results

9-75

for idx = 1:4000

 y = myFilter(d(idx));

end

The plotDiff Function

% varInfo - structure with information about the variable. It has the following fields

% i) name

% ii) functionName

% floatVals - cell array of logged original values for the 'varInfo.name' variable

% fixedVals - cell array of logged values for the 'varInfo.name' variable after

% Fixed-Point Conversion.

function plotDiff(varInfo, floatVals, fixedVals)

 varName = varInfo.name;

 fcnName = varInfo.functionName;

 % convert from cell to matrix

 floatVals = cell2mat(floatVals);

 fixedVals = cell2mat(fixedVals);

 % escape the '_'s because plot titles treat these as subscripts

 escapedVarName = regexprep(varName,'_','_');

 escapedFcnName = regexprep(fcnName,'_','_');

 % flatten the values

 flatFloatVals = floatVals(1:end);

 flatFixedVals = fixedVals(1:end);

 % build Titles

 floatTitle = [escapedFcnName ' > ' 'float : ' escapedVarName];

 fixedTitle = [escapedFcnName ' > ' 'fixed : ' escapedVarName];

 data = load('filterData.mat');

 switch varName

 case 'y'

 x_vec = data.symbols;

 figure('Name', 'Comparison plot', 'NumberTitle', 'off');

 % plot floating point values

 y_vec = flatFloatVals;

 subplot(1, 2, 1);

 plotScatter(x_vec, y_vec, 100, floatTitle);

9 Automated Conversion Using Fixed-Point Converter App

9-76

 % plot fixed point values

 y_vec = flatFixedVals;

 subplot(1, 2, 2);

 plotScatter(x_vec, y_vec, 100, fixedTitle);

 otherwise

 % Plot only output 'y' for this example, skip the rest

 end

end

function plotScatter(x_vec, y_vec, n, figTitle)

 % plot the last n samples

 x_plot = x_vec(end-n+1:end);

 y_plot = y_vec(end-n+1:end);

 hold on

 scatter(real(x_plot),imag(x_plot), 'bo');

 hold on

 scatter(real(y_plot),imag(y_plot), 'rx');

 title(figTitle);

end

Open the Fixed-Point Converter App

1 Navigate to the folder that contains the files for this example.
2 On the MATLAB Toolstrip Apps tab, under Code Generation, click the app icon.

 Visualize Differences Between Floating-Point and Fixed-Point Results

9-77

Select Source Files

1 To add the entry-point function myFilter to the project, browse to the file
myFilter.m, and then click Open.

By default, the app saves information and settings for this project in the current
folder in a file named myFilter.prj.

2 Click Next to go to the Define Input Types step.

The app screens myFilter.m for code violations and fixed-point conversion
readiness issues. The app does not find issues in myFilter.m.

9 Automated Conversion Using Fixed-Point Converter App

9-78

Define Input Types

1 On the Define Input Types page, to add myFilter_test as a test file, browse to
myFilter_test.m, and then click Open.

2 Click Autodefine Input Types.

The app determines from the test file that the input type of in is
complex(double(1x1)).

Check for Run-Time Issues

Before you can go to the Convert to Fixed Point step, you must check myFilter for
run-time issues:

1 Browse to the test file myFiltertest.m.
2 Click Check for Issues.

The app generates an instrumented MEX function. It runs the test file
myFilterTest replacing calls to myFilter with calls to the generated MEX. If the
app finds issues, it provides warning and error messages. You can click a message
to highlight the problematic code in a window where you can edit the code. In this
example, the app does not detect issues.

3 Click Next to go to the Convert to Fixed Point step.

 Visualize Differences Between Floating-Point and Fixed-Point Results

9-79

Convert to Fixed Point

1 The app displays compiled information for variables in your code. For more
information, see “View and Modify Variable Information”.

2 To open the settings dialog box, click the Settings arrow .

a Verify that Default word length is set to 16.
b Under Advanced, set Signedness to Signed
c Under Plotting and Reporting, set Custom plot function to plotDiff.

3 Click the Simulate arrow . Verify that the test file is myFilterTest.
4 Click Simulate.

9 Automated Conversion Using Fixed-Point Converter App

9-80

The test file, myFilterTest, runs and the app displays simulation minimum
and maximum ranges on the Variables tab. Using the simulation range data, the
software proposes fixed-point types for each variable based on the default type
proposal settings, and displays them in the Proposed Type column.

5 To convert the floating-point algorithm to fixed point, click Convert.

The software validates the proposed types and generates a fixed-point version of the
entry-point function.

 Visualize Differences Between Floating-Point and Fixed-Point Results

9-81

Test Numerics and View Comparison Plots

1 Click Test arrow , select Log inputs and outputs for comparison plots, and
then click Test.

The app runs the test file that you used to define input types to test the fixed-point
MATLAB code. Because you selected to log inputs and outputs for comparison plots
and to use the custom plotting function, plotDiff.m, for these plots, the app uses
this function to generate the comparison plot. The plot shows that the fixed-point
results do not closely match the floating-point results.

9 Automated Conversion Using Fixed-Point Converter App

9-82

2 In the settings, increase the DefaultWordLength to 24 and then convert to fixed
point again.

The app converts myFilter.m to fixed point and proposes fixed-point data types
using the new default word length.

3 Run the test numerics step again.

 Visualize Differences Between Floating-Point and Fixed-Point Results

9-83

The increased word length improves the results. This time, the plot shows that the
fixed-point results match the floating-point results.

More About
• “Custom Plot Functions”

9 Automated Conversion Using Fixed-Point Converter App

9-84

Enable Plotting Using the Simulation Data Inspector

You can use the Simulation Data Inspector with the Fixed-Point Converter app to inspect
and compare floating-point and fixed-point logged input and output data.

1 On the Convert to Fixed Point page,

Click the Settings arrow .
2 Expand the Plotting and Reporting settings and set Plot with Simulation Data

Inspector to Yes.

3 Click the Test arrow . Select Log inputs and outputs for comparison plots,
and then click Test.

For an example, see “Propose Data Types Based on Derived Ranges”.

More About
• “Inspecting Data Using the Simulation Data Inspector”

 Add Global Variables Using the App

9-85

Add Global Variables Using the App

To add global variables to the project:

1 On the Define Input Types page, set Does this code use global variables? to
Yes.

By default, the app names the first global variable in a project g, and subsequent
global variables g1, g2, etc.

2 Enter the name of the global variable.
3 After adding a global variable, but before building the project, specify its type and

initial value. Otherwise, you must create a variable with the same name in the
global workspace. See “Specify Global Variable Type and Initial Value Using the
App” on page 9-97.

9 Automated Conversion Using Fixed-Point Converter App

9-86

Automatically Define Input Types Using the App

If you specify a test file that calls the project entry-point functions, the Fixed-Point
Converter app can infer the input parameter types by running the test file. If a test file
calls an entry-point function multiple times with different size inputs, the app takes the
union of the inputs. The app infers that the inputs are variable size, with an upper bound
equal to the size of the largest input.

Before using the app to automatically define function input parameter types, you must
add at least one entry-point file to your project. You must also specify code that calls your
entry-point functions with the expected input types. It is a best practice to provide a test
file that calls your entry-point functions. The test file can be either a MATLAB function
or a script. The test file must call the entry-point function at least once.

To automatically define input types:

1 On the Define Input Types page, specify a test file. Alternatively, you can enter
code directly.

2 Click Autodefine Input Types.

The app runs the test file and infers the types for entry-point input parameters. The
app displays the inferred types.

 Define Constant Input Parameters Using the App

9-87

Define Constant Input Parameters Using the App

1 On the Define Input Types page, click Let me enter input or global types
directly.

2 Click the field to the right of the input parameter name.
3 Select Define Constant.
4 In the field to the right of the parameter name, enter the value of the constant or a

MATLAB expression that represents the constant.

The app uses the value of the specified MATLAB expression as a compile-time
constant.

9 Automated Conversion Using Fixed-Point Converter App

9-88

Define or Edit Input Parameter Type Using the App

In this section...

“Define or Edit an Input Parameter Type” on page 9-88
“Specify an Enumerated Type Input Parameter by Type” on page 9-89
“Specify a Fixed-Point Input Parameter by Type” on page 9-90
“Specify Structures” on page 9-90

Define or Edit an Input Parameter Type

The following procedure is for input types double, single, int64, int32, int16, int8,
uint64, uint32, uint16, uint8, logical, and char.

For more information about defining other types, see the following table.

Input Type Link

A structure (struct) “Specify Structures” on page 9-90
A fixed-point data type (embedded.fi) “Specify a Fixed-Point Input Parameter by

Type” on page 9-90
An input by example (Define by
Example)

“Define Input Parameters by Example
Using the App” on page 9-92

A constant (Define Constant) “Define Constant Input Parameters Using
the App” on page 9-87

1 Click the field to the right of the input parameter name to view the input options.
2 Optionally, for numeric types, select Complex number to make the parameter a

complex type.
3 Select the input type.

The app displays the selected type. It displays the size options.

 Define or Edit Input Parameter Type Using the App

9-89

4 From the list, select whether your input is a scalar, a 1 x n vector, a m x 1 vector,
or a m x n matrix. By default, if you do not select a size option, the app defines
inputs as scalars.

5 Optionally, if your input is not scalar, enter sizes m and n. You can specify:

• Fixed size, for example, 10.
• Variable size, up to a specified limit, by using the : prefix. For example, to specify

that your input can vary in size up to 10, enter :10.
• Unbounded variable size by entering :Inf.

You can edit the size of each dimension.

Specify an Enumerated Type Input Parameter by Type

To specify that an input uses the enumerated type MyColors:

1 Suppose that the enumeration MyColors is on the MATLAB path.

classdef MyColors < int32

 enumeration

 green(1),

 red(2),

 end

end

2 On the Define Input Types page, click Let me enter input or global types
directly.

3 In the field to the right of the input parameter, enter MyColors.

9 Automated Conversion Using Fixed-Point Converter App

9-90

Specify a Fixed-Point Input Parameter by Type

To specify fixed-point inputs, Fixed-Point Designer software must be installed.

1 On the Define Input Types page, click Let me enter input or global types
directly.

2 Click the field to the right of the input parameter that you want to define.
3 Select embedded.fi.
4 In the Properties dialog box, set up the input parameter numerictype and fimath

properties. Close the dialog box.

If you do not specify a local fimath, the app uses the default fimath. See “Default
fimath Usage to Share Arithmetic Rules”.

5 The size of the input defaults to 1x1. Optionally, to modify the size, select the
dimension that you want to change and enter a new size.

Specify Structures

When a primary input is a structure, the app treats each field as a separate input.
Therefore, you must specify properties for all fields of a primary structure input in the
order that they appear in the structure definition:

• For each field of an input structure, specify class, size, and complexity.
• For each field that is fixed-point class, also specify numerictype, and fimath.

Specify Structures by Type

1 On the Define Input Types page, click Let me enter input or global types
directly.

2 Click the field to the right of the input parameter that you want to define.
3 Select struct.

The app displays the selected type, struct. The app displays the size options.
4 Specify that your structure is a scalar, 1 x n vector, m x 1 vector, or m x n matrix.

By default, if you do not select a size option, the app defines inputs as scalars.
5 Optionally, if your input is not scalar, enter sizes m and n. You can specify:

• Fixed size, for example, 10.

 Define or Edit Input Parameter Type Using the App

9-91

• Variable size, up to a specified limit, by using the : prefix. For example, to specify
that your input can vary in size up to 10, enter :10.

• Unbounded variable size by entering :Inf.
6 Optionally, add fields to the structure, and then set their size and complexity. See

“Add a Field to a Structure” on page 9-91.

Rename a Field in a Structure

Select the name field of the structure that you want to rename and enter the new name.

Add a Field to a Structure

1 Select the structure.
2

To the right of the structure, click
3 Select Add Field.

If the structure already contains fields, the app adds the field after the existing
fields.

4 Enter the field name and define its type.

Insert a Field into a Structure

1 Select the structure field below which you want to add another field.
2

To the right of the structure field, click .
3 Select Insert Field Below.

The app adds the field after the field that you selected.
4 Enter the field name and define its type.

Remove a Field from a Structure

1 Select the field that you want to remove.
2

To the right of the structure, click .
3 Select Remove Field.

9 Automated Conversion Using Fixed-Point Converter App

9-92

Define Input Parameters by Example Using the App

In this section...

“Define an Input Parameter by Example” on page 9-92
“Specify Input Parameters by Example” on page 9-93
“Specify an Enumerated Type Input Parameter by Example” on page 9-94
“Specify a Fixed-Point Input Parameter by Example” on page 9-95

Define an Input Parameter by Example

1 On the Define Input Types page, click Let me enter input or global types
directly.

2 Click the field to the right of the input parameter that you want to define.

3 Select Define by Example.
4 In the field to the right of the parameter, enter a MATLAB expression. When the app

compiles code, it uses the class, size, and complexity of the value of the variable or
MATLAB expression that you specify.

 Define Input Parameters by Example Using the App

9-93

Specify Input Parameters by Example

This example shows how to specify a 1-by-4 vector of unsigned 16-bit integers.

1 On the Define Input Types page, click Let me enter input or global types
directly.

2 Click the field to the right of the input parameter that you want to define.

3 Select Define by Example.
4 In the field to the right of the parameter, enter:

zeros(1,4,'uint16')

The input type is uint16(1x4).
5 Optionally, after specifying the input type, you can specify that the input is variable

size. Select the second dimension.

9 Automated Conversion Using Fixed-Point Converter App

9-94

6 From the list of size options, select :4 to specify that the second dimension is
variable size with an upper bound of 4. Alternatively, select :Inf to specify that the
second dimension is unbounded.

Alternatively, you can specify that the input is variable size by using the
coder.newtype function. Enter the following MATLAB expression:

coder.newtype('uint16',[1 4],[0 1])

Note: To specify that an input is a double-precision scalar, enter 0.

Specify an Enumerated Type Input Parameter by Example

This example shows how to specify that an input uses the enumerated type MyColors.

Suppose that MyColors.m is on the MATLAB path.

classdef MyColors < int32

 enumeration

 green(1),

 red(2),

 end

end

To specify that an input has the enumerated type MyColors:

1 On the Define Input Types page, click Let me enter input or global types
directly.

2 Click the field to the right of the input parameter that you want to define.

 Define Input Parameters by Example Using the App

9-95

3 Select Define by Example.
4 In the field to the right of the parameter, enter the following MATLAB expression:

MyColors.red

Specify a Fixed-Point Input Parameter by Example

To specify fixed-point inputs, Fixed-Point Designer software must be installed.

This example shows how to specify a signed fixed-point type with a word length of 8 bits,
and a fraction length of 3 bits.

1 On the Define Input Types page, click Let me enter input or global types
directly.

2 Click the field to the right of the input parameter that you want to define.

9 Automated Conversion Using Fixed-Point Converter App

9-96

3 Select Define by Example.
4 In the field to the right of the parameter, enter:

fi(10, 1, 8, 3)

The app sets the type of input u to embedded.fi(1x1). By default, if you have not
specified a local fimath, the app uses the default fimath. See “fimath for Sharing
Arithmetic Rules”.

Optionally, modify the fixed-point properties or the size of the input. See “Specify
a Fixed-Point Input Parameter by Type” on page 9-90 and “Define or Edit Input
Parameter Type Using the App” on page 9-88.

 Specify Global Variable Type and Initial Value Using the App

9-97

Specify Global Variable Type and Initial Value Using the App

In this section...

“Why Specify a Type Definition for Global Variables?” on page 9-97
“Specify a Global Variable Type” on page 9-97
“Define a Global Variable by Example” on page 9-97
“Define or Edit Global Variable Type” on page 9-98
“Define Global Variable Initial Value” on page 9-99
“Define Global Variable Constant Value” on page 9-100
“Remove Global Variables” on page 9-100

Why Specify a Type Definition for Global Variables?

If you use global variables in your MATLAB algorithm, before building the project,
you must add a global type definition and initial value for each global variable. If you
do not initialize the global data, the app looks for the variable in the MATLAB global
workspace. If the variable does not exist, the app generates an error.

For MEX functions, if you use global data, you must also specify whether to synchronize
this data between MATLAB and the MEX function.

Specify a Global Variable Type

1 Specify the type of each global variable using one of the following methods:

• Define by example
• Define type

2 Define an initial value for each global variable.

If you do not provide a type definition and initial value for a global variable, create
a variable with the same name and suitable class, size, complexity, and value in the
MATLAB workspace.

Define a Global Variable by Example

1 Click the field to the right of the global variable that you want to define.

9 Automated Conversion Using Fixed-Point Converter App

9-98

2 Select Define by Example.
3 In the field to the right of the global name, enter a MATLAB expression that has the

required class, size, and complexity. MATLAB Coder software uses the class, size,
and complexity of the value of this expression as the type for the global variable.

4 Optionally, change the size of the global variable. Click the dimension that you want
to change and enter the size, for example, 10.

You can specify:

• Fixed size. In this example, select 10.
• Variable size, up to a specified limit, by using the : prefix. In this example, to

specify that your input can vary in size up to 10, select :10.
• Unbounded variable size by selecting :Inf.

Define or Edit Global Variable Type

1 Click the field to the right of the global variable that you want to define.
2 Optionally, for numeric types, select Complex to make the parameter a complex

type. By default, inputs are real.
3 Select the type for the global variable. For example, double.

By default, the global variable is a scalar.
4 Optionally, change the size of the global variable. Click the dimension that you want

to change and enter the size, for example, 10.

 Specify Global Variable Type and Initial Value Using the App

9-99

You can specify:

• Fixed size. In this example, select 10.
• Variable size, up to a specified limit, by using the : prefix. In this example, to

specify that your input can vary in size up to 10, select :10.
• Unbounded variable size by selecting :Inf.

Define Global Variable Initial Value

• “Define Initial Value Before Defining Type” on page 9-99
• “Define Initial Value After Defining Type” on page 9-100

Define Initial Value Before Defining Type

1 Click the field to the right of the global variable.
2 Select Define Initial Value.
3 Enter a MATLAB expression. MATLAB Coder software uses the value of the

specified MATLAB expression as the value of the global variable. Because you
did not define the type of the global variable before you defined its initial value,
MATLAB Coder uses the initial value type as the global variable type.

The project shows that the global variable is initialized.

9 Automated Conversion Using Fixed-Point Converter App

9-100

If you change the type of a global variable after defining its initial value, you must
redefine the initial value.

Define Initial Value After Defining Type

• Click the type field of a predefined global variable.
• Select Define Initial Value.
• Enter a MATLAB expression. MATLAB Coder software uses the value of the specified

MATLAB expression as the value of the global variable.

The project shows that the global variable is initialized.

Define Global Variable Constant Value

1 Click the field to the right of the global variable.
2 Select Define Constant Value.
3 In the field to the right of the global variable, enter a MATLAB expression.

Remove Global Variables

1 Select the global variable that you want to remove.
2

To the right of the variable, click .
3 Select Remove Global.

 Specify Properties of Entry-Point Function Inputs Using the App

9-101

Specify Properties of Entry-Point Function Inputs Using the App

Why Specify Input Properties?

Fixed-Point Designer must determine the properties of all variables in the MATLAB
files. To infer variable properties in MATLAB files, Fixed-Point Designer must identify
the properties of the inputs to the primary function, also known as the top-level or entry-
point function. Therefore, if your primary function has inputs, you must specify the
properties of these inputs to Fixed-Point Designer. If your primary function has no input
parameters, you do not need to specify properties of inputs to local functions or external
functions called by the primary function.

Unless you use the tilde (~) character to specify unused function inputs, you must specify
the same number and order of inputs as the MATLAB function . If you use the tilde
character, the inputs default to real, scalar doubles.

See Also

• “Properties to Specify”

Specify an Input Definition Using the App

Specify an input definition using one of the following methods:

• Autodefine Input Types
• Define Type
• Define by Example
• Define Constant

9 Automated Conversion Using Fixed-Point Converter App

9-102

Detect Dead and Constant-Folded Code
The Fixed-Point Converter app detects code that is constant folded and dead code
during the simulation of your test file. The app uses the code coverage information when
translating your code from floating-point MATLAB code to fixed-point MATLAB code.
Reviewing code coverage results helps you verify that your test file is exercising the
algorithm adequately.

The app inserts inline comments in the fixed-point code to mark the dead and
untranslated regions and includes the code coverage information in the generated fixed-
point conversion HTML report. The app also displays a color-coded coverage bar to the
left of the code within its editor.

Coverage Bar
Color

How Often Code Is Executed During Test File Simulation

Dark green Always
Light green Sometimes
Orange Once
Red Never

What Is Dead Code?

Dead code is code that does not execute during simulation. Dead code can result from
these scenarios:

• Defensive code containing intended corner cases that are never reached
• Human error in the code, resulting in code that cannot be reached by any execution

path
• Inadequate test bench range
• Constant folding

Detect Dead Code

This example shows how to detect dead code in your algorithm using the Fixed-Point
Converter .

1 In a local writable folder, create the function myFunction.m.

function y = myFunction(u,v)

 Detect Dead and Constant-Folded Code

9-103

 %#codegen

 for i = 1:length(u)

 if u(i) > v(i)

 y=bar(u,v);

 else

 tmp = u;

 v = tmp;

 y = baz(u,v);

 end

 end

end

function y = bar(u,v)

 y = u+v;

end

function y = baz(u,v)

 y = u-v;

end

2 In the same folder, create a test file, myFunction_tb.

u = 1:100;

v = 101:200;

myFunction(u,v);

3 From the apps gallery, open the Fixed-Point Converter .
4 On the Select Source Files page, browse to the myFunction file, and click Open.

Set
5 Click Next. On the Define Input Types page, browse to select the test file you

created, myFunction_tb. Click Autodefine Input Types.
6 Click Next. On the Check for Run-Time Issues page, click Check for Issues.

The app runs the myFunction_tb test file and detects no issues.
7 Click Next. On the Convert to Fixed-Point page, click Simulate to simulate the

entry-point functions, gather range information, and get proposed data types.

The code coverage bar on the left-hand side of the edit window indicates if the
code executed. The code in the first condition of the if-statement did not execute
during simulation because u is never greater than v. Because the if-statement never
executed, the bar function also never executed. These parts of the algorithm are
marked with a red bar, indicating that they are dead code.

9 Automated Conversion Using Fixed-Point Converter App

9-104

8 Click Convert to apply the proposed data types to the function.

The Fixed-Point Converter generates a fixed-point function, myFunction_fixpt.
The generated fixed-point code contains comments around the pieces of code
identified as dead code, and the Validation Results pane suggests that you use a
more thorough test bench.

 Detect Dead and Constant-Folded Code

9-105

When the Fixed-Point Converter detects dead code, consider editing your test file so
your algorithm is exercised over its full range. If your test file already reflects the
full range of the input variables, consider editing your algorithm to eliminate the
dead code.

9 Close the Fixed-Point Converter .

Fix Dead Code

1 Edit the test file myFunction_tb.m to include a wider range of inputs.

u = 1:100;

v = -50:2:149;

9 Automated Conversion Using Fixed-Point Converter App

9-106

myFunction(u,v);

2 Open the Fixed-Point Converter again.
3 Using the same function and the edited test file, go through the conversion process

again.
4 After you click Simulate, this time the code coverage bar shows that all parts of the

algorithm were executed with the new test file input ranges.

5 Click Convert to finish the conversion process and convert the function to fixed
point.

10

Automated Conversion Using
Programmatic Workflow

• “Propose Data Types Based on Simulation Ranges” on page 10-2
• “Propose Data Types Based on Derived Ranges” on page 10-7
• “Detect Overflows” on page 10-14
• “Replace the exp Function with a Lookup Table” on page 10-19
• “Replace a Custom Function with a Lookup Table” on page 10-22
• “Visualize Differences Between Floating-Point and Fixed-Point Results” on page

10-24
• “Enable Plotting Using the Simulation Data Inspector” on page 10-31

10 Automated Conversion Using Programmatic Workflow

10-2

Propose Data Types Based on Simulation Ranges

This example shows how to propose fixed-point data types based on simulation range
data using the fiaccel function.

Prerequisites

To complete this example, you must install the following products:

• MATLAB
• Fixed-Point Designer
• C compiler (for most platforms, a default C compiler is supplied with MATLAB)

For a list of supported compilers, see http://www.mathworks.com/support/
compilers/current_release/.

You can use mex -setup to change the default compiler. See “Changing Default
Compiler”.

Create a New Folder and Copy Relevant Files

1 Create a local working folder, for example, c:\fun_with_matlab.
2 Change to the docroot\toolbox\fixpoint\examples folder. At the MATLAB

command line, enter:

cd(fullfile(docroot, 'toolbox', 'fixpoint', 'examples'))

3 Copy the fun_with_matlab.m and fun_with_matlab_test.m files to your local
working folder.

It is best practice to create a separate test script to do all the pre- and post-
processing such as loading inputs, setting up input values, calling the function under
test, and outputting test results.

Type Name Description

Function code fun_with_matlab.m Entry-point MATLAB function
Test file fun_with_matlab_test.m MATLAB script that tests

fun_with_matlab.m

The fun_with_matlab Function

function y = fun_with_matlab(x) %#codegen

 Propose Data Types Based on Simulation Ranges

10-3

 persistent z

 if isempty(z)

 z = zeros(2,1);

 end

 % [b,a] = butter(2, 0.25)

 b = [0.0976310729378175, 0.195262145875635, 0.0976310729378175];

 a = [1, -0.942809041582063, 0.3333333333333333];

 y = zeros(size(x));

 for i = 1:length(x)

 y(i) = b(1)*x(i) + z(1);

 z(1) = b(2)*x(i) + z(2) - a(2) * y(i);

 z(2) = b(3)*x(i) - a(3) * y(i);

 end

end

The fun_with_matlab_test Script

The test script runs the fun_with_matlab function with three input signals: chirp, step,
and impulse to cover the full intended operating range of the system. The script then
plots the outputs.

% fun_with_matlab_test

%

% Define representative inputs

N = 256; % Number of points

t = linspace(0,1,N); % Time vector from 0 to 1 second

f1 = N/2; % Target frequency of chirp set to Nyquist

x_chirp = sin(pi*f1*t.^2); % Linear chirp from 0 to Fs/2 Hz in 1 second

x_step = ones(1,N); % Step

x_impulse = zeros(1,N); % Impulse

x_impulse(1) = 1;

% Run the function under test

x = [x_chirp;x_step;x_impulse];

y = zeros(size(x));

for i = 1:size(x,1)

 y(i,:) = fun_with_matlab(x(i,:));

end

% Plot the results

titles = {'Chirp','Step','Impulse'}

clf

10 Automated Conversion Using Programmatic Workflow

10-4

for i = 1:size(x,1)

 subplot(size(x,1),1,i)

 plot(t,x(i,:),t,y(i,:))

 title(titles{i})

 legend('Input','Output')

end

xlabel('Time (s)')

figure(gcf)

disp('Test complete.')

Set Up the Fixed-Point Configuration Object

Create a fixed-point configuration object and configure the test file name.

cfg = coder.config('fixpt');

cfg.TestBenchName = 'fun_with_matlab_test';

Collect Simulation Ranges and Generate Fixed-Point Code

Use the fiaccel function to convert the floating-point MATLAB function,
fun_with_matlab, to fixed-point MATLAB code. Set the default word length for the
fixed-point data types to 16.

cfg.ComputeSimulationRanges = true;

cfg.DefaultWordLength = 16;

% Derive ranges and generate fixed-point code

fiaccel -float2fixed cfg fun_with_matlab

fiaccel analyzes the floating-point code. Because you did not specify the input types
for the fun_with_matlab function, the conversion process infers types by simulating
the test file. The conversion process then derives ranges for variables in the algorithm.
It uses these derived ranges to propose fixed-point types for these variables. When the
conversion is complete, it generates a type proposal report.

View Range Information

Click the link to the type proposal report for the fun_with_matlab function,
fun_with_matlab_report.html.

The report opens in a web browser.

 Propose Data Types Based on Simulation Ranges

10-5

View Generated Fixed-Point MATLAB Code

fiaccel generates a fixed-point version of the fun_with_matlab.m
function, fun_with_matlab_fixpt.m, and a wrapper function that calls
fun_with_matlab_fixpt. These files are generated in the codegen
\fun_with_matlab\fixpt folder in your local working folder.

function y = fun_with_matlab_fixpt(x)

fm = fimath('RoundingMethod', 'Floor', 'OverflowAction', 'Wrap', 'ProductMode',...

 'FullPrecision', 'SumMode', 'FullPrecision');

%#codegen

persistent z

if isempty(z)

 z = fi(zeros(2, 1), 1, 16, 15, fm);

end

% [b,a] = butter(2, 0.25)

b = fi([0.0976310729378175, 0.195262145875635, 0.0976310729378175], 0, 16, 18, fm);

a = fi([1, -0.942809041582063, 0.3333333333333333], 1, 16, 14, fm);

y = fi(zeros(size(x)), 1, 16, 14, fm);

for i = 1:length(x)

 y(i) = b(1)*x(i) + z(1);

 z(1) = fi_signed(b(2)*x(i) + z(2)) - a(2)*y(i);

 z(2) = fi_signed(b(3)*x(i)) - a(3)*y(i);

end

10 Automated Conversion Using Programmatic Workflow

10-6

end

function y = fi_signed(a)

coder.inline('always');

if isfi(a) && ~(issigned(a))

 nt = numerictype(a);

 new_nt = numerictype(1, nt.WordLength + 1, nt.FractionLength);

 y = fi(a, new_nt, fimath(a));

else

 y = a;

end

end

 Propose Data Types Based on Derived Ranges

10-7

Propose Data Types Based on Derived Ranges

This example shows how to propose fixed-point data types based on static ranges using
the fiaccel function. The advantage of proposing data types based on derived ranges
is that you do not have to provide test files that exercise your algorithm over its full
operating range. Running such test files often takes a very long time so you can save
time by deriving ranges instead.

Prerequisites

To complete this example, you must install the following products:

• MATLAB
• Fixed-Point Designer
• C compiler (for most platforms, a default C compiler is supplied with MATLAB)

For a list of supported compilers, see http://www.mathworks.com/support/
compilers/current_release/

You can use mex -setup to change the default compiler. See “Changing Default
Compiler”.

Create a New Folder and Copy Relevant Files

1 Create a local working folder, for example, c:\dti.
2 Change to the docroot\toolbox\fixpoint\examples folder. At the MATLAB

command line, enter:

cd(fullfile(docroot, 'toolbox', 'fixpoint', 'examples'))

3 Copy the dti.m and dti_test.m files to your local working folder.

It is best practice to create a separate test script to do all the pre- and post-
processing such as loading inputs, setting up input values, calling the function under
test, and outputting test results.

Type Name Description

Function code dti.m Entry-point MATLAB function
Test file dti_test.m MATLAB script that tests

dti.m

10 Automated Conversion Using Programmatic Workflow

10-8

The dti Function

The dti function implements a Discrete Time Integrator in MATLAB.

function [y, clip_status] = dti(u_in) %#codegen

% Discrete Time Integrator in MATLAB

%

% Forward Euler method, also known as Forward Rectangular, or left-hand

% approximation. The resulting expression for the output of the block at

% step 'n' is y(n) = y(n-1) + K * u(n-1)

%

init_val = 1;

gain_val = 1;

limit_upper = 500;

limit_lower = -500;

% variable to hold state between consecutive calls to this block

persistent u_state

if isempty(u_state)

 u_state = init_val+1;

end

% Compute Output

if (u_state > limit_upper)

 y = limit_upper;

 clip_status = -2;

elseif (u_state >= limit_upper)

 y = limit_upper;

 clip_status = -1;

elseif (u_state < limit_lower)

 y = limit_lower;

 clip_status = 2;

elseif (u_state <= limit_lower)

 y = limit_lower;

 clip_status = 1;

else

 y = u_state;

 clip_status = 0;

end

% Update State

tprod = gain_val * u_in;

u_state = y + tprod;

function b = subFunction(a)

 Propose Data Types Based on Derived Ranges

10-9

b = a*a;

The dti_test Function

The test script runs the dti function with a sine wave input. The script then plots the
input and output signals.

% dti_test

% cleanup

clear dti

% input signal

x_in = sin(2.*pi.*(0:0.001:2)).';

pause(10)

len = length(x_in);

y_out = zeros(1,len);

is_clipped_out = zeros(1,len);

for ii=1:len

 data = x_in(ii);

 % call to the dti function

 init_val = 0;

 gain_val = 1;

 upper_limit = 500;

 lower_limit = -500;

 % call to the design that does DTI

 [y_out(ii), is_clipped_out(ii)] = dti(data);

end

figure('Name', [mfilename, '_plot'])

subplot(2,1,1)

plot(1:len,x_in)

xlabel('Time')

ylabel('Amplitude')

title('Input Signal (Sin)')

subplot(2,1,2)

plot(1:len,y_out)

xlabel('Time')

ylabel('Amplitude')

title('Output Signal (DTI)')

10 Automated Conversion Using Programmatic Workflow

10-10

disp('Test complete.')

Set Up the Fixed-Point Configuration Object

Create a fixed-point configuration object and configure the test file name.

fixptcfg = coder.config('fixpt');

fixptcfg.TestBenchName = 'dti_test';

Specify Design Ranges

Specify design range information for the dti function input parameter u_in.

fixptcfg.addDesignRangeSpecification('dti', 'u_in', -1.0, 1.0)

Enable Plotting Using the Simulation Data Inspector

Select to run the test file to verify the generated fixed-point MATLAB code. Log inputs
and outputs for comparison plotting and select to use the Simulation Data Inspector to
plot the results.

fixptcfg.TestNumerics = true;

fixptcfg.LogIOForComparisonPlotting = true;

fixptcfg.PlotWithSimulationDataInspector = true;

Derive Ranges and Generate Fixed-Point Code

Use the fiaccel function to convert the floating-point MATLAB function, dti, to fixed-
point MATLAB code. Set the default word length for the fixed-point data types to 16.

fixptcfg.ComputeDerivedRanges = true;

fixptcfg.ComputeSimulationRanges = false;

fixptcfg.DefaultWordLength = 16;

% Derive ranges and generate fixed-point code

fiaccel -float2fixed fixptcfg dti

fiaccel analyzes the floating-point code. Because you did not specify the input types
for the dti function, the conversion process infers types by simulating the test file.
The conversion process then derives ranges for variables in the algorithm. It uses these
derived ranges to propose fixed-point types for these variables. When the conversion is
complete, it generates a type proposal report.

 Propose Data Types Based on Derived Ranges

10-11

View Derived Range Information

Click the link to the type proposal report for the dti function, dti_report.html.

The report opens in a web browser.

View Generated Fixed-Point MATLAB Code

fiaccel generates a fixed-point version of the dti function, dti_fxpt.m, and a
wrapper function that calls dti_fxpt. These files are generated in the codegen\dti
\fixpt folder in your local working folder.

10 Automated Conversion Using Programmatic Workflow

10-12

function [y,clip_status] = dti_fixpt(u_in)

fm = fimath('RoundingMethod', 'Floor', 'OverflowAction', 'Wrap', 'ProductMode',...

 'FullPrecision', 'MaxProductWordLength', 128, 'SumMode', 'FullPrecision',...

 'MaxSumWordLength', 128);

%#codegen

% Discrete Time Integrator in MATLAB

%

% Forward Euler method, also known as Forward Rectangular, or left-hand

% approximation. The resulting expression for the output of the block at

% step 'n' is y(n) = y(n-1) + K * u(n-1)

%

init_val = fi(1, 0, 1, 0, fm);

gain_val = fi(1, 0, 1, 0, fm);

limit_upper = fi(500, 0, 9, 0, fm);

limit_lower = fi(-500, 1, 10, 0, fm);

% variable to hold state between consecutive calls to this block

persistent u_state

if isempty(u_state)

 u_state = fi(init_val + fi(1, 0, 1, 0, fm), 1, 16, 6, fm);

end

% Compute Output

if (u_state>limit_upper)

 y = fi(limit_upper, 1, 16, 6, fm);

 clip_status = fi(-2, 1, 16, 13, fm);

elseif (u_state>=limit_upper)

 y = fi(limit_upper, 1, 16, 6, fm);

 clip_status = fi(-1, 1, 16, 13, fm);

elseif (u_state

Compare Floating-Point and Fixed-Point Runs

Because you selected to log inputs and outputs for comparison plots and to use the
Simulation Data Inspector for these plots, the Simulation Data Inspector opens.

You can use the Simulation Data Inspector to view floating-point and fixed-point run
information and compare results. For example, to compare the floating-point and fixed-
point values for the output y, on the Compare tab, select y, and then click Compare
Runs.

The Simulation Data Inspector displays a plot of the baseline floating-point run against
the fixed-point run and the difference between them.

 Propose Data Types Based on Derived Ranges

10-13

10 Automated Conversion Using Programmatic Workflow

10-14

Detect Overflows
This example shows how to detect overflows using the fiaccel function. At the
numerical testing stage in the conversion process, the tool simulates the fixed-point code
using scaled doubles. It then reports which expressions in the generated code produce
values that would overflow the fixed-point data type.

Prerequisites

To complete this example, you must install the following products:

• MATLAB
• Fixed-Point Designer
• C compiler (for most platforms, a default C compiler is supplied with MATLAB)

For a list of supported compilers, see http://www.mathworks.com/support/
compilers/current_release/

You can use mex -setup to change the default compiler. See “Changing Default
Compiler”.

Create a New Folder and Copy Relevant Files

1 Create a local working folder, for example, c:\overflow.
2 Change to the docroot\toolbox\fixpoint\examples folder. At the MATLAB

command line, enter:

cd(fullfile(docroot, 'toolbox', 'fixpoint', 'examples'))

3 Copy the overflow.m and overflow_test.m files to your local working folder.

It is best practice to create a separate test script to do all the pre- and post-
processing such as loading inputs, setting up input values, calling the function under
test, and outputting test results.

Type Name Description

Function code overflow.m Entry-point MATLAB function
Test file overflow_test.m MATLAB script that tests

overflow.m

The overflow Function

function y = overflow(b,x,reset)

 Detect Overflows

10-15

 if nargin<3, reset = true; end

 persistent z p

 if isempty(z) || reset

 p = 0;

 z = zeros(size(b));

 end

 [y,z,p] = fir_filter(b,x,z,p);

end

function [y,z,p] = fir_filter(b,x,z,p)

 y = zeros(size(x));

 nx = length(x);

 nb = length(b);

 for n = 1:nx

 p=p+1; if p>nb, p=1; end

 z(p) = x(n);

 acc = 0;

 k = p;

 for j=1:nb

 acc = acc + b(j)*z(k);

 k=k-1; if k<1, k=nb; end

 end

 y(n) = acc;

 end

end

The overflow_test Function

function overflow_test

 % The filter coefficients were computed using the FIR1 function from

 % Signal Processing Toolbox.

 % b = fir1(11,0.25);

 b = [-0.004465461051254

 -0.004324228005260

 +0.012676739550326

 +0.074351188907780

 +0.172173206073645

 +0.249588554524763

 +0.249588554524763

 +0.172173206073645

 +0.074351188907780

 +0.012676739550326

 -0.004324228005260

 -0.004465461051254]';

 % Input signal

10 Automated Conversion Using Programmatic Workflow

10-16

 nx = 256;

 t = linspace(0,10*pi,nx)';

 % Impulse

 x_impulse = zeros(nx,1); x_impulse(1) = 1;

 % Max Gain

 % The maximum gain of a filter will occur when the inputs line up with the

 % signs of the filter's impulse response.

 x_max_gain = sign(b)';

 x_max_gain = repmat(x_max_gain,ceil(nx/length(b)),1);

 x_max_gain = x_max_gain(1:nx);

 % Sums of sines

 f0=0.1; f1=2;

 x_sines = sin(2*pi*t*f0) + 0.1*sin(2*pi*t*f1);

 % Chirp

 f_chirp = 1/16; % Target frequency

 x_chirp = sin(pi*f_chirp*t.^2); % Linear chirp

 x = [x_impulse, x_max_gain, x_sines, x_chirp];

 titles = {'Impulse', 'Max gain', 'Sum of sines', 'Chirp'};

 y = zeros(size(x));

 for i=1:size(x,2)

 reset = true;

 y(:,i) = overflow(b,x(:,i),reset);

 end

 test_plot(1,titles,t,x,y)

end

function test_plot(fig,titles,t,x,y1)

 figure(fig)

 clf

 sub_plot = 1;

 font_size = 10;

 for i=1:size(x,2)

 subplot(4,1,sub_plot)

 sub_plot = sub_plot+1;

 plot(t,x(:,i),'c',t,y1(:,i),'k')

 axis('tight')

 Detect Overflows

10-17

 xlabel('t','FontSize',font_size);

 title(titles{i},'FontSize',font_size);

 ax = gca;

 ax.FontSize = 10;

 end

 figure(gcf)

end

Set Up Configuration Object

1 Create a coder.FixptConfig object, fixptcfg, with default settings.

fixptcfg = coder.config('fixpt');

2 Set the test bench name. In this example, the test bench function name is
overflow_test.

fixptcfg.TestBenchName = 'overflow_test';

3 Set the default word length to 16.

fixptcfg.DefaultWordLength = 16;

Enable Overflow Detection

fixptcfg.TestNumerics = true;

fixptcfg.DetectFixptOverflows = true;

Set fimath Options

Set the fimath Product mode and Sum mode to KeepLSB. These settings models the
behavior of integer operations in the C language.
fixptcfg.fimath = ...

'fimath(''RoundingMethod'', ''Floor'', ''OverflowAction'', ''Wrap'', ...

 ''ProductMode'', ''KeepLSB'', ''SumMode'', ''KeepLSB'')';

Convert to Fixed Point

Convert the floating-point MATLAB function, overflow, to floating-point MATLAB
code. You do not need to specify input types for the fiaccel command because it infers
the types from the test file.

fiaccel -float2fixed fixptcfg overflow

The numerics testing phase reports an overflow.
Overflow error in expression 'acc + b(j)*z(k)'. Percentage of Current Range = 104%.

10 Automated Conversion Using Programmatic Workflow

10-18

Review Results

Determine if the addition or the multiplication in this expression overflowed. Set the
fimath ProductMode to FullPrecision so that the multiplication will not overflow,
and then run the fiaccel command again.
fixptcfg.fimath = ...

'fimath(''RoundingMethod'',''Floor'',''OverflowAction'',''Wrap'',...

 ''ProductMode'',''FullPrecision'',''SumMode'',''KeepLSB'')';

fiaccel -float2fixed fixptcfg overflow

The numerics testing phase still reports an overflow, indicating that it is the addition in
the expression that is overflowing.

 Replace the exp Function with a Lookup Table

10-19

Replace the exp Function with a Lookup Table

This example shows how to replace the exp function with a lookup table approximation
in the generated fixed-point code using the fiaccel function.

Prerequisites

To complete this example, you must install the following products:

• MATLAB
• Fixed-Point Designer
• C compiler (for most platforms, a default C compiler is supplied with MATLAB).

For a list of supported compilers, see http://www.mathworks.com/support/
compilers/current_release/ .

You can use mex -setup to change the default compiler. See “Changing Default
Compiler”.

Create Algorithm and Test Files

1 Create a MATLAB function, my_fcn.m, that calls the exp function.

function y = my_fcn(x)

 y = exp(x);

end

2 Create a test file, my_fcn_test.m, that uses my_fcn.m.

close all

x = linspace(-10,10,1e3);

for itr = 1e3:-1:1

 y(itr) = my_fcn(x(itr));

end

plot(x, y);

Configure Approximation

Create a function replacement configuration object to approximate the exp function,
using the default settings of linear interpolation and 1000 points in the lookup table.

q = coder.approximation('exp');

10 Automated Conversion Using Programmatic Workflow

10-20

Set Up Configuration Object

Create a coder.FixptConfig object, fixptcfg. Specify the test file name and enable
numerics testing. Associate the function replacement configuration object with the fixed-
point configuration object.

fixptcfg = coder.config('fixpt');

fixptcfg.TestBenchName = 'my_fcn_test';

fixptcfg.TestNumerics = true;

fixptcfg.DefaultWordLength = 16;

fixptcfg.addApproximation(q);

Convert to Fixed Point

Generate fixed-point MATLAB code.

fiaccel -float2fixed fixptcfg my_fcn

View Generated Fixed-Point Code

To view the generated fixed-point code, click the link to my_fcn_fixpt.

The generated code contains a lookup table approximation, exp1, for the exp function.
The fixed-point conversion process infers the ranges for the function and then uses an
interpolated lookup table to replace the function. By default, the lookup table uses linear
interpolation, 1000 points, and the minimum and maximum values detected by running
the test file.

The generated fixed-point function, my_fcn_fixpt, calls this approximation instead of
calling exp.

function y = my_fcn_fixpt(x)

 fm = fimath('RoundingMethod', 'Floor', 'OverflowAction', 'Wrap',...

 'ProductMode', 'FullPrecision', 'MaxProductWordLength', 128, ...

 'SumMode', 'FullPrecision', 'MaxSumWordLength', 128);

 y = fi(exp1(x), 0, 16,1, fm);

end

You can now test the generated fixed-point code and compare the results against the
original MATLAB function. If the behavior of the generated fixed-point code does not

 Replace the exp Function with a Lookup Table

10-21

match the behavior of the original code closely enough, modify the interpolation method
or number of points used in the lookup table and then regenerate code.

More About
• “Replacing Functions Using Lookup Table Approximations”

10 Automated Conversion Using Programmatic Workflow

10-22

Replace a Custom Function with a Lookup Table
This example shows how to replace a custom function with a lookup table approximation
function using the fiaccel function.

Prerequisites

To complete this example, you must install the following products:

• MATLAB
• Fixed-Point Designer
• C compiler (for most platforms, a default C compiler is supplied with MATLAB)

For a list of supported compilers, see http://www.mathworks.com/support/
compilers/current_release/

You can use mex -setup to change the default compiler. See “Changing Default
Compiler”.

Create a MATLAB function, custom_fcn.m. This is the function that you want to
replace.

function y = custom_fcn(x)

 y = 1./(1+exp(-x));

end

Create a wrapper function that calls custom_fcn.m.

function y = call_custom_fcn(x)

 y = custom_fcn(x);

end

Create a test file, custom_test.m, that uses call_custom_fcn.m.

close all

x = linspace(-10,10,1e3);

for itr = 1e3:-1:1

 y(itr) = call_custom_fcn(x(itr));

end

plot(x, y);

Create a function replacement configuration object to approximate custom_fcn. Specify
the function handle of the custom function and set the number of points to use in the
lookup table to 50.

 Replace a Custom Function with a Lookup Table

10-23

q = coder.approximation('Function','custom_fcn',...

 'CandidateFunction',@custom_fcn, 'NumberOfPoints',50);

Create a coder.FixptConfig object, fixptcfg. Specify the test file name and enable
numerics testing. Associate the function replacement configuration object with the fixed-
point configuration object.

fixptcfg = coder.config('fixpt');

fixptcfg.TestBenchName = 'custom_test';

fixptcfg.TestNumerics = true;

fixptcfg.addApproximation(q);

Generate fixed-point MATLAB code.

fiaccel -float2fixed fixptcfg call_custom_fcn

fiaccel generates fixed-point MATLAB code in call_custom_fcn_fixpt.m.

To view the generated fixed-point code, click the link to call_custom_fcn_fixpt.

The generated code contains a lookup table approximation, custom_fcn1, for the
custom_fcn function. The fixed-point conversion process infers the ranges for the
function and then uses an interpolated lookup table to replace the function. The
lookup table uses 50 points as specified. By default, it uses linear interpolation and the
minimum and maximum values detected by running the test file.

The generated fixed-point function, call_custom_fcn_fixpt, calls this approximation
instead of calling custom_fcn.

function y = call_custom_fcn_fixpt(x)

 fm = fimath('RoundingMethod', 'Floor', 'OverflowAction', 'Wrap',...

 'ProductMode', 'FullPrecision', 'MaxProductWordLength', 128, ...

 'SumMode', 'FullPrecision', 'MaxSumWordLength', 128);

 y = fi(custom_fcn1(x), 0, 14, 14, fm);

end

You can now test the generated fixed-point code and compare the results against the
original MATLAB function. If the behavior of the generated fixed-point code does not
match the behavior of the original code closely enough, modify the interpolation method
or number of points used in the lookup table and then regenerate code.

More About
• “Replacing Functions Using Lookup Table Approximations”

10 Automated Conversion Using Programmatic Workflow

10-24

Visualize Differences Between Floating-Point and Fixed-Point
Results

This example shows how to configure the fiaccel function to use a custom plot function
to compare the behavior of the generated fixed-point code against the behavior of the
original floating-point MATLAB code.

By default, when the LogIOForComparisonPlotting option is enabled, the conversion
process uses a time series based plotting function to show the floating-point and fixed-
point results and the difference between them. However, during fixed-point conversion
you might want to visualize the numerical differences in a view that is more suitable
for your application domain. This example shows how to customize plotting and produce
scatter plots at the test numerics step of the fixed-point conversion.

Prerequisites

To complete this example, you must install the following products:

• MATLAB
• Fixed-Point Designer
• C compiler (for most platforms, a default C compiler is supplied with MATLAB)

For a list of supported compilers, see http://www.mathworks.com/support/
compilers/current_release/

You can use mex -setup to change the default compiler. See “Changing Default
Compiler”.

Create a New Folder and Copy Relevant Files

1 Create a local working folder, for example, c:\custom_plot.
2 Change to the docroot\toolbox\fixpoint\examples folder. At the MATLAB

command line, enter:

cd(fullfile(docroot, 'toolbox', 'fixpoint', 'examples'))

3 Copy the myFilter.m, myFilterTest.m, plotDiff.m, and filterData.mat files
to your local working folder.

It is best practice to create a separate test script to do all the pre- and post-
processing such as loading inputs, setting up input values, calling the function under
test, and outputting test results.

 Visualize Differences Between Floating-Point and Fixed-Point Results

10-25

Type Name Description

Function code myFilter.m Entry-point MATLAB function
Test file myFilterTest.m MATLAB script that tests

myFilter.m

Plotting function plotDiff.m Custom plot function
MAT-fiile filterData.mat Data to filter.

The myFilter Function

function [y, ho] = myFilter(in)

persistent b h;

if isempty(b)

 b = complex(zeros(1,16));

 h = complex(zeros(1,16));

 h(8) = 1;

end

b = [in, b(1:end-1)];

y = b*h.';

errf = 1-sqrt(real(y)*real(y) + imag(y)*imag(y));

update = 0.001*conj(b)*y*errf;

h = h + update;

h(8) = 1;

ho = h;

end

The myFilterTest File

% load data

data = load('filterData.mat');

d = data.symbols;

for idx = 1:4000

 y = myFilter(d(idx));

end

10 Automated Conversion Using Programmatic Workflow

10-26

The plotDiff Function

% varInfo - structure with information about the variable. It has the following fields

% i) name

% ii) functionName

% floatVals - cell array of logged original values for the 'varInfo.name' variable

% fixedVals - cell array of logged values for the 'varInfo.name' variable after

% Fixed-Point conversion.

function plotDiff(varInfo, floatVals, fixedVals)

 varName = varInfo.name;

 fcnName = varInfo.functionName;

 % convert from cell to matrix

 floatVals = cell2mat(floatVals);

 fixedVals = cell2mat(fixedVals);

 % escape the '_'s because plot titles treat these as subscripts

 escapedVarName = regexprep(varName,'_','_');

 escapedFcnName = regexprep(fcnName,'_','_');

 % flatten the values

 flatFloatVals = floatVals(1:end);

 flatFixedVals = fixedVals(1:end);

 % build Titles

 floatTitle = [escapedFcnName ' > ' 'float : ' escapedVarName];

 fixedTitle = [escapedFcnName ' > ' 'fixed : ' escapedVarName];

 data = load('filterData.mat');

 switch varName

 case 'y'

 x_vec = data.symbols;

 figure('Name', 'Comparison plot', 'NumberTitle', 'off');

 % plot floating point values

 y_vec = flatFloatVals;

 subplot(1, 2, 1);

 plotScatter(x_vec, y_vec, 100, floatTitle);

 % plot fixed point values

 y_vec = flatFixedVals;

 subplot(1, 2, 2);

 Visualize Differences Between Floating-Point and Fixed-Point Results

10-27

 plotScatter(x_vec, y_vec, 100, fixedTitle);

 otherwise

 % Plot only output 'y' for this example, skip the rest

 end

end

function plotScatter(x_vec, y_vec, n, figTitle)

 % plot the last n samples

 x_plot = x_vec(end-n+1:end);

 y_plot = y_vec(end-n+1:end);

 hold on

 scatter(real(x_plot),imag(x_plot), 'bo');

 hold on

 scatter(real(y_plot),imag(y_plot), 'rx');

 title(figTitle);

end

Set Up Configuration Object

1 Create a coder.FixptConfig object.

fxptcfg = coder.config('fixpt');

2 Specify the test file name and custom plot function name. Enable logging and
numerics testing.

fxptcfg.TestBenchName = 'myFilterTest';

fxptcfg.PlotFunction = 'plotDiff';

fxptcfg.TestNumerics = true;

fxptcfg. LogIOForComparisonPlotting = true;

fxptcfg.DefaultWordLength = 16;

Convert to Fixed Point

Convert the floating-point MATLAB function, myFilter, to floating-point MATLAB
code. You do not need to specify input types for the fiaccel command because it infers
the types from the test file.

fiaccel -args {complex(0, 0)} -float2fixed fxptcfg myFilter

10 Automated Conversion Using Programmatic Workflow

10-28

The conversion process generates fixed-point code using a default word length of 16 and
then runs a fixed-point simulation by running the myFilterTest.m function and calling
the fixed-point version of myFilter.m.

Because you selected to log inputs and outputs for comparison plots and to use the
custom plotting function, plotDiff.m, for these plots, the conversion process uses this
function to generate the comparison plot.

 Visualize Differences Between Floating-Point and Fixed-Point Results

10-29

The plot shows that the fixed-point results do not closely match the floating-point results.

Increase the word length to 24 and then convert to fixed point again.

fxptcfg.DefaultWordLength = 24;

fiaccel -args {complex(0, 0)} -float2fixed fxptcfg myFilter

The increased word length improved the results. This time, the plot shows that the fixed-
point results match the floating-point results.

10 Automated Conversion Using Programmatic Workflow

10-30

More About
• “Custom Plot Functions”

 Enable Plotting Using the Simulation Data Inspector

10-31

Enable Plotting Using the Simulation Data Inspector

You can use the Simulation Data Inspector to inspect and compare floating-point and
fixed-point input and output data logged using the fiaccel function. At the MATLAB
command line:

1 Create a fixed-point configuration object and configure the test file name.

fixptcfg = coder.config('fixpt');

fixptcfg.TestBenchName = 'dti_test';

2 Select to run the test file to verify the generated fixed-point MATLAB code. Log
inputs and outputs for comparison plotting and select to use the Simulation Data
Inspector to plot the results.

fixptcfg.TestNumerics = true;

fixptcfg.LogIOForComparisonPlotting = true;

fixptcfg.PlotWithSimulationDataInspector = true;

3 Generate fixed-point MATLAB code using fiaccel.

fiaccel -float2fixed fixptcfg dti

For an example, see “Propose Data Types Based on Derived Ranges”.

More About
• “Inspecting Data Using the Simulation Data Inspector”

11

Fixed-Point Conversion — Manual
Conversion

• “Manual Fixed-Point Conversion Workflow” on page 11-2
• “Manual Fixed-Point Conversion Best Practices” on page 11-4
• “Implement FIR Filter Algorithm for Floating-Point and Fixed-Point Types using cast

and zeros” on page 11-19

11 Fixed-Point Conversion — Manual Conversion

11-2

Manual Fixed-Point Conversion Workflow
1 Implement your algorithm in MATLAB.
2 Write a test file that calls your original MATLAB algorithm to validate the behavior

of your algorithm.

Create a test file to validate that the algorithm works as expected in floating point
before converting it to fixed point. Use the same test file to propose fixed-point data
types. After the conversion, use this test file to compare fixed-point results to the
floating-point baseline.

3 Prepare algorithm for instrumentation.
4 Write an entry-point function.

For instrumentation and code generation, it is convenient to have an entry-point
function that calls the function to be converted to fixed point. You can cast the
function inputs to different data types, and add calls to different variations of the
algorithm for comparison. By using an entry-point function, you can run both fixed-
point and floating-point variants of your algorithm. You can also run different
variants of fixed-point. This approach allows you to iterate on your code more quickly
to arrive at the optimal fixed-point design.

5 Build instrumented MEX for original MATLAB algorithm.
6 Run your original MATLAB algorithm to log min/max data. View this data in the

instrumentation report.
7 Separate data types from algorithm.

Convert functions to use types tables and update entry-point function.
8 Validate modified function.

a Create fixed-point types table based on proposed data types.
b Build MEX function.
c Run and compare MEX function behavior against baseline.

9 Use proposed fixed-point data types.

Create fixed-point types table based on proposed data types, build mex, run, and
then compare against baseline.

10 Optionally, if have a MATLAB Coder license, generate code.

Start by testing native C-types.

 Manual Fixed-Point Conversion Workflow

11-3

11 Iterate, tune algorithm.

For example, tune the algorithm to avoid overflow or eliminate bias.

11 Fixed-Point Conversion — Manual Conversion

11-4

Manual Fixed-Point Conversion Best Practices

In this section...

“Create a Test File” on page 11-4
“Prepare Your Algorithm for Code Acceleration or Code Generation” on page 11-5
“Check for Fixed-Point Support for Functions Used in Your Algorithm” on page
11-6
“Manage Data Types and Control Bit Growth” on page 11-7
“Separate Data Type Definitions from Algorithm” on page 11-8
“Convert to Fixed Point” on page 11-10
“Optimize Data Types” on page 11-12
“Optimize Your Algorithm” on page 11-15

Fixed-Point Designer software helps you design and convert your algorithms to fixed
point. Whether you are simply designing fixed-point algorithms in MATLAB or using
Fixed-Point Designer in conjunction with MathWorks code generation products, these
best practices help you get from generic MATLAB code to an efficient fixed-point
implementation. These best practices are also covered in this webinar: Manual Fixed-
Point Conversion Best Practices Webinar

Create a Test File

A best practice for structuring your code is to separate your core algorithm from other
code that you use to test and verify the results. Create a test file to call your original
MATLAB algorithm and fixed-point versions of the algorithm. For example, as shown in
the following table, you might set up some input data to feed into your algorithm, and
then, after you process that data, create some plots to verify the results. Since you need
to convert only the algorithmic portion to fixed-point, it is more efficient to structure your
code so that you have a test file, in which you create your inputs, call your algorithm, and
plot the results, and one (or more) algorithmic files, in which you do the core processing.

Original code Best Practice Modified code

% TEST INPUT

x = randn(100,1);
Issue Test file

% TEST INPUT

http://www.mathworks.com/videos/best-practices-for-converting-matlab-code-to-fixed-point-using-fixed-point-designer-86835.html
http://www.mathworks.com/videos/best-practices-for-converting-matlab-code-to-fixed-point-using-fixed-point-designer-86835.html

 Manual Fixed-Point Conversion Best Practices

11-5

Original code Best Practice Modified code
% ALGORITHM

y = zeros(size(x));

y(1) = x(1);

for n=2:length(x)

 y(n)=y(n-1) + x(n);

end

% VERIFY RESULTS

yExpected=cumsum(x);

plot(y-yExpected)

title('Error')

Generation of test input
and verification of results
are intermingled with the
algorithm code.

Fix

Create a test file that is
separate from your algorithm.
Put the algorithm in its own
function.

x = randn(100,1);

% ALGORITHM

y = cumulative_sum(x);

% VERIFY RESULTS

yExpected = cumsum(x);

plot(y-yExpected)

title('Error')

Algorithm in its own function

function y = cumulative_sum(x)

 y = zeros(size(x));

 y(1) = x(1);

 for n=2:length(x)

 y(n) = y(n-1) + x(n);

 end

end

You can use the test file to:

• Verify that your floating-point algorithm behaves as you expect before you convert it
to fixed point. The floating-point algorithm behavior is the baseline against which you
compare the behavior of the fixed-point versions of your algorithm.

• Propose fixed-point data types.
• Compare the behavior of the fixed-point versions of your algorithm to the floating-

point baseline.

Your test files should exercise the algorithm over its full operating range so that the
simulation ranges are accurate. For example, for a filter, realistic inputs are impulses,
sums of sinusoids, and chirp signals. With these inputs, using linear theory, you can
verify that the outputs are correct. Signals that produce maximum output are useful for
verifying that your system does not overflow. The quality of the proposed fixed-point data
types depends on how well the test files cover the operating range of the algorithm with
the accuracy that you want.

Prepare Your Algorithm for Code Acceleration or Code Generation

Using Fixed-Point Designer, you can:

11 Fixed-Point Conversion — Manual Conversion

11-6

• Instrument your code and provide data type proposals to help you convert your
algorithm to fixed point, using the following functions:

• buildInstrumentedMex, which generates compiled C code that includes logging
instrumentation.

• showInstrumentationResults, which shows the results logged by the
instrumented, compiled C code.

• clearInstrumentationResults, which clears the logged instrumentation
results from memory.

• Accelerate your fixed-point algorithms by creating a MEX file using the fiaccel
function.

Any MATLAB algorithms that you want to instrument using buildInstrumentedMex
and any fixed-point algorithms that you want to accelerate using fiaccel must comply
with code generation requirements and rules. To view the subset of the MATLAB
language that is supported for code generation, see “Functions and Objects Supported for
C and C++ Code Generation — Alphabetical List”.

To help you identify unsupported functions or constructs in your MATLAB code, use one
of the following tools.

• Add the %#codegen pragma to the top of your MATLAB file. The MATLAB code
analyzer flags functions and constructs that are not available in the subset of the
MATLAB language supported for code generation. This advice appears in real-time as
you edit your code in the MATLAB editor.

For more information, see “Check Code Using the MATLAB Code Analyzer”.
• Use the Code Generation Readiness tool to generate a static report on your code. The

report identifies calls to functions and the use of data types that are not supported for
code generation. To generate a report for a function, myFunction1, at the command
line, enter coder.screener('myFunction1').

For more information, see “Check Code Using the Code Generation Readiness Tool”.

Check for Fixed-Point Support for Functions Used in Your Algorithm

Before you start your fixed-point conversion, identify which functions used in your
algorithm are not supported for fixed point. Consider how you might replace them or
otherwise modify your implementation to be more optimized for embedded targets. For

 Manual Fixed-Point Conversion Best Practices

11-7

example, you might need to find (or write your own) replacements for functions like
log2, fft, and exp. Other functions like sin, cos, and sqrt may support fixed point,
but for better efficiency, you may want to consider an alternative implementation like a
lookup table or CORDIC-based algorithm.

If you cannot find a replacement immediately, you can continue converting the rest
of your algorithm to fixed point by simply insulating any functions that don’t support
fixed-point with a cast to double at the input, and a cast back to a fixed-point type at the
output.

Original Code Best Practice Modified Code

y = 1/exp(x); Issue

The exp() function is not
defined for fixed-point inputs.

Fix

Cast the input to double until
you have a replacement. In
this case, 1/exp(x) is more
suitable for fixed-point growth
than exp(x), so replace the
whole expression with a 1/exp
function, possibly as a lookup
table.

y = 1/exp(double(x));

Manage Data Types and Control Bit Growth

The (:)= syntax is known as subscripted assignment. When you use this syntax, MATLAB
overwrites the value of the left-hand side argument, but retains the existing data type
and array size. This is particularly important in keeping fixed-point variables fixed point
(as opposed to inadvertently turning them into doubles), and for preventing bit growth
when you want to maintain a particular data type for the output.

Original Code Best Practice Modified Code

acc = 0;

for n = 1:numel(x)

 acc = acc + x(n);

end

Issue acc = 0;

for n = 1:numel(x)

 acc(:) = acc + x(n);

end

11 Fixed-Point Conversion — Manual Conversion

11-8

Original Code Best Practice Modified Code

acc = acc + x(n)overwrites
acc with acc + x(n). When
you are using all double types,
this behavior is fine. However,
when you introduce fixed-point
data types in your code, if acc
is overwritten, the data type of
acc might change.

Fix

To preserve the original
data type of acc, assign into
acc using acc(:)=. Using
subscripted assignment casts
the right-hand-side value into
the same data type as acc and
prevents bit growth.

For more information, see “Controlling Bit Growth”.

Separate Data Type Definitions from Algorithm

For instrumentation and code generation, create an entry-point function that calls the
function that you want to convert to fixed point. You can then cast the function inputs
to different data types. You can add calls to different variations of the function for
comparison. By using an entry-point function, you can run both fixed-point and floating-
point variants of your algorithm. You can also run different variants of fixed-point. This
approach allows you to iterate on your code more quickly to arrive at the optimal fixed-
point design.

This method of fixed-point conversion makes it easier for you to compare several different
fixed-point implementations, and also allows you to easily retarget your algorithm to a
different device.

To separate data type definitions from your algorithm:

1 When a variable is first defined, use cast(x,’like’,y) or
zeros(m,n,’like’,y) to cast it to your desired data type.

 Manual Fixed-Point Conversion Best Practices

11-9

2 Create a table of data type definitions, starting with original data types used in your
code. Before converting to fixed point, create a data type table that uses all single
data types to find type mismatches and other problems.

3 Run your code connected to each table and look at the results to verify the
connection.

Original code Best Practice Modified code

% Algorithm

n = 128;

y = zeros(size(n));

Issue

The default data type in
MATLAB is double-precision
floating-point.

Fix

1 Use
cast(...,'like',...)

and
zeros(...'like',...)

to programmatically
specify types that are
defined in a separate
table.

2 Create an original
types table, usually in a
separate function.

3 Add single data types to
your table to help verify
the connection with your
code.

% Algorithm

T = mytypes('double');

n = cast(128,'like',T.n);

y = zeros(size(n),'like',T.y);

function T = mytypes(dt)

 switch(dt)

 case 'double'

 T.n = double([]);

 T.y = double([]);

 case 'single'

 T.n = single([]);

 T.y = single([]);

 end

end

Separating data type specifications from algorithm code enables you to:

• Reuse your algorithm code with different data types.
• Keep your algorithm uncluttered with data type specifications and switch statements

for different data types.
• Improve readability of your algorithm code.
• Switch between fixed-point and floating-point data types to compare baselines.

11 Fixed-Point Conversion — Manual Conversion

11-10

• Switch between variations of fixed-point settings without changing the algorithm
code.

Convert to Fixed Point

What Are Your Goals for Converting to Fixed Point?

Before you start the conversion, consider your goals for converting to fixed point. Are
you implementing your algorithm in C or HDL? What are your target constraints? The
answers to these questions determine many fixed-point properties such as the available
word length, fraction length, and math modes, as well as available math libraries.

Build and Run an Instrumented MEX Function

Build and run an instrumented MEX function to get fixed-point types proposals using
the buildInstrumentedMex and showInstrumentationResults functions. Test files
should exercise your algorithm over its full operating range. The quality of the proposed
fixed-point data types depends on how well the test file covers the operating range of the
algorithm with the accuracy that you want. A simple set of test vectors may not exercise
the full range of types, so use the proposals as a guideline for choosing an initial set of
fixed-point types, and use your best judgement and experience in adjusting the types. If
loop indices are used only as index variables, they are automatically converted to integer
types, so you do not have to explicitly convert them to fixed point.

Algorithm Code Test File

function [y,z] = myfilter(b,x,z)

 y = zeros(size(x));

 for n = 1:length(x)

 z(:) = [x(n); z(1:end-1)];

 y(n) = b * z;

 end

end

% Test inputs

b = fir1(11,0.25);

t = linspace(0,10*pi,256)';

x = sin((pi/16)*t.^2); % Linear chirp

z = zeros(size(b'));

% Build

buildInstrumentedMex myfilter ...

 -args {b,x,z} -histogram

% Run

[y,z] = myfilter_mex(b,x,z);

% Show

showInstrumentationResults myfilter_mex ...

 -defaultDT numerictype(1,16) -proposeFL

 Manual Fixed-Point Conversion Best Practices

11-11

Create a Types Table

Create a types table using a structure with prototypes for the variables. The proposed
types are computed from the simulation runs. A long simulation run with a wide range
of expected data produces better proposals. You can use the proposed types or use your
knowledge of the algorithm and implementation constraints to improve the proposals.

Because the data types, not the values, are used, specify the prototype values as empty
([]).

In some cases, it might be more efficient to leave some parts of the code in floating point.
For example, when there is high dynamic range or that part of the code is sensitive to
round-off errors.

Algorithm Code

function [y,z]=myfilter(b,x,z,T)

 y = zeros(size(x),'like',T.y);

 for n = 1:length(x)

 z(:) = [x(n); z(1:end-1)];

 y(n) = b * z;

 end

end

Types Tables

function T = mytypes(dt)

 switch dt

 case 'double'

11 Fixed-Point Conversion — Manual Conversion

11-12

Types Tables
 T.b = double([]);

 T.x = double([]);

 T.y = double([]);

 case 'fixed16'

 T.b = fi([],true,16,15);

 T.x = fi([],true,16,15);

 T.y = fi([],true,16,14);

 end

end

Test File

% Test inputs

b = fir1(11,0.25);

t = linspace(0,10*pi,256)';

x = sin((pi/16)*t.^2);

% Linear chirp

% Cast inputs

T=mytypes('fixed16');

b=cast(b,'like',T.b);

x=cast(x,'like',T.x);

z=zeros(size(b'),'like',T.x);

% Run

[y,z] = myfilter(b,x,z,T);

Run With Fixed-Point Types and Compare Results

Create a test file to validate that the floating-point algorithm works as expected
before converting it to fixed point. You can use the same test file to propose fixed-point
data types, and to compare fixed-point results to the floating-point baseline after the
conversion.

Optimize Data Types

Use Scaled Doubles

Use scaled doubles to detect potential overflows. Scaled doubles are a hybrid between
floating-point and fixed-point numbers. Fixed-Point Designer stores them as doubles

 Manual Fixed-Point Conversion Best Practices

11-13

with the scaling, sign, and word length information retained. To use scaled doubles, you
can use the data type override (DTO) property or you can set the 'DataType' property
to 'ScaledDouble' in the fi or numerictype constructor.

To... Use... Example

Set data type
override locally

numerictype

DataType property
T.a = fi([],1,16,13,'DataType', 'ScaledDouble');

a = cast(pi, 'like', T.a)

a =

 3.1416

 DataTypeMode: Scaled double: binary point scaling

 Signedness: Signed

 WordLength: 16

 FractionLength: 13

Set data
type override
globally

fipref

DataTypeOverride

property

fipref('DataTypeOverride','ScaledDoubles')

T.a = fi([],1,16,13);

a =

 3.1416

 DataTypeMode:Scaled double: binary point scaling

 Signedness: Signed

 WordLength:16

FractionLength:13

For more information, see “Scaled Doubles”.

Use the Histogram to Fine-Tune Data Type Settings

To fine-tune fixed-point type settings, run the buildInstrumentedMex function with
the –histogram flag and then run the generated MEX function with your desired
test inputs. When you use the showInstrumentationResults to display the code
generation report, the report displays a Histogram icon. Click the icon to open the
NumericTypeScope and view the distribution of values observed in your simulation for
the selected variable.

Overflows indicated in red in the Code Generation Report show in the "outside range" bin
in the NumericTypeScope. Launch the NumericTypeScope for an associated variable or

expression by clicking on the histogram view icon .

11 Fixed-Point Conversion — Manual Conversion

11-14

Explore Design Tradeoffs

Once you have your first set of fixed-point data types, you can then add different
variations of fixed-point values to your types table. You can modify and iterate to avoid
overflows, adjust fraction lengths, and change rounding methods to eliminate bias.

Algorithm Code

function [y,z] = myfilter(b,x,z,T)

 y = zeros(size(x),'like',T.y);

 for n = 1:length(x)

 z(:) = [x(n); z(1:end-1)];

 y(n) = b * z;

 end

end

Types Tables

function T = mytypes(dt)

 switch dt

 case 'double'

 T.b = double([]);

 T.x = double([]);

 T.y = double([]);

 case 'fixed8'

 T.b = fi([],true,8,7);

 T.x = fi([],true,8,7);

 T.y = fi([],true,8,6);

 case 'fixed16'

 T.b = fi([],true,16,15);

 T.x = fi([],true,16,15);

 T.y = fi([],true,16,14);

 end

end

Test File

function mytest

 % Test inputs

 b = fir1(11,0.25);

 t = linspace(0,10*pi,256)';

 x = sin((pi/16)*t.^2); % Linear chirp

 % Run

 Manual Fixed-Point Conversion Best Practices

11-15

Test File
 y0 = entrypoint('double',b,x);

 y8 = entrypoint('fixed8',b,x);

 y16 = entrypoint('fixed16',b,x);

 % Plot

 subplot(3,1,1)

 plot(t,x,'c',t,y0,'k')

 legend('Input','Baseline output')

 title('Baseline')

 subplot(3,2,3)

 plot(t,y8,'k')

 title('8-bit fixed-point output')

 subplot(3,2,4)

 plot(t,y0-double(y8),'r')

 title('8-bit fixed-point error')

 subplot(3,2,5)

 plot(t,y16,'k')

 title('16-bit fixed-point output')

 xlabel('Time (s)')

 subplot(3,2,6)

 plot(t,y0-double(y16),'r')

 title('16-bit fixed-point error')

 xlabel('Time (s)')

end

function [y,z] = entrypoint(dt,b,x)

 T = mytypes(dt);

 b = cast(b,'like',T.b);

 x = cast(x,'like',T.x);

 z = zeros(size(b'),'like',T.x);

 [y,z] = myfilter(b,x,z,T);

end

Optimize Your Algorithm

Use fimath to Get Natural Types for C or HDL

fimath properties define the rules for performing arithmetic operations on fi
objects, including math, rounding, and overflow properties. You can use the fimath

11 Fixed-Point Conversion — Manual Conversion

11-16

ProductMode and SumMode properties to retain natural data types for C and HDL.
The KeepLSB setting for ProductMode and SumMode models the behavior of integer
operations in the C language, while KeepMSB models the behavior of many DSP devices.
Different rounding methods require different amounts of overhead code. Setting
the RoundingMethod property to Floor, which is equivalent to two's complement
truncation, provides the most efficient rounding implementation. Similarly, the standard
method for handling overflows is to wrap using modulo arithmetic. Other overflow
handling methods create costly logic. Whenever possible, set the OverflowAction to
Wrap.

MATLAB Code Best Practice Generated C Code

% Code being compiled

function y = adder(a,b)

 y = a + b;

end

With types defined with

default fimath settings:

T.a = fi([],1,16,0);

T.b = fi([],1,16,0);

a = cast(0,'like',T.a);

b = cast(0,'like',T.b);

Issue

Additional code is
generated to implement
saturation overflow,
nearest rounding, and
full-precision arithmetic.

int adder(short a, short b)

{

 int y;

 int i0;

 int i1;

 int i2;

 int i3;

 i0 = a;

 i1 = b;

 if ((i0 & 65536) != 0) {

 i2 = i0 | -65536;

 } else {

 i2 = i0 & 65535;

 }

 if ((i1 & 65536) != 0) {

 i3 = i1 | -65536;

 } else {

 i3 = i1 & 65535;

 }

 i0 = i2 + i3;

 if ((i0 & 65536) != 0) {

 y = i0 | -65536;

 } else {

 y = i0 & 65535;

 }

 return y;

}

Code being compiled Fix int adder(short a, short b)

 Manual Fixed-Point Conversion Best Practices

11-17

MATLAB Code Best Practice Generated C Code
function y = adder(a,b)

 y = a + b;

end

With types defined with fimath
settings that match your processor
types:

F = fimath(...

 'RoundingMethod','Floor', ...

 'OverflowAction','Wrap', ...

 'ProductMode','KeepLSB', ...

 'ProductWordLength',32, ...

 'SumMode','KeepLSB', ...

 'SumWordLength',32);

T.a = fi([],1,16,0,F);

T.b = fi([],1,16,0,F);

a = cast(0,'like',T.a);

b = cast(0,'like',T.b);

To make the generated
code more efficient,
choose fixed-point math
settings that match your
processor types.

{

 return a + b;

}

Replace Built-in Functions With More Efficient Fixed-Point Implementations

Some MATLAB built-in functions can be made more efficient for fixed-point
implementation. For example, you can replace a built-in function with a Lookup table
implementation, or a CORDIC implementation, which requires only iterative shift-add
operations.

Re-implement Division Operations Where Possible

Often, division is not fully supported by hardware and can result in slow processing.
When your algorithm requires a division, consider replacing it with one of the following
options:

• Use bit shifting when the denominator is a power of two. For example, bitsra(x,3)
instead of x/8.

• Multiply by the inverse when the denominator is constant. For example, x*0.2
instead of x/5.

11 Fixed-Point Conversion — Manual Conversion

11-18

Eliminate Floating-Point Variables

For more efficient code, eliminate floating-point variables. The one exception to this is
loop indices because they usually become integer types.

 Implement FIR Filter Algorithm for Floating-Point and Fixed-Point Types using cast and zeros

11-19

Implement FIR Filter Algorithm for Floating-Point and Fixed-Point
Types using cast and zeros

This example shows you how to convert a finite impulse-response (FIR) filter to fixed
point by separating the fixed-point type specification from the algorithm code.

Separating data type type specification from algorithm code allows you to:

• Re-use your algorithm code with different data types
• Keep your algorithm uncluttered with data type specification and switch statements

for different data types
• Keep your algorithm code more readable
• Switch between fixed point and floating point to compare baselines
• Switch between variations of fixed point settings without changing the algorithm code

Original Algorithm

This example converts MATLAB® code for a finite impulse response (FIR) filter to fixed
point.

The formula for the n'th output y(n) of an (FIR) filter, given filter coefficients b, and input
x is:

y(n) = b(1)*x(n) + b(2)*x(n-1) + ... + b(end)*x(n-length(b)+1)

Linear Buffer Implementation

There are several different ways to write an FIR filter. One way is with a linear buffer
like in the following function, where b is a row vector and z is a column vector the same
length as b.

function [y,z] = fir_filt_linear_buff(b,x,z)

 y = zeros(size(x));

 for n=1:length(x)

 z = [x(n); z(1:end-1)];

 y(n) = b * z;

 end

end

The linear buffer implementation takes advantage of MATLAB's convenient matrix
syntax and is easy to read and understand. However, it introduces a full copy of the state
buffer for every sample of the input.

11 Fixed-Point Conversion — Manual Conversion

11-20

Circular Buffer Implementation

To implement the FIR filter more efficiently, you can store the states in a circular buffer,
z, whose elements are z(p) = x(n), where p=mod(n-1,length(b))+1, for n=1, 2, 3,

For example, let length(b) = 3, and initialize p and z to:

p = 0, z = [0 0 0]

Start with the first sample and fill the state buffer z in a circular manner.

n = 1, p = 1, z(1) = x(1), z = [x(1) 0 0]

y(1) = b(1)*z(1) + b(2)*z(3) + b(3)*z(2)

n = 2, p = 2, z(2) = x(2), z = [x(1) x(2) 0]

y(2) = b(1)*z(2) + b(2)*z(1) + b(3)*z(3)

n = 3, p = 3, z(3) = x(3), z = [x(1) x(2) x(3)]

y(3) = b(1)*z(3) + b(2)*z(2) + b(3)*z(1)

n = 4, p = 1, z(1) = x(4), z = [x(4) x(2) x(3)]

y(4) = b(1)*z(1) + b(2)*z(3) + b(3)*z(2)

n = 5, p = 2, z(2) = x(5), z = [x(4) x(5) x(3)]

y(5) = b(1)*z(2) + b(2)*z(1) + b(3)*z(3)

n = 6, p = 3, z(3) = x(6), z = [x(4) x(5) x(6)]

y(6) = b(1)*z(3) + b(2)*z(2) + b(3)*z(1)

...

You can implement the FIR filter using a circular buffer like the following MATLAB
function.

function [y,z,p] = fir_filt_circ_buff_original(b,x,z,p)

 y = zeros(size(x));

 nx = length(x);

 nb = length(b);

 for n=1:nx

 p=p+1; if p>nb, p=1; end

 z(p) = x(n);

 acc = 0;

 k = p;

 for j=1:nb

 Implement FIR Filter Algorithm for Floating-Point and Fixed-Point Types using cast and zeros

11-21

 acc = acc + b(j)*z(k);

 k=k-1; if k<1, k=nb; end

 end

 y(n) = acc;

 end

end

Test File

Create a test file to validate that the floating-point algorithm works as expected
before converting it to fixed point. You can use the same test file to propose fixed-point
data types, and to compare fixed-point results to the floating-point baseline after the
conversion.

The test vectors should represent realistic inputs that exercise the full range of values
expected by your system. Realistic inputs are impulses, sums of sinusoids, and chirp
signals, for which you can verify that the outputs are correct using linear theory.
Signals that produce maximum output are useful for verifying that your system does not
overflow.

Set up

Run the following code to capture and reset the current state of global fixed-point math
settings and fixed-point preferences.

resetglobalfimath;

FIPREF_STATE = get(fipref);

resetfipref;

Run the following code to copy the test functions into a temporary folder so this example
doesn't interfere with your own work.

tempdirObj = fidemo.fiTempdir('fir_filt_circ_buff_fixed_point_conversion_example');

copyfile(fullfile(matlabroot,'toolbox','fixedpoint','fidemos','+fidemo',...

 'fir_filt_*.m'),'.','f');

Filter coefficients

Use the following low-pass filter coefficients that were computed using the fir1 function
from Signal Processing Toolbox.

b = fir1(11,0.25);

11 Fixed-Point Conversion — Manual Conversion

11-22

b = [-0.004465461051254

 -0.004324228005260

 +0.012676739550326

 +0.074351188907780

 +0.172173206073645

 +0.249588554524763

 +0.249588554524763

 +0.172173206073645

 +0.074351188907780

 +0.012676739550326

 -0.004324228005260

 -0.004465461051254]';

Time vector

Use this time vector to create the test signals.

nx = 256;

t = linspace(0,10*pi,nx)';

Impulse input

The response of an FIR filter to an impulse input is the filter coefficients themselves.

x_impulse = zeros(nx,1); x_impulse(1) = 1;

Signal that produces the maximum output

The maximum output of a filter occurs when the signs of the inputs line up with the signs
of the filter's impulse response.

x_max_output = sign(fliplr(b))';

x_max_output = repmat(x_max_output,ceil(nx/length(b)),1);

x_max_output = x_max_output(1:nx);

The maximum magnitude of the output is the 1-norm of its impulse response, which is
norm(b,1) = sum(abs(b)).

maximum_output_magnitude = norm(b,1) %#ok<*NOPTS>

maximum_output_magnitude =

 Implement FIR Filter Algorithm for Floating-Point and Fixed-Point Types using cast and zeros

11-23

 1.0352

Sum of sines

A sum of sines is a typical input for a filter and you can easily see the high frequencies
filtered out in the plot.

f0=0.1; f1=2;

x_sines = sin(2*pi*t*f0) + 0.1*sin(2*pi*t*f1);

Chirp

A chirp gives a good visual of the low-pass filter action of passing the low frequencies and
attenuating the high frequencies.

f_chirp = 1/16; % Target frequency

x_chirp = sin(pi*f_chirp*t.^2); % Linear chirp

titles = {'Impulse', 'Max output', 'Sum of sines', 'Chirp'};

x = [x_impulse, x_max_output, x_sines, x_chirp];

Call the original function

Before starting the conversion to fixed point, call your original function with the test file
inputs to establish a baseline to compare to subsequent outputs.

y0 = zeros(size(x));

for i=1:size(x,2)

 % Initialize the states for each column of input

 p = 0;

 z = zeros(size(b));

 y0(:,i) = fir_filt_circ_buff_original(b,x(:,i),z,p);

end

Baseline Output

fir_filt_circ_buff_plot(1,titles,t,x,y0)

11 Fixed-Point Conversion — Manual Conversion

11-24

Prepare for Instrumentation and Code Generation

The first step after the algorithm works in MATLAB is to prepare it for instrumentation,
which requires code generation. Before the conversion, you can use the coder.screener
function to analyze your code and identify unsupported functions and language features.

Entry-point function

When doing instrumentation and code generation, it is convenient to have an entry-
point function that calls the function to be converted to fixed point. You can cast the FIR
filter's inputs to different data types, and add calls to different variations of the filter for
comparison. By using an entry-point function you can run both fixed-point and floating-

 Implement FIR Filter Algorithm for Floating-Point and Fixed-Point Types using cast and zeros

11-25

point variants of your filter, and also different variants of fixed-point. This allows you to
iterate on your code more quickly to arrive at the optimal fixed-point design.

function y = fir_filt_circ_buff_original_entry_point(b,x,reset)

 if nargin<3, reset = true; end

 % Define the circular buffer z and buffer position index p.

 % They are declared persistent so the filter can be called in a streaming

 % loop, each section picking up where the last section left off.

 persistent z p

 if isempty(z) || reset

 p = 0;

 z = zeros(size(b));

 end

 [y,z,p] = fir_filt_circ_buff_original(b,x,z,p);

end

Test file

Your test file calls the compiled entry-point function.

function y = fir_filt_circ_buff_test(b,x)

 y = zeros(size(x));

 for i=1:size(x,2)

 reset = true;

 y(:,i) = fir_filt_circ_buff_original_entry_point_mex(b,x(:,i),reset);

 end

end

Build original function

Compile the original entry-point function with buildInstrumentedMex. This instruments
your code for logging so you can collect minimum and maximum values from the
simulation and get proposed data types.

reset = true;

buildInstrumentedMex fir_filt_circ_buff_original_entry_point -args {b, x(:,1), reset}

Run original function

Run your test file inputs through the algorithm to log minimum and maximum values.

11 Fixed-Point Conversion — Manual Conversion

11-26

y1 = fir_filt_circ_buff_test(b,x);

Show types

Use showInstrumentationResults to view the data types of all your variables and the
minimum and maximum values that were logged during the test file run. Look at the
maximum value logged for the output variable y and accumulator variable acc and note
that they attained the theoretical maximum output value that you calculated previously.

showInstrumentationResults fir_filt_circ_buff_original_entry_point_mex

To see these results in the instrumented Code Generation Report:

• Select function fir_filt_circ_buff_original
• Select the Variables tab

Validate original function

Every time you modify your function, validate that the results still match your baseline.

fir_filt_circ_buff_plot2(2,titles,t,x,y0,y1)

 Implement FIR Filter Algorithm for Floating-Point and Fixed-Point Types using cast and zeros

11-27

Convert Functions to use Types Tables

To separate data types from the algorithm, you:

1 Create a table of data type definitions.
2 Modify the algorithm code to use data types from that table.

This example shows the iterative steps by creating different files. In practice, you can
make the iterative changes to the same file.

Original types table

Create a types table using a structure with prototypes for the variables set to their
original types. Use the baseline types to validate that you made the initial conversion

11 Fixed-Point Conversion — Manual Conversion

11-28

correctly, and also use it to programatically toggle your function between floating point
and fixed point types. The index variables j, k, n, nb, nx are automatically converted to
integers by MATLAB Coder™, so you don't need to specify their types in the table.

Specify the prototype values as empty ([]) since the data types are used, but not the
values.

function T = fir_filt_circ_buff_original_types()

 T.acc=double([]);

 T.b=double([]);

 T.p=double([]);

 T.x=double([]);

 T.y=double([]);

 T.z=double([]);

end

Type-aware filter function

Prepare the filter function and entry-point function to be type-aware by using the cast
and zeros functions and the types table.

Use subscripted assignment acc(:)=..., p(:)=1, and k(:)=nb to preserve data types during
assignment. See the "Cast fi Objects" section in the Fixed-Point Designer documentation
for more details about subscripted assignment and preserving data types.

The function call y = zeros(size(x),'like',T.y) creates an array of zeros the same size
as x with the properties of variable T.y. Initially, T.y is a double defined in function
fir_filt_circ_buff_original_types, but it is re-defined as a fixed-point type later in this
example.

The function call acc = cast(0,'like',T.acc) casts the value 0 with the same
properties as variable T.acc. Initially, T.acc is a double defined in function
fir_filt_circ_buff_original_types, but it is re-defined as a fixed-point type later in this
example.

function [y,z,p] = fir_filt_circ_buff_typed(b,x,z,p,T)

 y = zeros(size(x),'like',T.y);

 nx = length(x);

 nb = length(b);

 for n=1:nx

 p(:)=p+1; if p>nb, p(:)=1; end

 z(p) = x(n);

 acc = cast(0,'like',T.acc);

 Implement FIR Filter Algorithm for Floating-Point and Fixed-Point Types using cast and zeros

11-29

 k = p;

 for j=1:nb

 acc(:) = acc + b(j)*z(k);

 k(:)=k-1; if k<1, k(:)=nb; end

 end

 y(n) = acc;

 end

end

Type-aware entry-point function

The function call p1 = cast(0,'like',T1.p) casts the value 0 with the same
properties as variable T1.p. Initially, T1.p is a double defined in function
fir_filt_circ_buff_original_types, but it is re-defined as an integer type later in this
example.

The function call z1 = zeros(size(b),'like',T1.z) creates an array of zeros the same size
as b with the properties of variable T1.z. Initially, T1.z is a double defined in function
fir_filt_circ_buff_original_types, but it is re-defined as a fixed-point type later in this
example.

function y1 = fir_filt_circ_buff_typed_entry_point(b,x,reset)

 if nargin<3, reset = true; end

 %

 % Baseline types

 %

 T1 = fir_filt_circ_buff_original_types();

 % Each call to the filter needs to maintain its own states.

 persistent z1 p1

 if isempty(z1) || reset

 p1 = cast(0,'like',T1.p);

 z1 = zeros(size(b),'like',T1.z);

 end

 b1 = cast(b,'like',T1.b);

 x1 = cast(x,'like',T1.x);

 [y1,z1,p1] = fir_filt_circ_buff_typed(b1,x1,z1,p1,T1);

end

Validate modified function

Every time you modify your function, validate that the results still match your baseline.
Since you used the original types in the types table, the outputs should be identical.
This validates that you made the conversion to separate the types from the algorithm
correctly.

11 Fixed-Point Conversion — Manual Conversion

11-30

buildInstrumentedMex fir_filt_circ_buff_typed_entry_point -args {b, x(:,1), reset}

y1 = fir_filt_circ_buff_typed_test(b,x);

fir_filt_circ_buff_plot2(3,titles,t,x,y0,y1)

Propose data types from simulation min/max logs

Use the showInstrumentationResults function to propose fixed-point fraction lengths,
given a default signed fixed-point type and 16-bit word length.

showInstrumentationResults fir_filt_circ_buff_original_entry_point_mex ...

 -defaultDT numerictype(1,16) -proposeFL

In the instrumented Code Generation Report, select function fir_filt_circ_buff_original
and the Variables tab to see these results.

 Implement FIR Filter Algorithm for Floating-Point and Fixed-Point Types using cast and zeros

11-31

Create a fixed-point types table

Use the proposed types from the Code Generation Report to guide you in choosing fixed-
point types and create a fixed-point types table using a structure with prototypes for the
variables.

Use your knowledge of the algorithm to improve on the proposals. For example, you are
using the acc variable as an accumulator, so make it 32-bits. From the Code Generation
Report, you can see that acc needs at least 2 integer bits to prevent overflow, so set the
fraction length to 30.

Variable p is used as an index, so you can make it a builtin 16-bit integer.

Specify the prototype values as empty ([]) since the data types are used, but not the
values.

function T = fir_filt_circ_buff_fixed_point_types()

 T.acc=fi([],true,32,30);

 T.b=fi([],true,16,17);

 T.p=int16([]);

 T.x=fi([],true,16,14);

 T.y=fi([],true,16,14);

 T.z=fi([],true,16,14);

end

Add fixed point to entry-point function

Add a call to the fixed-point types table in the entry-point function:

T2 = fir_filt_circ_buff_fixed_point_types();

11 Fixed-Point Conversion — Manual Conversion

11-32

persistent z2 p2

if isempty(z2) || reset

 p2 = cast(0,'like',T2.p);

 z2 = zeros(size(b),'like',T2.z);

end

b2 = cast(b,'like',T2.b);

x2 = cast(x,'like',T2.x);

[y2,z2,p2] = fir_filt_circ_buff_typed(b2,x2,z2,p2,T2);

Build and run algorithm with fixed-point data types

buildInstrumentedMex fir_filt_circ_buff_typed_entry_point -args {b, x(:,1), reset}

[y1,y2] = fir_filt_circ_buff_typed_test(b,x);

showInstrumentationResults fir_filt_circ_buff_typed_entry_point_mex

To see these results in the instrumented Code Generation Report:

• Select the entry-point function, fir_filt_circ_buff_typed_entry_point
• Select fir_filt_circ_buff_typed in the following line of code:

[y2,z2,p2] = fir_filt_circ_buff_typed(b2,x2,z2,p2,T2);

• Select the Variables tab

16-bit word length, full precision math

Validate that the results are within an acceptable tolerance of your baseline.

fir_filt_circ_buff_plot2(4,titles,t,x,y1,y2);

 Implement FIR Filter Algorithm for Floating-Point and Fixed-Point Types using cast and zeros

11-33

Your algorithm has now been converted to fixed-point MATLAB code. If you also want to
convert to C-code, then proceed to the next section.

Generate C-Code

This section describes how to generate efficient C-code from the fixed-point MATLAB
code from the previous section.

Required products

You need MATLAB Coder™ to generate C-code, and you need Embedded Coder® for the
hardware implementation settings used in this example.

Algorithm tuned for most efficient C-code

11 Fixed-Point Conversion — Manual Conversion

11-34

The output variable y is initialized to zeros, and then completely overwritten before it is
used. Therefore, filling y with all zeros is unnecessary. You can use the coder.nullcopy
function to declare a variable without actually filling it with values, which makes
the code in this case more efficient. However, you have to be very careful when using
coder.nullcopy because if you access an element of a variable before it is assigned, then
you are accessing uninitialized memory and its contents are unpredictable.

A rule of thumb for when to use coder.nullcopy is when the initialization takes significant
time compared to the rest of the algorithm. If you are not sure, then the safest thing to do
is to not use it.

function [y,z,p] = fir_filt_circ_buff_typed_codegen(b,x,z,p,T)

 % Use coder.nullcopy only when you are certain that every value of

 % the variable is overwritten before it is used.

 y = coder.nullcopy(zeros(size(x),'like',T.y));

 nx = length(x);

 nb = length(b);

 for n=1:nx

 p(:)=p+1; if p>nb, p(:)=1; end

 z(p) = x(n);

 acc = cast(0,'like',T.acc);

 k = p;

 for j=1:nb

 acc(:) = acc + b(j)*z(k);

 k(:)=k-1; if k<1, k(:)=nb; end

 end

 y(n) = acc;

 end

end

Native C-code types

You can set the fixed-point math properties to match the native actions of C. This
generates the most efficient C-code, but this example shows that it can create problems
with overflow and produce less accurate results which are corrected in the next section. It
doesn't always create problems, though, so it is worth trying first to see if you can get the
cleanest possible C-code.

Set the fixed-point math properties to use floor rounding and wrap overflow because
those are the default actions in C.

Set the fixed-point math properties of products and sums to match native C 32-bit
integer types, and to keep the least significant bits (LSBs) of math operations.

 Implement FIR Filter Algorithm for Floating-Point and Fixed-Point Types using cast and zeros

11-35

Add these settings to a fixed-point types table.

function T = fir_filt_circ_buff_dsp_types()

 F = fimath('RoundingMethod','Floor',...

 'OverflowAction','Wrap',...

 'ProductMode','KeepLSB',...

 'ProductWordLength',32,...

 'SumMode','KeepLSB',...

 'SumWordLength',32);

 T.acc=fi([],true,32,30,F);

 T.p=int16([]);

 T.b=fi([],true,16,17,F);

 T.x=fi([],true,16,14,F);

 T.y=fi([],true,16,14,F);

 T.z=fi([],true,16,14,F);

end

Test the native C-code types

Add a call to the types table in the entry-point function and run the test file.

[y1,y2,y3] = fir_filt_circ_buff_typed_test(b,x); %#ok<*ASGLU>

In the second row of plots, you can see that the maximum output error is twice the size of
the input, indicating that a value that should have been positive overflowed to negative.
You can also see that the other outputs did not overflow. This is why it is important to
have your test file exercise the full range of values in addition to other typical inputs.

fir_filt_circ_buff_plot2(5,titles,t,x,y1,y3);

11 Fixed-Point Conversion — Manual Conversion

11-36

Scaled Double types to find overflows

Scaled double variables store their data in double-precision floating-point, so they carry
out arithmetic in full range. They also retain their fixed-point settings, so they are able to
report when a computation goes out of the range of the fixed-point type.

Change the data types to scaled double, and add these settings to a scaled-double types
table.

function T = fir_filt_circ_buff_scaled_double_types()

 F = fimath('RoundingMethod','Floor',...

 'OverflowAction','Wrap',...

 'ProductMode','KeepLSB',...

 'ProductWordLength',32,...

 Implement FIR Filter Algorithm for Floating-Point and Fixed-Point Types using cast and zeros

11-37

 'SumMode','KeepLSB',...

 'SumWordLength',32);

 DT = 'ScaledDouble';

 T.acc=fi([],true,32,30,F,'DataType',DT);

 T.p=int16([]);

 T.b=fi([],true,16,17,F,'DataType',DT);

 T.x=fi([],true,16,14,F,'DataType',DT);

 T.y=fi([],true,16,14,F,'DataType',DT);

 T.z=fi([],true,16,14,F,'DataType',DT);

end

Add a call to the the scaled-double types table to the entry-point function and run the
test file.

[y1,y2,y3,y4] = fir_filt_circ_buff_typed_test(b,x); %#ok<*NASGU>

Show the instrumentation results with the scaled-double types.

showInstrumentationResults fir_filt_circ_buff_typed_entry_point_mex

To see these results in the instrumented Code Generation Report:

• Select the entry-point function, fir_filt_circ_buff_typed_entry_point
• Select fir_filt_circ_buff_typed_codegen in the following line of code:

[y4,z4,p4] = fir_filt_circ_buff_typed_codegen(b4,x4,z4,p4,T4);

• Select the Variables tab.
• Look at the variables in the table. None of the variables overflowed, which indicates

that the overflow occurred as the result of an operation.
• Hover over the operators in the report (+, -, *, =).
• Hover over the "+" in this line of MATLAB code in the instrumented Code Generation

Report:

acc(:) = acc + b(j)*z(k);

The report shows that the sum overflowed:

11 Fixed-Point Conversion — Manual Conversion

11-38

The reason the sum overflowed is that a full-precision product for b(j)*z(k) produces
a numerictype(true,32,31) because b has numerictype(true,16,17) and z has

 Implement FIR Filter Algorithm for Floating-Point and Fixed-Point Types using cast and zeros

11-39

numerictype(true,16,14). The sum type is set to "keep least significant bits" (KeepLSB),
so the sum has numerictype(true,32,31). However, 2 integer bits are necessary to store
the minimum and maximum simulated values of -1.0045 and +1.035, respectively.

Adjust to avoid the overflow

Set the fraction length of b to 16 instead of 17 so that b(j)*z(k) is numerictype(true,32,30),
and so the sum is also numerictype(true,32,30) following the KeepLSB rule for sums.

Leave all other settings the same, and set

T.b=fi([],true,16,16,F);

Then the sum in this line of MATLAB code no longer overflows:

acc(:) = acc + b(j)*z(k);

Run the test file with the new settings and plot the results.

[y1,y2,y3,y4,y5] = fir_filt_circ_buff_typed_test(b,x);

You can see that the overflow has been avoided. However, the plots show a bias and a
larger error due to using C's natural floor rounding. If this bias is acceptable to you, then
you can stop here and the generated C-code is very clean.

fir_filt_circ_buff_plot2(6,titles,t,x,y1,y5);

11 Fixed-Point Conversion — Manual Conversion

11-40

Eliminate the bias

If the bias is not acceptable in your application, then change the rounding method to
'Nearest' to eliminate the bias. Rounding to nearest generates slightly more complicated
C-code, but it may be necessary for you if you want to eliminate the bias and have a
smaller error.

The final fixed-point types table with nearest rounding and adjusted coefficient fraction
length is:

function T = fir_filt_circ_buff_dsp_nearest_types()

 F = fimath('RoundingMethod','Nearest',...

 'OverflowAction','Wrap',...

 'ProductMode','KeepLSB',...

 Implement FIR Filter Algorithm for Floating-Point and Fixed-Point Types using cast and zeros

11-41

 'ProductWordLength',32,...

 'SumMode','KeepLSB',...

 'SumWordLength',32);

 T.acc=fi([],true,32,30,F);

 T.p=int16([]);

 T.b=fi([],true,16,16,F);

 T.x=fi([],true,16,14,F);

 T.y=fi([],true,16,14,F);

 T.z=fi([],true,16,14,F);

end

Call this types table from the entry-point function and run and plot the output.

[y1,y2,y3,y4,y5,y6] = fir_filt_circ_buff_typed_test(b,x);

fir_filt_circ_buff_plot2(7,titles,t,x,y1,y6);

11 Fixed-Point Conversion — Manual Conversion

11-42

Code generation command

Run this build function to generate C-code. It is a best practice to create a build function
so you can generate C-code for your core algorithm without the entry-point function or
test file so the C-code for the core algorithm can be included in a larger project.

function fir_filt_circ_buff_build_function()

 %

 % Declare input arguments

 %

 T = fir_filt_circ_buff_dsp_nearest_types();

 b = zeros(1,12,'like',T.b);

 x = zeros(256,1,'like',T.x);

 z = zeros(size(b),'like',T.z);

 p = cast(0,'like',T.p);

 %

 % Code generation configuration

 %

 h = coder.config('lib');

 h.PurelyIntegerCode = true;

 h.SaturateOnIntegerOverflow = false;

 h.SupportNonFinite = false;

 h.HardwareImplementation.ProdBitPerShort = 8;

 h.HardwareImplementation.ProdBitPerInt = 16;

 h.HardwareImplementation.ProdBitPerLong = 32;

 %

 % Generate C-code

 %

 codegen fir_filt_circ_buff_typed_codegen -args {b,x,z,p,T} -config h -launchreport

end

Generated C-Code

Using these settings, MATLAB Coder generates the following C-code:

void fir_filt_circ_buff_typed_codegen(const int16_T b[12], const int16_T x[256],

 int16_T z[12], int16_T *p, int16_T y[256])

{

 int16_T n;

 int32_T acc;

 int16_T k;

 int16_T j;

 for (n = 0; n < 256; n++) {

 (*p)++;

 if (*p > 12) {

 Implement FIR Filter Algorithm for Floating-Point and Fixed-Point Types using cast and zeros

11-43

 *p = 1;

 }

 z[*p - 1] = x[n];

 acc = 0L;

 k = *p;

 for (j = 0; j < 12; j++) {

 acc += (int32_T)b[j] * z[k - 1];

 k--;

 if (k < 1) {

 k = 12;

 }

 }

 y[n] = (int16_T)((acc >> 16) + ((acc & 32768L) != 0L));

 }

}

Run the following code to restore the global states.

fipref(FIPREF_STATE);

clearInstrumentationResults fir_filt_circ_buff_original_entry_point_mex

clearInstrumentationResults fir_filt_circ_buff_typed_entry_point_mex

clear fir_filt_circ_buff_original_entry_point_mex

clear fir_filt_circ_buff_typed_entry_point_mex

Run the following code to delete the temporary folder.

tempdirObj.cleanUp;

12

Viewing Test Results With Simulation
Data Inspector

12 Viewing Test Results With Simulation Data Inspector

12-2

Inspecting Data Using the Simulation Data Inspector

In this section...

“What Is the Simulation Data Inspector?” on page 12-2
“Import Logged Data” on page 12-2
“Export Logged Data” on page 12-2
“Group Signals” on page 12-3
“Run Options” on page 12-3
“Create Report” on page 12-3
“Comparison Options” on page 12-3
“Enabling Plotting Using the Simulation Data Inspector” on page 12-3
“Save and Load Simulation Data Inspector Sessions” on page 12-4

What Is the Simulation Data Inspector?

The Simulation Data Inspector allows you to view data logged during the fixed-point
conversion process. You can use it to inspect and compare the inputs and outputs to the
floating-point and fixed-point versions of your algorithm.

For fixed-point conversion, there is no programmatic interface for the Simulation Data
Inspector.

Import Logged Data

Before importing data into the Simulation Data Inspector, you must have previously
logged data to the base workspace or to a MAT-file.

Export Logged Data

The Simulation Data Inspector provides the capability to save data collected by the fixed-
point conversion process to a MAT-file that you can later reload. The format of the MAT-
file is different from the format of a MAT-file created from the base workspace.

 Inspecting Data Using the Simulation Data Inspector

12-3

Group Signals

You can customize the organization of your logged data in the Simulation Data Inspector
Runs pane. By default, data is first organized by run. You can then organize your data
by logged variable or no hierarchy.

Run Options

You can configure the Simulation Data Inspector to:

• Append New Runs

In the Run Options dialog box, the default is set to add new runs to the bottom of the
run list. To append new runs to the top of the list, select Add new runs to top.

• Specify a Run Naming Rule

To specify run naming rules, in the Simulation Data Inspector toolbar, click Run
Configuration.

Create Report

You can create a report of the runs or comparison plots. Specify the name and location
of the report file. By default, the Simulation Data Inspector overwrites existing files. To
preserve existing reports, select If report exists, increment file name to prevent
overwriting.

Comparison Options

To change how signals are matched when runs are compared, specify the Align by and
Then by parameters and then click OK.

Enabling Plotting Using the Simulation Data Inspector

To enable the Simulation Data Inspector in the Fixed-Point Converter app, see “Enable
Plotting Using the Simulation Data Inspector”.

To enable the Simulation Data Inspector in the programmatic workflow, see “Enable
Plotting Using the Simulation Data Inspector”.

12 Viewing Test Results With Simulation Data Inspector

12-4

Save and Load Simulation Data Inspector Sessions

If you have data in the Simulation Data Inspector and you want to archive or share the
data to view in the Simulation Data Inspector later, save the Simulation Data Inspector
session. When you save a Simulation Data Inspector session, the MAT-file contains:

• All runs, data, and properties from the Runs and Comparisons panes.
• Check box selection state for data in the Runs pane.

Save a Session to a MAT-File

1 On the Visualize tab, click Save.
2 Browse to where you want to save the MAT-file to, name the file, and click Save.

Load a Saved Simulation Data Inspector Simulation

1 On the Visualize tab, click Open.
2 Browse, select the MAT-file saved from the Simulation Data Inspector, and click

Open.
3 If data in the session is plotted on multiple subplots, on the Format tab, click

Subplots and select the subplot layout.

13

Code Acceleration and Code
Generation from MATLAB for Fixed-
Point Algorithms

• “Code Acceleration and Code Generation from MATLAB” on page 13-3
• “Requirements for Generating Complied C Code Files” on page 13-4
• “Functions Supported for Code Acceleration or C Code Generation” on page 13-5
• “Workflow for Fixed-Point Code Acceleration and Generation” on page 13-16
• “Set Up C Compiler” on page 13-17
• “Accelerate Code Using fiaccel” on page 13-18
• “File Infrastructure and Paths Setup” on page 13-24
• “Detect and Debug Code Generation Errors” on page 13-27
• “Set Up C Code Compilation Options” on page 13-29
• “MEX Configuration Dialog Box Options” on page 13-31
• “Best Practices for Accelerating Fixed-Point Code” on page 13-36
• “Use Fixed-Point Code Generation Reports” on page 13-40
• “Generate C Code from Code Containing Global Data” on page 13-45
• “Define Input Properties Programmatically in MATLAB File” on page 13-50
• “Control Run-Time Checks” on page 13-57
• “Fix Run-Time Stack Overflows” on page 13-59
• “Code Generation with MATLAB Coder” on page 13-60
• “Code Generation with MATLAB Function Block” on page 13-61
• “Generate Fixed-Point FIR Code Using MATLAB Function Block” on page 13-70
• “Fixed-Point FIR Code Example Parameter Values” on page 13-74
• “Accelerate Code for Variable-Size Data” on page 13-76

13 Code Acceleration and Code Generation from MATLAB for Fixed-Point Algorithms

13-2

• “Accelerate Fixed-Point Simulation” on page 13-86
• “Code Generation Readiness Tool” on page 13-89
• “Check Code Using the Code Generation Readiness Tool” on page 13-96
• “Check Code Using the MATLAB Code Analyzer” on page 13-97
• “Fix Errors Detected at Code Generation Time” on page 13-98
• “Avoid Multiword Operations in Generated Code” on page 13-99
• “Find Potential Data Type Issues in Generated Code” on page 13-102

 Code Acceleration and Code Generation from MATLAB

13-3

Code Acceleration and Code Generation from MATLAB

In many cases, you may want your code to run faster and more efficiently. Code
acceleration provides optimizations for accelerating fixed-point algorithms through MEX
file building. In Fixed-Point Designer the fiaccel function converts your MATLAB code
to a MEX function and can greatly accelerate the execution speed of your fixed-point
algorithms.

Code generation creates efficient, production-quality C/C++ code for desktop and
embedded applications. There are several ways to use Fixed-Point Designer software to
generate C/C++ code.

Use... To... Requires... See...

MATLAB Coder
(codegen) function

Automatically
convert MATLAB
code to C/C++ code

MATLAB Coder code
generation software
license

“C Code Generation
at the Command
Line” in the
MATLAB Coder
documentation

MATLAB Function Use MATLAB code
in your Simulink
models that generate
embeddable C/C++
code

Simulink license “What Is a MATLAB
Function Block?”
in the Simulink
documentation

MATLAB code generation supports variable-size arrays and matrices with known upper
bounds. To learn more about using variable-size signals, see “What Is Variable-Size
Data?”.

13 Code Acceleration and Code Generation from MATLAB for Fixed-Point Algorithms

13-4

Requirements for Generating Complied C Code Files

You use the fiaccel function to generate MEX code from a MATLAB algorithm. The
algorithm must meet these requirements:

• Must be a MATLAB function, not a script
• Must meet the requirements listed on the fiaccel reference page
• Does not call custom C code using any of the following MATLAB Coder constructs:

• coder.ceval

• coder.ref

• coder.rref

• coder.wref

 Functions Supported for Code Acceleration or C Code Generation

13-5

Functions Supported for Code Acceleration or C Code Generation

In addition to function-specific limitations listed in the table, the following general
limitations apply to the use of Fixed-Point Designer functions in generated code, with
fiaccel:

• fipref and quantizer objects are not supported.
• Word lengths greater than 128 bits are not supported.
• You cannot change the fimath or numerictype of a given fi variable after that

variable has been created.
• The boolean value of the DataTypeMode and DataType properties are not

supported.
• For all SumMode property settings other than FullPrecision, the CastBeforeSum

property must be set to true.
• You can use parallel for (parfor) loops in code compiled with fiaccel, but those

loops are treated like regular for loops.
• When you compile code containing fi objects with nontrivial slope and bias scaling,

you may see different results in generated code than you achieve by running the same
code in MATLAB.

Function Remarks/Limitations

abs N/A
accumneg N/A
accumpos N/A
add • Code generation in MATLAB does not support the syntax

F.add(a,b). You must use the syntax add(F,a,b).
all N/A
any N/A
atan2 N/A
bitand Not supported for slope-bias scaled fi objects.
bitandreduce N/A
bitcmp N/A
bitconcat N/A

13 Code Acceleration and Code Generation from MATLAB for Fixed-Point Algorithms

13-6

Function Remarks/Limitations

bitget N/A
bitor Not supported for slope-bias scaled fi objects.
bitorreduce N/A
bitreplicate N/A
bitrol N/A
bitror N/A
bitset N/A
bitshift N/A
bitsliceget N/A
bitsll Generated code may not handle out of range shifting.
bitsra Generated code may not handle out of range shifting.
bitsrl Generated code may not handle out of range shifting.
bitxor Not supported for slope-bias scaled fi objects.
bitxorreduce N/A
ceil N/A
complex N/A
conj N/A
conv • Variable-sized inputs are only supported when the SumMode

property of the governing fimath is set to Specify precision or
Keep LSB.

• For variable-sized signals, you may see different results between
generated code and MATLAB.

• In the generated code, the output for variable-sized signals is
computed using the SumMode property of the governing fimath.

• In MATLAB, the output for variable-sized signals is computed
using the SumMode property of the governing fimath when
both inputs are nonscalar. However, if either input is a scalar,
MATLAB computes the output using the ProductMode of the
governing fimath.

 Functions Supported for Code Acceleration or C Code Generation

13-7

Function Remarks/Limitations

convergent N/A
cordicabs Variable-size signals are not supported.
cordicangle Variable-size signals are not supported.
cordicatan2 Variable-size signals are not supported.
cordiccart2pol Variable-size signals are not supported.
cordiccexp Variable-size signals are not supported.
cordiccos Variable-size signals are not supported.
cordicpol2cart Variable-size signals are not supported.
cordicrotate Variable-size signals are not supported.
cordicsin Variable-size signals are not supported.
cordicsincos Variable-size signals are not supported.
cos N/A
ctranspose N/A
diag If supplied, the index, k, must be a real and scalar integer value that is

not a fi object.
divide • Any non-fi input must be constant; that is, its value must be

known at compile time so that it can be cast to a fi object.
• Complex and imaginary divisors are not supported.
• Code generation in MATLAB does not support the syntax

T.divide(a,b).
double For the automated workflow, do not use explicit double or single casts

in your MATLAB algorithm to insulate functions that do not support
fixed-point data types. The automated conversion tool does not support
these casts. Instead of using casts, supply a replacement function. For
more information, see “Function Replacements”.

end N/A
eps • Supported for scalar fixed-point signals only.

• Supported for scalar, vector, and matrix, fi single and fi double
signals.

eq Not supported for fixed-point signals with different biases.

13 Code Acceleration and Code Generation from MATLAB for Fixed-Point Algorithms

13-8

Function Remarks/Limitations

fi • The default constructor syntax without any input arguments is not
supported.

• If the numerictype is not fully specified, the input to fi must be a
constant, a fi, a single, or a built-in integer value. If the input is a
built-in double value, it must be a constant. This limitation allows
fi to autoscale its fraction length based on the known data type of
the input.

• All properties related to data type must be constant for code
generation.

• numerictype object information must be available for nonfixed-
point Simulink inputs.

filter • Variable-sized inputs are only supported when the SumMode
property of the governing fimath is set to Specify precision or
Keep LSB.

fimath • Fixed-point signals coming in to a MATLAB Function block from
Simulink are assigned a fimath object. You define this object in
the MATLAB Function block dialog in the Model Explorer.

• Use to create fimath objects in the generated code.
• If the ProductMode property of the fimath object is set to

anything other than FullPrecision, the ProductWordLength
and ProductFractionLength properties must be constant.

• If the SumMode property of the fimath object is set to anything
other than FullPrecision, the SumWordLength and
SumFractionLength properties must be constant.

fix N/A
fixed.Quantizer N/A
flip The dimensions argument must be a built-in type; it cannot be a fi

object.
fliplr N/A
flipud N/A
floor N/A
for N/A

 Functions Supported for Code Acceleration or C Code Generation

13-9

Function Remarks/Limitations

ge Not supported for fixed-point signals with different biases.
get The syntax structure = get(o) is not supported.
getlsb N/A
getmsb N/A
gt Not supported for fixed-point signals with different biases.
horzcat N/A
imag N/A
int8, int16, int32,
 int64

N/A

ipermute N/A
iscolumn N/A
isempty N/A
isequal N/A
isfi Avoid using the isfi function in code that you intend to convert

using the automated workflow. The value returned by isfi in the
fixed-point code might differ from the value returned in the original
MATLAB algorithm. The behavior of the fixed-point code might differ
from the behavior of the original algorithm.

isfimath N/A
isfimathlocal N/A
isfinite N/A
isinf N/A
isnan N/A
isnumeric N/A
isnumerictype N/A
isreal N/A
isrow N/A
isscalar N/A
issigned N/A

13 Code Acceleration and Code Generation from MATLAB for Fixed-Point Algorithms

13-10

Function Remarks/Limitations

isvector N/A
le Not supported for fixed-point signals with different biases.
length N/A
logical N/A
lowerbound N/A
lsb • Supported for scalar fixed-point signals only.

• Supported for scalar, vector, and matrix, fi single and double
signals.

lt Not supported for fixed-point signals with different biases.
max N/A
mean N/A
median N/A
min N/A
minus Any non-fi input must be constant; that is, its value must be known

at compile time so that it can be cast to a fi object.

 Functions Supported for Code Acceleration or C Code Generation

13-11

Function Remarks/Limitations

mpower • When the exponent k is a variable and the input is a scalar,
the ProductMode property of the governing fimath must be
SpecifyPrecision.

• When the exponent k is a variable and the input is not scalar,
the SumMode property of the governing fimath must be
SpecifyPrecision.

• Variable-sized inputs are only supported when the SumMode
property of the governing fimath is set to SpecifyPrecision or
Keep LSB.

• For variable-sized signals, you may see different results between
the generated code and MATLAB.

• In the generated code, the output for variable-sized signals is
computed using the SumMode property of the governing fimath.

• In MATLAB, the output for variable-sized signals is computed
using the SumMode property of the governing fimath when
the first input, a, is nonscalar. However, when a is a scalar,
MATLAB computes the output using the ProductMode of the
governing fimath.

mpy • Code generation in MATLAB does not support the syntax
F.mpy(a,b). You must use the syntax mpy(F,a,b).

• When you provide complex inputs to the mpy function inside of a
MATLAB Function block, you must declare the input as complex
before running the simulation. To do so, go to the Ports and
data manager and set the Complexity parameter for all known
complex inputs to On.

mrdivide N/A

13 Code Acceleration and Code Generation from MATLAB for Fixed-Point Algorithms

13-12

Function Remarks/Limitations

mtimes • Any non-fi input must be constant; that is, its value must be
known at compile time so that it can be cast to a fi object.

• Variable-sized inputs are only supported when the SumMode
property of the governing fimath is set to SpecifyPrecision or
KeepLSB.

• For variable-sized signals, you may see different results between
the generated code and MATLAB.

• In the generated code, the output for variable-sized signals is
computed using the SumMode property of the governing fimath.

• In MATLAB, the output for variable-sized signals is computed
using the SumMode property of the governing fimath when
both inputs are nonscalar. However, if either input is a scalar,
MATLAB computes the output using the ProductMode of the
governing fimath.

ndims N/A
ne Not supported for fixed-point signals with different biases.
nearest N/A
numberofelements numberofelements will be removed in a future release. Use numel

instead.
numel N/A
numerictype • Fixed-point signals coming in to a MATLAB Function block from

Simulink are assigned a numerictype object that is populated
with the signal's data type and scaling information.

• Returns the data type when the input is a nonfixed-point signal.
• Use to create numerictype objects in generated code.
• All numerictype object properties related to the data type must be

constant.
permute The dimensions argument must be a built-in type; it cannot be a fi

object.
plus Any non-fi inputs must be constant; that is, its value must be known

at compile time so that it can be cast to a fi object.
pow2 N/A

 Functions Supported for Code Acceleration or C Code Generation

13-13

Function Remarks/Limitations

power When the exponent k is a variable, the ProductMode property of the
governing fimath must be SpecifyPrecision.

qr N/A
quantize N/A
range N/A
rdivide N/A
real N/A
realmax N/A
realmin N/A
reinterpretcast N/A
removefimath N/A
repmat The dimensions argument must be a built-in type; it cannot be a fi

object.
rescale N/A
reshape N/A
rot90 In the syntax rot90(A,k), the argument k must be a built-in type; it

cannot be a fi object.
round N/A
setfimath N/A
sfi • All properties related to data type must be constant for code

generation.
shiftdim The dimensions argument must be a built-in type; it cannot be a fi

object.
sign N/A
sin N/A
single For the automated workflow, do not use explicit double or single casts

in your MATLAB algorithm to insulate functions that do not support
fixed-point data types. The automated conversion tool does not support
these casts. Instead of using casts, supply a replacement function. For
more information, see “Function Replacements”.

13 Code Acceleration and Code Generation from MATLAB for Fixed-Point Algorithms

13-14

Function Remarks/Limitations

size N/A
sort The dimensions argument must be a built-in type; it cannot be a fi

object.
squeeze N/A
sqrt • Complex and [Slope Bias] inputs error out.

• Negative inputs yield a 0 result.
storedInteger N/A
storedIntegerToDouble N/A
sub • Code generation in MATLAB does not support the syntax

F.sub(a,b). You must use the syntax sub(F,a,b).
subsasgn N/A
subsref N/A
sum Variable-sized inputs are only supported when the SumMode property

of the governing fimath is set to Specify precision or Keep LSB.
times • Any non-fi input must be constant; that is, its value must be

known at compile time so that it can be cast to a fi object.
• When you provide complex inputs to the times function inside of

a MATLAB Function block, you must declare the input as complex
before running the simulation. To do so, go to the Ports and
data manager and set the Complexity parameter for all known
complex inputs to On.

transpose N/A
tril If supplied, the index, k, must be a real and scalar integer value that is

not a fi object.
triu If supplied, the index, k, must be a real and scalar integer value that is

not a fi object.
ufi • All properties related to data type must be constant for code

generation.
uint8, uint16, uint32,
 uint64

N/A

uminus N/A

 Functions Supported for Code Acceleration or C Code Generation

13-15

Function Remarks/Limitations

uplus N/A
upperbound N/A
vertcat N/A

13 Code Acceleration and Code Generation from MATLAB for Fixed-Point Algorithms

13-16

Workflow for Fixed-Point Code Acceleration and Generation

Step Action Details

1 Set up your C compiler. See “Set Up C Compiler” on page 13-17.
2 Set up your file infrastructure. See “File Infrastructure and Paths Setup” on

page 13-24.
3 Make your MATLAB algorithm suitable for

code generation
See “Best Practices for Accelerating Fixed-
Point Code” on page 13-36.

4 Set compilation options. See “Set Up C Code Compilation Options” on
page 13-29.

5 Specify properties of primary function inputs. See “Primary Function Input Specification”.
6 Run fiaccel with the appropriate

command-line options.
See “Recommended Compilation Options for
fiaccel” on page 13-36.

 Set Up C Compiler

13-17

Set Up C Compiler

Fixed-Point Designer automatically locates and uses a supported installed compiler. For
the current list of supported compilers, see Supported and Compatible Compilers on the
MathWorks Web site.

You can use mex -setup to change the default compiler. See “Changing Default
Compiler”.

http://www.mathworks.com/support/compilers/current_release/

13 Code Acceleration and Code Generation from MATLAB for Fixed-Point Algorithms

13-18

Accelerate Code Using fiaccel
In this section...

“Speeding Up Fixed-Point Execution with fiaccel” on page 13-18
“Running fiaccel” on page 13-18
“Generated Files and Locations” on page 13-19
“Data Type Override Using fiaccel” on page 13-21
“Specifying Default fimath Values for MEX Functions” on page 13-22

Speeding Up Fixed-Point Execution with fiaccel

You can convert fixed-point MATLAB code to MEX functions using fiaccel. The
generated MEX functions contain optimizations to automatically accelerate fixed-point
algorithms to compiled C/C++ code speed in MATLAB. The fiaccel function can greatly
increase the execution speed of your algorithms.

Running fiaccel

The basic command is:

fiaccel M_fcn

By default, fiaccel performs the following actions:

• Searches for the function M_fcn stored in the file M_fcn.m as specified in “Compile
Path Search Order” on page 13-24.

• Compiles M_fcn to MEX code.
• If there are no errors or warnings, generates a platform-specific MEX file in the

current folder, using the naming conventions described in “File Naming Conventions”
on page 13-39.

• If there are errors, does not generate a MEX file, but produces an error report in
a default output folder, as described in “Generated Files and Locations” on page
13-19.

• If there are warnings, but no errors, generates a platform-specific MEX file in the
current folder, but does report the warnings.

You can modify this default behavior by specifying one or more compiler options with
fiaccel, separated by spaces on the command line.

 Accelerate Code Using fiaccel

13-19

Generated Files and Locations

fiaccel generates files in the following locations:

Generates: In:

Platform-specific MEX files Current folder
HTML reports

(if errors or warnings occur during
compilation)

Default output folder:

fiaccel/mex/M_fcn_name/html

You can change the name and location of generated files by using the options -o and -d
when you run fiaccel.

In this example, you will use the fiaccel function to compile different parts of a simple
algorithm. By comparing the run times of the two cases, you will see the benefits and
best use of the fiaccel function.

Comparing Run Times When Accelerating Different Algorithm Parts

The algorithm used throughout this example replicates the functionality of the MATLAB
sum function, which sums the columns of a matrix. To see the algorithm, type open
fi_matrix_column_sum.m at the MATLAB command line.

function B = fi_matrix_column_sum(A)

% Sum the columns of matrix A.

%#codegen

 [m,n] = size(A);

 w = get(A,'WordLength') + ceil(log2(m));

 f = get(A,'FractionLength');

 B = fi(zeros(1,n),true,w,f);

 for j = 1:n

 for i = 1:m

 B(j) = B(j) + A(i,j);

 end

 end

Trial 1: Best Performance

The best way to speed up the execution of the algorithm is to compile the entire
algorithm using the fiaccel function. To evaluate the performance improvement
provided by the fiaccel function when the entire algorithm is compiled, run the
following code.

13 Code Acceleration and Code Generation from MATLAB for Fixed-Point Algorithms

13-20

The first portion of code executes the algorithm using only MATLAB functions. The
second portion of the code compiles the entire algorithm using the fiaccel function.
The MATLAB tic and toc functions keep track of the run times for each method of
execution.

% MATLAB

fipref('NumericTypeDisplay','short');

A = fi(randn(1000,10));

tic

B = fi_matrix_column_sum(A)

t_matrix_column_sum_m = toc

% fiaccel

fiaccel fi_matrix_column_sum -args {A} ...

-I [matlabroot '/toolbox/fixedpoint/fidemos']

tic

B = fi_matrix_column_sum_mex(A);

t_matrix_column_sum_mex = toc

Trial 2: Worst Performance

Compiling only the smallest unit of computation using the fiaccel function leads to
much slower execution. In some cases, the overhead that results from calling the mex
function inside a nested loop can cause even slower execution than using MATLAB
functions alone. To evaluate the performance of the mex function when only the smallest
unit of computation is compiled, run the following code.

The first portion of code executes the algorithm using only MATLAB functions. The
second portion of the code compiles the smallest unit of computation with the fiaccel
function, leaving the rest of the computations to MATLAB.

% MATLAB

tic

[m,n] = size(A);

w = get(A,'WordLength') + ceil(log2(m));

f = get(A,'FractionLength');

B = fi(zeros(1,n),true,w,f);

for j = 1:n

 for i = 1:m

 B(j) = fi_scalar_sum(B(j),A(i,j));

 % B(j) = B(j) + A(i,j);

 end

end

t_scalar_sum_m = toc

 Accelerate Code Using fiaccel

13-21

% fiaccel

fiaccel fi_scalar_sum -args {B(1),A(1,1)} ...

-I [matlabroot '/toolbox/fixedpoint/fidemos']

tic

[m,n] = size(A);

w = get(A,'WordLength') + ceil(log2(m));

f = get(A,'FractionLength');

B = fi(zeros(1,n),true,w,f);

for j = 1:n

 for i = 1:m

 B(j) = fi_scalar_sum_mex(B(j),A(i,j));

 % B(j) = B(j) + A(i,j);

 end

end

t_scalar_sum_mex = toc

Ratio of Times

A comparison of Trial 1 and Trial 2 appears in the following table. Your computer
may record different times than the ones the table shows, but the ratios should be
approximately the same. There is an extreme difference in ratios between the trial where
the entire algorithm was compiled using fiaccel (t_matrix_column_sum_mex.m) and
where only the scalar sum was compiled (t_scalar_sum_mex.m). Even the file with
no fiaccel compilation (t_matrix_column_sum_m) did better than when only the
smallest unit of computation was compiled using fiaccel (t_scalar_sum_mex).

X (Overall Performance Rank) Time X/Best X_m/X_mex

Trial 1: Best Performance
t_matrix_column_sum_m (2) 1.99759 84.4917
t_matrix_column_sum_mex (1) 0.0236424 1

84.4917

Trial 2: Worst Performance
t_scalar_sum_m (4) 10.2067 431.71
t_scalar_sum_mex (3) 4.90664 207.536

2.08017

Data Type Override Using fiaccel

Fixed-Point Designer software ships with an example of how to generate a MEX function
from MATLAB code. The code in the example takes the weighted average of a signal

13 Code Acceleration and Code Generation from MATLAB for Fixed-Point Algorithms

13-22

to create a lowpass filter. To run the example in the Help browser select MATLAB
Examples under Fixed-Point Designer, and then select Fixed-Point Lowpass Filtering
Using MATLAB for Code Generation.

You can specify data type override in this example by typing an extra command at the
MATLAB prompt in the “Define Fixed-Point Parameters” section of the example. To turn
data type override on, type the following command at the MATLAB prompt after running
the reset(fipref) command in that section:

fipref('DataTypeOverride','TrueDoubles')

This command tells Fixed-Point Designer software to create all fi objects with type fi
double. When you compile the code using the fiaccel command in the “Compile the M-
File into a MEX File” section of the example, the resulting MEX-function uses floating-
point data.

Specifying Default fimath Values for MEX Functions

MEX functions generated with fiaccel use the MATLAB default global fimath. The
MATLAB factory default global fimath has the following properties:

RoundingMethod: Nearest

OverflowAction: Saturate

ProductMode: FullPrecision

SumMode: FullPrecision

When running MEX functions that depend on the MATLAB default fimath value, do
not change this value during your MATLAB session. Otherwise, MATLAB generates a
warning, alerting you to a mismatch between the compile-time and run-time fimath
values. For example, create the following MATLAB function:

function y = test %#codegen

y = fi(0);

The function test constructs a fi object without explicitly specifying a fimath object.
Therefore, test relies on the default fimath object in effect at compile time.

Generate the MEX function test_mex to use the factory setting of the MATLAB default
fimath.

resetglobalfimath;

fiaccel test

fiaccel generates a MEX function, test_mex, in the current folder.

 Accelerate Code Using fiaccel

13-23

Run test_mex.

test_mex

ans =

 0

 DataTypeMode: Fixed-point: binary point scaling

 Signedness: Signed

 WordLength: 16

 FractionLength: 15

Modify the MATLAB default fimath value so it no longer matches the setting used at
compile time.

F = fimath('RoundingMethod','Floor');

globalfimath(F);

Clear the MEX function from memory and rerun it.

clear test_mex

test_mex

The mismatch is detected and MATLAB generates a warning.

testglobalfimath_mex

Warning: This function was generated with a different default fimath than the current default.

ans =

 0

 DataTypeMode: Fixed-point: binary point scaling

 Signedness: Signed

 WordLength: 16

 FractionLength: 15

To avoid this issue, separate the fimath properties from your algorithm by using types
tables. For more information, see “Separate Data Type Definitions from Algorithm”.

13 Code Acceleration and Code Generation from MATLAB for Fixed-Point Algorithms

13-24

File Infrastructure and Paths Setup

In this section...

“Compile Path Search Order” on page 13-24
“Naming Conventions” on page 13-24

Compile Path Search Order

fiaccel resolves function calls by searching first on the code generation path and
then on the MATLAB path. By default, fiaccel tries to compile and generate code for
functions it finds on the path unless you explicitly declare the function to be extrinsic.
An extrinsic function is a function on the MATLAB path that is dispatched to MATLAB
software for execution. fiaccel does not compile extrinsic functions, but rather
dispatches them to MATLAB for execution.

Naming Conventions

MATLAB enforces naming conventions for functions and generated files.

• “Reserved Prefixes” on page 13-24
• “Reserved Keywords” on page 13-24
• “Conventions for Naming Generated files” on page 13-26

Reserved Prefixes

MATLAB reserves the prefix eml for global C functions and variables in generated code.
For example, run-time library function names all begin with the prefix emlrt, such
as emlrtCallMATLAB. To avoid naming conflicts, do not name C functions or primary
MATLAB functions with the prefix eml.

Reserved Keywords

• “C Reserved Keywords” on page 13-25
• “C++ Reserved Keywords” on page 13-25
• “Reserved Keywords for Code Generation” on page 13-25

MATLAB Coder software reserves certain words for its own use as keywords of the
generated code language. MATLAB Coder keywords are reserved for use internal to

 File Infrastructure and Paths Setup

13-25

MATLAB Coder software and should not be used in MATLAB code as identifiers or
function names. C reserved keywords should also not be used in MATLAB code as
identifiers or function names. If your MATLAB code contains any reserved keywords, the
code generation build does not complete and an error message is displayed. To address
this error, modify your code to use identifiers or names that are not reserved.

If you are generating C++ code using the MATLAB Coder software, in addition, your
MATLAB code must not contain the “C++ Reserved Keywords” on page 13-25.

C Reserved Keywords

auto double int struct

break else long switch

case enum register typedef

char extern return union

const float short unsigned

continue for signed void

default goto sizeof volatile

do if static while

C++ Reserved Keywords

catch friend protected try

class inline public typeid

const_cast mutable reinterpret_cast typename

delete namespace static_cast using

dynamic_cast new template virtual

explicit operator this wchar_t

export private throw

Reserved Keywords for Code Generation

abs fortran localZCE rtNaN

asm HAVESTDIO localZCSV SeedFileBuffer

bool id_t matrix SeedFileBufferLen

13 Code Acceleration and Code Generation from MATLAB for Fixed-Point Algorithms

13-26

boolean_T int_T MODEL single

byte_T int8_T MT TID01EQ

char_T int16_T NCSTATES time_T

cint8_T int32_T NULL true

cint16_T int64_T NUMST TRUE

cint32_T INTEGER_CODE pointer_T uint_T

creal_T LINK_DATA_BUFFER_SIZEPROFILING_ENABLED uint8_T

creal32_T LINK_DATA_STREAM PROFILING_NUM_SAMPLESuint16_T

creal64_T localB real_T uint32_T

cuint8_T localC real32_T uint64_T

cuint16_T localDWork real64_T UNUSED_PARAMETER

cuint32_T localP RT USE_RTMODEL

ERT localX RT_MALLOC VCAST_FLUSH_DATA

false localXdis rtInf vector

FALSE localXdot rtMinusInf

Conventions for Naming Generated files

MATLAB provides platform-specific extensions for MEX files.

Platform MEX File Extension

Linux® x86-64 .mexa64

Windows® (32-bit) .mexw32

Windows x64 .mexw64

 Detect and Debug Code Generation Errors

13-27

Detect and Debug Code Generation Errors

In this section...

“Debugging Strategies” on page 13-27
“Error Detection at Design Time” on page 13-28
“Error Detection at Compile Time” on page 13-28

Debugging Strategies

To prepare your algorithms for code generation, MathWorks recommends that you
choose a debugging strategy for detecting and correcting violations in your MATLAB
applications, especially if they consist of a large number of MATLAB files that call each
other's functions. Here are two best practices:

Debugging
Strategy

What to Do Pros Cons

Bottom-up
verification

1 Verify that your lowest-level
(leaf) functions are suitable
for code generation.

2 Work your way up the
function hierarchy
incrementally to compile
and verify each function,
ending with the top-level
function.

• Efficient
• Safe
• Easy to

isolate
syntax
violations

Requires application tests that
work from the bottom up

Top-down
verification

1 Declare all functions called
by the top-level function
to be extrinsic so fiaccel
does not compile them.

2 Verify that your top-level
function is suitable for code
generation.

3 Work downward in the
function hierarchy to:

a. Remove extrinsic
declarations one by one

Lets you retain
your top-level
tests

Introduces extraneous code that
you must remove after code
verification, including:

• Extrinsic declarations
• Additional assignment

statements as necessary to
convert opaque values returned
by extrinsic functions to
nonopaque values.

13 Code Acceleration and Code Generation from MATLAB for Fixed-Point Algorithms

13-28

Debugging
Strategy

What to Do Pros Cons

b. Compile and verify each
function, ending with the
leaf functions.

Error Detection at Design Time

To detect potential issues for MEX file building as you write your MATLAB algorithm,
add the %#codegen directive to the code that you want fiaccel to compile. Adding this
directive indicates that you intend to generate code from the algorithm and turns on
detailed diagnostics during MATLAB code analysis.

Error Detection at Compile Time

Before you can successfully generate code from a MATLAB algorithm, you must verify
that the algorithm does not contain syntax and semantics violations that would cause
compile-time errors, as described in “Detect and Debug Code Generation Errors” on page
13-27.

fiaccel checks for all potential syntax violations at compile time. When fiaccel
detects errors or warnings, it automatically produces a code generation report that
describes the issues and provides links to the offending code. See “Use Fixed-Point Code
Generation Reports” on page 13-40.

If your MATLAB code calls functions on the MATLAB path, fiaccel attempts to
compile these functions unless you declare them to be extrinsic.

 Set Up C Code Compilation Options

13-29

Set Up C Code Compilation Options

In this section...

“C Code Compiler Configuration Object” on page 13-29
“Compilation Options Modification at the Command Line Using Dot Notation” on page
13-29
“How fiaccel Resolves Conflicting Options” on page 13-30

C Code Compiler Configuration Object

For C code generation to a MEX file, MATLAB provides a configuration object
coder.MexConfig for fine-tuning the compilation. To set MEX compilation options:

1 Define the compiler configuration object in the MATLAB workspace by issuing a
constructor command:

comp_cfg = coder.mexconfig

MATLAB displays the list of compiler options and their current values in the
command window.

2 Modify the compilation options as necessary. See “Compilation Options Modification
at the Command Line Using Dot Notation” on page 13-29

3 Invoke fiaccel with the -config option and specify the configuration object as its
argument:

fiaccel -config comp_cfg myMfile

The -config option instructs fiaccel to convert myFile.m to a MEX function,
based on the compilation settings in comp_cfg.

Compilation Options Modification at the Command Line Using Dot
Notation

Use dot notation to modify the value of compilation options, using this syntax:

configuration_object.property = value

Dot notation uses assignment statements to modify configuration object properties. For
example, to change the maximum size function to inline and the stack size limit for
inlined functions during MEX generation, enter this code at the command line:

13 Code Acceleration and Code Generation from MATLAB for Fixed-Point Algorithms

13-30

co_cfg = coder.mexconfig

co_cfg.InlineThreshold = 25;

co_cfg.InlineStackLimit = 4096;

fiaccel -config co_cfg myFun

How fiaccel Resolves Conflicting Options

fiaccel takes the union of all options, including those specified using configuration
objects, so that you can specify options in any order.

 MEX Configuration Dialog Box Options

13-31

MEX Configuration Dialog Box Options

MEX Configuration Dialog Box Options

The following table describes parameters for fine-tuning the behavior of fiaccel for
converting MATLAB files to MEX:

Parameter Equivalent Command-Line Property
and Values
(default in bold)

Description

Report
Create code generation report GenerateReport

true, false
Document generated code in an
HTML report.

Launch report automatically LaunchReport

true, false
Specify whether to automatically
display HTML reports after code
generation completes.

Note: Requires that you enable
Create code generation
report

Debugging
Echo expressions without
semicolons

EchoExpressions

true, false
Specify whether or not actions
that do not terminate with
a semicolon appear in the
MATLAB Command Window.

Enable debug build EnableDebugging

true, false
Compile the generated code in
debug mode.

Language and Semantics
Constant Folding Timeout ConstantFoldingTimeout

integer, 10000
Specify the maximum number
of instructions to be executed by
the constant folder.

Dynamic memory allocation DynamicMemoryAllocation

'off',
'AllVariableSizeArrays'

Enable dynamic memory
allocation for variable-size
data. By default, dynamic
memory allocation is disabled
and fiaccel allocates memory

13 Code Acceleration and Code Generation from MATLAB for Fixed-Point Algorithms

13-32

Parameter Equivalent Command-Line Property
and Values
(default in bold)

Description

statically on the stack. When
you select dynamic memory
allocation, fiaccel allocates
memory for all variable-size
data dynamically on the heap.

You must use dynamic memory
allocation for all unbounded
variable-size data.

Enable variable sizing EnableVariableSizing

true, false
Enable support for variable-size
arrays.

Extrinsic calls ExtrinsicCalls

true, false
Allow calls to extrinsic
functions.

When enabled (true), the
compiler generates code for the
call to a MATLAB function, but
does not generate the function's
internal code.

When disabled (false), the
compiler ignores the extrinsic
function. Does not generate
code for the call to the MATLAB
function—as long as the
extrinsic function does not affect
the output of the caller function.
Otherwise, the compiler issues a
compiler error.

 MEX Configuration Dialog Box Options

13-33

Parameter Equivalent Command-Line Property
and Values
(default in bold)

Description

Global Data Synchronization
Mode

GlobalDataSyncMethod

string,SyncAlways,
SyncAtEntryAndExits,
NoSync

Controls when global data
is synchronized with the
MATLAB global workspace.
By default, (SyncAlways),
synchronizes global data at
MEX function entry and exit
and for all extrinsic calls.
This synchronization ensures
maximum consistency between
MATLAB and generated code. If
the extrinsic calls do not affect
global data, use this option
with the coder.extrinsic
-sync:off option to turn off
synchronization for these calls.

SyncAtEntryAndExits

synchronizes global data at MEX
function entry and exit only. If
only a few extrinsic calls affect
global data, use this option
with the coder.extrinsic
-sync:on option to turn on
synchronization for these calls.

NoSync disables
synchronization. Ensure that
your generated code does not
interact with MATLAB before
disabling synchronization.
Otherwise, inconsistencies
might occur.

Saturate on integer overflow SaturateOnIntegerOverflow

true, false
Add checks in the generated
code to detect integer overflow or
underflow.

13 Code Acceleration and Code Generation from MATLAB for Fixed-Point Algorithms

13-34

Parameter Equivalent Command-Line Property
and Values
(default in bold)

Description

Safety (disable for faster MEX)
Ensure memory integrity IntegrityChecks

true, false
Detects violations of memory
integrity in code generated
from MATLAB algorithms
and stops execution with a
diagnostic message. Setting
IntegrityChecks to false
also disables the run-time stack.

Ensure responsiveness ResponsivenessChecks

true, false
Enables responsiveness
checks in code generated from
MATLAB algorithms.

Function Inlining and Stack Allocation
Inline Stack Limit InlineStackLimit

integer, 4000
Specify the stack size limit on
inlined functions.

Inline Threshold InlineThreshold

integer, 10
Specify the maximum size of
functions to be inlined.

Inline Threshold Max InlineThresholdMax

integer, 200
Specify the maximum size of
functions after inlining.

Stack Usage Max StackUsageMax

integer, 200000
Specify the maximum stack
usage per application in bytes.
Set a limit that is lower than the
available stack size. Otherwise,
a runtime stack overflow might
occur. Overflows are detected
and reported by the C compiler,
not by fiaccel.

Optimizations
Use BLAS library if possible EnableBLAS

true, false
Speed up low-level matrix
operations during simulation by
calling the Basic Linear Algebra
Subprograms (BLAS) library.

 MEX Configuration Dialog Box Options

13-35

See Also

• “Control Run-Time Checks” on page 13-57
• “Variable-Size Data Definition for Code Generation”
• “Generate C Code from Code Containing Global Data” on page 13-45

13 Code Acceleration and Code Generation from MATLAB for Fixed-Point Algorithms

13-36

Best Practices for Accelerating Fixed-Point Code

In this section...

“Recommended Compilation Options for fiaccel” on page 13-36
“Build Scripts” on page 13-37
“Check Code Interactively Using MATLAB Code Analyzer” on page 13-38
“Separating Your Test Bench from Your Function Code” on page 13-38
“Preserving Your Code” on page 13-38
“File Naming Conventions” on page 13-39

Recommended Compilation Options for fiaccel

• -args – Specify input parameters by example

Use the -args option to specify the properties of primary function inputs as a cell
array of example values at the same time as you generate code for the MATLAB file
with fiaccel. The cell array can be a variable or literal array of constant values.
The cell array should provide the same number and order of inputs as the primary
function.

When you use the -args option you are specifying the data types and array
dimensions of these parameters, not the values of the variables. For more
information, see “Define Input Properties by Example at the Command Line”.

Note: Alternatively, you can use the assert function to define properties of primary
function inputs directly in your MATLAB file. For more information, see “Define
Input Properties Programmatically in MATLAB File” on page 13-50.

• -report – Generate code generation report

Use the -report option to generate a report in HTML format at code generation
time to help you debug your MATLAB code and verify that it is suitable for code
generation. If you do not specify the -report option, fiaccel generates a report
only if build errors or warnings occur.

The code generation report contains the following information:

 Best Practices for Accelerating Fixed-Point Code

13-37

• Summary of code generation results, including type of target and number of
warnings or errors

• Target build log that records build and linking activities
• Links to generated files
• Error and warning messages (if any)

For more information, see fiaccel.

Build Scripts

Use build scripts to call fiaccel to generate MEX functions from your MATLAB
function.

A build script automates a series of MATLAB commands that you want to perform
repeatedly from the command line, saving you time and eliminating input errors. For
instance, you can use a build script to clear your workspace before each build and to
specify code generation options.

This example shows a build script to run fiaccel to process lms_02.m:

close all;

clear all;

clc;

N = 73113;

fiaccel -report lms_02.m ...

 -args { zeros(N,1) zeros(N,1) }

In this example, the following actions occur:

• close all deletes all figures whose handles are not hidden. See close in the
MATLAB Graphics function reference for more information.

• clear all removes all variables, functions, and MEX-files from memory, leaving the
workspace empty. This command also clears all breakpoints.

Note: Remove the clear all command from the build scripts if you want to preserve
breakpoints for debugging.

• clc clears all input and output from the Command Window display, giving you a
“clean screen.”

13 Code Acceleration and Code Generation from MATLAB for Fixed-Point Algorithms

13-38

• N = 73113 sets the value of the variable N, which represents the number of samples
in each of the two input parameters for the function lms_02

• fiaccel -report lms_02.m -args { zeros(N,1) zeros(N,1) } calls
fiaccel to accelerate simulation of the file lms_02.m using the following options:

• -report generates a code generation report
• -args { zeros(N,1) zeros(N,1) } specifies the properties of the function

inputs as a cell array of example values. In this case, the input parameters are N-
by-1 vectors of real doubles.

Check Code Interactively Using MATLAB Code Analyzer

The code analyzer checks your code for problems and recommends modifications to
maximize performance and maintainability. You can use the code analyzer to check your
code continuously in the MATLAB Editor while you work.

To ensure that continuous code checking is enabled:

1 From the MATLAB menu, select File > Preferences > Code Analyzer.

The list of code analyzer preferences appears.
2 Select the Enable integrated warning and error messages check box.

Separating Your Test Bench from Your Function Code

Separate your core algorithm from your test bench. Create a separate test script to do
all the pre- and post-processing such as loading inputs, setting up input values, calling
the function under test, and outputting test results. See the example on the fiaccel
reference page.

Preserving Your Code

Preserve your code before making further modifications. This practice provides a fallback
in case of error and a baseline for testing and validation. Use a consistent file naming
convention, as described in “File Naming Conventions” on page 13-39. For example,
add a 2-digit suffix to the file name for each file in a sequence. Alternatively, use a
version control system.

 Best Practices for Accelerating Fixed-Point Code

13-39

File Naming Conventions

Use a consistent file naming convention to identify different types and versions of your
MATLAB files. This approach keeps your files organized and minimizes the risk of
overwriting existing files or creating two files with the same name in different folders.

For example, the file naming convention in the Generating MEX Functions getting
started tutorial is:

• The suffix _build identifies a build script.
• The suffix _test identifies a test script.
• A numerical suffix, for example, _01 identifies the version of a file. These numbers

are typically two-digit sequential integers, beginning with 01, 02, 03, and so on.

For example:

• The file build_01.m is the first version of the build script for this tutorial.
• The file test_03.m is the third version of the test script for this tutorial.

13 Code Acceleration and Code Generation from MATLAB for Fixed-Point Algorithms

13-40

Use Fixed-Point Code Generation Reports

In this section...

“Code Generation Report Creation” on page 13-40
“Code Generation Report Opening” on page 13-41
“Viewing Your MATLAB Code” on page 13-41
“Viewing Variables in the Variables Tab” on page 13-43
“See Also” on page 13-44

Code Generation Report Creation

When you compile your code with the fiaccel function or the MATLAB Coder codegen
function, you can use the -report option to generate a code generation report. This
report allows you to examine the data types of the variables and expressions in your code.

This example shows how to create a code generation report.

1 In a local writable folder, write a MATLAB function, moving_average.m.

function [avg,z] = moving_average(x,z)

%#codegen

 if nargin < 2,

 z = fi(zeros(10,1),1,16,15);

 end

 z(2:end) = z(1:end-1); % Update buffer

 z(1) = x; % Add new value

 avg = mean(z); % Compute moving average

end

2 In the same folder, write a MATLAB function, test_moving_average.m.

function avg = test_moving_average(x)

%#codegen

 if nargin < 1,

 x = fi(rand(100,1),1,16,15);

 end

 z = fi(zeros(10,1),1,16,15);

 avg = x;

 for k = 1:length(x)

 Use Fixed-Point Code Generation Reports

13-41

 [avg(k),z] = moving_average(x(k),z);

 end

end

3 Use fiaccel to create a MEX function and accelerate the code. Specify the type
of input x using the -args option. Specify the -report option to create a code
generation report.

x = fi(rand(100,1),1,16,15);

fiaccel -report test_moving_average -args {x}

Code Generation Report Opening

If code generation completes, you receive the following message:

Code generation successful: View report

Click the View report link to open the report.

If code generation fails, you get a link to the error report:

Code generation failed: View report

Click the View report link to view the error report and debug your code. For more
information on working with error reports, see “Code Generation Reports”.

Viewing Your MATLAB Code

When the code generation report opens, you can hover your cursor over the variables
and expressions in your MATLAB code to see their data type information. The code
generation report provides color-coded data type information according to the following
legend.

Color Meaning

Green Data type information is available for the selected
variable at this location in the code.

Orange There is a warning message associated with the
selected variable or expression.

Pink No data type information is available for the selected
variable.

13 Code Acceleration and Code Generation from MATLAB for Fixed-Point Algorithms

13-42

Color Meaning

Purple Data type information is available for the selected
expression at this location in the code.

Red There is an error message associated with the selected
variable or expression.

Variables in your code that have data type information available appear highlighted in
green.

Expressions in your code that have data type information available appear highlighted in
purple, as the next figure shows.

 Use Fixed-Point Code Generation Reports

13-43

Viewing Variables in the Variables Tab

To see the data type information for all the variables in your file, click the Variables
tab of the code generation report. You can expand all fi and fimath objects listed in
the Variables tab to display the fimath properties. When you expand a fi object in the
Variables tab, the report indicates whether the fi object has a local fimath object or is
using default fimath values.

The following figure shows the information displayed for a fi object that is using default
fimath values.

13 Code Acceleration and Code Generation from MATLAB for Fixed-Point Algorithms

13-44

You can sort the variables by clicking the column headings in the Variables tab. To
sort the variables by multiple columns, press the Shift key while clicking the column
headings.

See Also

For more information about using the code generation report with the fiaccel function,
see the fiaccel reference page.

For information about local and default fimath, see “fimath Object Construction” on
page 4-2.

For information about using the code generation report with the codegen function, see
“Code Generation Reports”.

 Generate C Code from Code Containing Global Data

13-45

Generate C Code from Code Containing Global Data

In this section...

“Workflow Overview” on page 13-45
“Declaring Global Variables” on page 13-45
“Defining Global Data” on page 13-46
“Synchronizing Global Data with MATLAB” on page 13-47
“Limitations of Using Global Data” on page 13-49

Workflow Overview

To generate MEX functions from MATLAB code that uses global data:

1 Declare the variables as global in your code.
2 Define and initialize the global data before using it.

For more information, see “Defining Global Data” on page 13-46.
3 Compile your code using fiaccel.

If you use global data, you must also specify whether you want to synchronize this data
between MATLAB and the generated code. If there is no interaction between MATLAB
and the generated code, it is safe to disable synchronization. Otherwise, you should
enable synchronization. For more information, see “Synchronizing Global Data with
MATLAB” on page 13-47.

Declaring Global Variables

For code generation, you must declare global variables before using them in your
MATLAB code. Consider the use_globals function that uses two global variables AR
and B.

function y = use_globals()

%#codegen

% Turn off inlining to make

% generated code easier to read

coder.inline('never');

% Declare AR and B as global variables

global AR;

13 Code Acceleration and Code Generation from MATLAB for Fixed-Point Algorithms

13-46

global B;

AR(1) = B(1);

y = AR * 2;

Defining Global Data

You can define global data either in the MATLAB global workspace or at the command
line. If you do not initialize global data at the command line, fiaccel looks for the
variable in the MATLAB global workspace. If the variable does not exist, fiaccel
generates an error.

Defining Global Data in the MATLAB Global Workspace

To compile the use_globals function described in “Declaring Global Variables” on page
13-45 using fiaccel:

1 Define the global data in the MATLAB workspace. At the MATLAB prompt, enter:

global AR B;

AR = fi(ones(4),1,16,14);

B = fi([1 2 3],1,16,13);

2 Compile the function to generate a MEX file named use_globalsx.

fiaccel -o use_globalsx use_globals

Defining Global Data at the Command Line

To define global data at the command line, use the fiaccel -global option. For
example, to compile the use_globals function described in “Declaring Global Variables”
on page 13-45, specify two global inputs AR and B at the command line.

fiaccel -o use_globalsx ...

 -global {'AR',fi(ones(4)),'B',fi([1 2 3])} use_globals

Alternatively, specify the type and initial value with the -globals flag using the format
-globals {'g', {type, initial_value}}.

Defining Variable-Sized Global Data

To provide initial values for variable-sized global data, specify the type and
initial value with the -globals flag using the format -globals {'g', {type,
initial_value}}. For example, to specify a global variable g1 that has an initial value
[1 1] and upper bound [2 2], enter:

 Generate C Code from Code Containing Global Data

13-47

fiaccel foo -globals {'g1',{coder.typeof(0,[2 2],1),[1 1]}}

For a detailed explanation of coder.typeof syntax, see coder.typeof.

Synchronizing Global Data with MATLAB

Why Synchronize Global Data?

The generated code and MATLAB each have their own copies of global data. To ensure
consistency, you must synchronize their global data whenever the two interact. If you
do not synchronize the data, their global variables might differ. The level of interaction
determines when to synchronize global data.

When to Synchronize Global Data

By default, synchronization between global data in MATLAB and generated code occurs
at MEX function entry and exit and for all extrinsic calls, which are calls to MATLAB
functions on the MATLAB path that fiaccel dispatches to MATLAB for execution. This
behavior ensures maximum consistency between generated code and MATLAB.

To improve performance, you can:

• Select to synchronize only at MEX function entry and exit points.
• Disable synchronization when the global data does not interact.
• Choose whether to synchronize before and after each extrinsic call.

The following table summarizes which global data synchronization options to use. To
learn how to set these options, see “How to Synchronize Global Data” on page 13-48.

Global Data Synchronization Options

If you want to... Set the global data
synchronization mode
to:

Synchronize before and after
extrinsic calls?

Ensure maximum consistency
when all extrinsic calls modify
global data.

At MEX-function

entry, exit and

extrinsic calls

(default)

Yes. Default behavior.

Ensure maximum consistency
when most extrinsic calls modify
global data, but a few do not.

At MEX-function

entry, exit and

Yes. Use the
coder.extrinsic -
sync:off option to turn

13 Code Acceleration and Code Generation from MATLAB for Fixed-Point Algorithms

13-48

If you want to... Set the global data
synchronization mode
to:

Synchronize before and after
extrinsic calls?

extrinsic calls

(default)
off synchronization for the
extrinsic calls that do not
affect global data.

Ensure maximum consistency
when most extrinsic calls do not
modify global data, but a few do.

At MEX-function

entry and exit

Yes. Use the
coder.extrinsic -sync:on
option to synchronize only the
calls that modify global data.

Maximize performance when
synchronizing global data, and
none of your extrinsic calls
modify global data.

At MEX-function

entry and exit

No.

Communicate between
generated code files only. No
interaction between global data
in MATLAB and generated code.

Disabled No.

How to Synchronize Global Data

To control global data synchronization, set the global data synchronization mode and
select whether to synchronize extrinsic functions. For guidelines on which options to use,
see “When to Synchronize Global Data” on page 13-47.

You control the synchronization of global data with extrinsic functions using the
coder.extrinsic -sync:on and -sync:off options.

Controlling the Global Data Synchronization Mode from the Command Line

1 Define the compiler options object in the MATLAB workspace by issuing a
constructor command:

comp_cfg = coder.mexconfig

2 From the command line, set the GlobalDataSyncMethod property to Always,
SyncAtEntryAndExits or NoSync, as applicable. For example:

comp_cfg.GlobalDataSyncMethod = 'SyncAtEntryAndExits';

3 Use the comp_cfg configuration object when compiling your code by specifying it
using the -config compilation option. For example,

 Generate C Code from Code Containing Global Data

13-49

fiaccel -config comp_cfg myFile

Controlling Synchronization for Extrinsic Function Calls

You can control whether synchronization between global data in MATLAB and
generated code occurs before and after you call an extrinsic function. To do so, use the
coder.extrinsic -sync:on and -sync:off options.

By default, global data is:

• Synchronized before and after each extrinsic call if the global data synchronization
mode is At MEX-function entry, exit and extrinsic calls. If you are
sure that certain extrinsic calls do not affect global data, turn off synchronization
for these calls using the -sync:off option. Turning off synchronization improves
performance. For example, if functions foo1 and foo2 do not affect global data, turn
off synchronization for these functions:

coder.extrinsic('-sync:off', 'foo1', 'foo2');

• Not synchronized if the global data synchronization mode is At MEX-function
entry and exit. If the code has a few extrinsic calls that affect global data, turn on
synchronization for these calls using the -sync:on option. For example, if functions
foo1 and foo2 do affect global data, turn on synchronization for these functions:

coder.extrinsic('-sync:on', 'foo1', 'foo2');

• Not synchronized if the global data synchronization mode is Disabled. When
synchronization is disabled, you cannot control the synchronization for specific
extrinsic calls. The -sync:on option has no effect.

Limitations of Using Global Data

You cannot use global data with

• The coder.cstructname function. This function does not support global variables.
• The coder.varsize function. Instead, use a coder.typeof object to define

variable-sized global data as described in “Defining Variable-Sized Global Data” on
page 13-46.

13 Code Acceleration and Code Generation from MATLAB for Fixed-Point Algorithms

13-50

Define Input Properties Programmatically in MATLAB File

In this section...

“How to Use assert” on page 13-50
“Rules for Using assert Function” on page 13-54
“Specifying Properties of Primary Fixed-Point Inputs” on page 13-54
“Specifying Class and Size of Scalar Structure” on page 13-55
“Specifying Class and Size of Structure Array” on page 13-56

How to Use assert

You can use the MATLAB assert function to define properties of primary function
inputs directly in your MATLAB file.

Use the assert function to invoke standard MATLAB functions for specifying the class,
size, and complexity of primary function inputs.

Specify Any Class

assert (isa (param, 'class_name'))

Sets the input parameter param to the MATLAB class class_name. For example, to set
the class of input U to a 32-bit signed integer, call:

...

assert(isa(U,'embedded.fi'));

...

Note: If you set the class of an input parameter to fi, you must also set its
numerictype, see “Specify numerictype of Fixed-Point Input” on page 13-53. You
can also set its fimath properties, see “Specify fimath of Fixed-Point Input” on page
13-53.

If you set the class of an input parameter to struct, you must specify the properties
of each field in the structure in the order in which you define the fields in the structure
definition.

 Define Input Properties Programmatically in MATLAB File

13-51

Specify fi Class

assert (isfi (param))

assert (isa (param, 'embedded.fi'))

Sets the input parameter param to the MATLAB class fi (fixed-point numeric object).
For example, to set the class of input U to fi, call:

...

assert(isfi(U));

...

or

...

assert(isa(U,'embedded.fi'));

...

Note: If you set the class of an input parameter to fi, you must also set its
numerictype, see “Specify numerictype of Fixed-Point Input” on page 13-53. You
can also set its fimath properties, see “Specify fimath of Fixed-Point Input” on page
13-53.

Specify Structure Class

assert (isstruct (param))

Sets the input parameter param to the MATLAB class struct (structure). For example,
to set the class of input U to a struct, call:

...

assert(isstruct(U));

...

or

...

assert(isa(U,'struct'));

...

13 Code Acceleration and Code Generation from MATLAB for Fixed-Point Algorithms

13-52

Note: If you set the class of an input parameter to struct, you must specify the
properties of each field in the structure in the order in which you define the fields in the
structure definition.

Specify Any Size

assert (all (size (param) == [dims]))

Sets the input parameter param to the size specified by dimensions dims. For example,
to set the size of input U to a 3-by-2 matrix, call:

...

assert(all(size(U)== [3 2]));

...

Specify Scalar Size

assert (isscalar (param))

assert (all (size (param) == [1]))

Sets the size of input parameter param to scalar. For example, to set the size of input U
to scalar, call:

...

assert(isscalar(U));

...

or

...

assert(all(size(U)== [1]));

...

Specify Real Input

assert (isreal (param))

Specifies that the input parameter param is real. For example, to specify that input U is
real, call:

...

assert(isreal(U));

...

 Define Input Properties Programmatically in MATLAB File

13-53

Specify Complex Input

assert (~isreal (param))

Specifies that the input parameter param is complex. For example, to specify that input
U is complex, call:

...

assert(~isreal(U));

...

Specify numerictype of Fixed-Point Input

assert (isequal (numerictype (fiparam), T))

Sets the numerictype properties of fi input parameter fiparam to the numerictype
object T. For example, to specify the numerictype property of fixed-point input U as a
signed numerictype object T with 32-bit word length and 30-bit fraction length, use the
following code:

...

% Define the numerictype object.

T = numerictype(1, 32, 30);

% Set the numerictype property of input U to T.

assert(isequal(numerictype(U),T));

...

Specify fimath of Fixed-Point Input

assert (isequal (fimath (fiparam), F))

Sets the fimath properties of fi input parameter fiparam to the fimath object F. For
example, to specify the fimath property of fixed-point input U so that it saturates on
integer overflow, use the following code:

...

% Define the fimath object.

F = fimath('OverflowAction','Saturate');

% Set the fimath property of input U to F.

assert(isequal(fimath(U),F));

...

13 Code Acceleration and Code Generation from MATLAB for Fixed-Point Algorithms

13-54

Specify Multiple Properties of Input

assert (function1 (params) && function2 (params) && function3 (params) && ...)

Specifies the class, size, and complexity of one or more inputs using a single assert
function call. For example, the following code specifies that input U is a double, complex,
3-by-3 matrix, and input V is a 16-bit unsigned integer:

...

assert(isa(U,'double') && ~isreal(U) && all(size(U) == [3 3]) && isa(V,'uint16'));

...

Rules for Using assert Function

Follow these rules when using the assert function to specify the properties of primary
function inputs:

• Call assert functions at the beginning of the primary function, before any flow-
control operations such as if statements or subroutine calls.

• Do not call assert functions inside conditional constructs, such as if, for, while,
and switch statements.

• If you set the class of an input parameter to fi:

• You must also set its numerictype, see “Specify numerictype of Fixed-Point
Input” on page 13-53.

• You can also set its fimath properties, see “Specify fimath of Fixed-Point Input”
on page 13-53.

• If you set the class of an input parameter to struct, you must specify the class, size,
and complexity of each field in the structure in the order in which you define the fields
in the structure definition.

Specifying Properties of Primary Fixed-Point Inputs

In the following example, the primary MATLAB function emcsqrtfi takes one fixed-
point input: x. The code specifies the following properties for this input:

Property Value

class fi

 Define Input Properties Programmatically in MATLAB File

13-55

Property Value

numerictype numerictype object T, as specified in the primary
function

fimath fimath object F, as specified in the primary function
size scalar (by default)
complexity real (by default)

function y = emcsqrtfi(x)

T = numerictype('WordLength',32,'FractionLength',23,...

 'Signed',true);

F = fimath('SumMode','SpecifyPrecision',...

 'SumWordLength',32,'SumFractionLength',23,...

 'ProductMode','SpecifyPrecision',...

 'ProductWordLength',32,'ProductFractionLength',23);

assert(isfi(x));

assert(isequal(numerictype(x),T));

assert(isequal(fimath(x),F));

y = sqrt(x);

Specifying Class and Size of Scalar Structure

Assume you have defined S as the following scalar MATLAB structure:

S = struct('r',double(1),'i',fi(4,true,8,0));

This code specifies the class and size of S and its fields when passed as an input to your
MATLAB function:

function y = fcn(S)

% Specify the class of the input as struct.

assert(isstruct(S));

% Specify the size of the fields r and i

% in the order in which you defined them.

T = numerictype('Wordlength', 8,'FractionLength', ...

 0,'signed',true);

assert(isa(S.r,'double'));

assert(isfi(S.i) && isequal(numerictype(S.i),T));

y = S;

13 Code Acceleration and Code Generation from MATLAB for Fixed-Point Algorithms

13-56

Note: The only way to name a field in a structure is to set at least one of its properties.
Therefore in the preceding example, an assert function specifies that field S.r is of type
double, even though double is the default.

Specifying Class and Size of Structure Array

For structure arrays, you must choose a representative element of the array for
specifying the properties of each field. For example, assume you have defined S as the
following 1-by-2 array of MATLAB structures:

S = struct('r',{double(1), double(2)},'i',...

 {fi(4,1,8,0), fi(5,1,8,0)});

The following code specifies the class and size of each field of structure input S using the
first element of the array:

function y = fcn(S)

% Specify the class of the input S as struct.

assert(isstruct(S));

T = numerictype('Wordlength', 8,'FractionLength', ...

 0,'signed',true);

% Specify the size of the fields r and i

% based on the first element of the array.

assert(all(size(S) == [1 2]));

assert(isa(S(1).r,'double'));

assert(isfi(S(1).i) && isequal(numerictype(S(1).i),T));

y = S;

Note: The only way to name a field in a structure is to set at least one of its properties.
Therefore in the example above, an assert function specifies that field S(1).r is of type
double, even though double is the default.

 Control Run-Time Checks

13-57

Control Run-Time Checks

In this section...

“Types of Run-Time Checks” on page 13-57
“When to Disable Run-Time Checks” on page 13-57
“How to Disable Run-Time Checks” on page 13-58

Types of Run-Time Checks

In simulation, the code generated for your MATLAB functions includes the following run-
time checks and external function calls.

• Memory integrity checks

These checks detect violations of memory integrity in code generated for MATLAB
functions and stop execution with a diagnostic message.

Caution For safety, these checks are enabled by default. Without memory integrity
checks, violations will result in unpredictable behavior.

• Responsiveness checks in code generated for MATLAB functions

These checks enable periodic checks for Ctrl+C breaks in code generated for MATLAB
functions. Enabling responsiveness checks also enables graphics refreshing.

Caution For safety, these checks are enabled by default. Without these checks the only
way to end a long-running execution might be to terminate MATLAB.

• Extrinsic calls to MATLAB functions

Extrinsic calls to MATLAB functions, for example to display results, are enabled by
default for debugging purposes. For more information about extrinsic functions, see
“Declaring MATLAB Functions as Extrinsic Functions”.

When to Disable Run-Time Checks

Generally, generating code with run-time checks enabled results in more generated code
and slower simulation than generating code with the checks disabled. Similarly, extrinsic

13 Code Acceleration and Code Generation from MATLAB for Fixed-Point Algorithms

13-58

calls are time consuming and have an adverse effect on performance. Disabling run-
time checks and extrinsic calls usually results in streamlined generated code and faster
simulation, with these caveats:

Consider disabling... Only if...

Memory integrity checks You are sure that your code is safe and that
all array bounds and dimension checking is
unnecessary.

Responsiveness checks You are sure that you will not need to stop
execution of your application using Ctrl+C.

Extrinsic calls You are only using extrinsic calls to
functions that do not affect application
results.

How to Disable Run-Time Checks

To disable run-time checks:

1 Define the compiler options object in the MATLAB workspace by issuing a
constructor command:

comp_cfg = coder.MEXConfig

2 From the command line set the IntegrityChecks, ExtrinsicCalls, or
ResponsivenessChecks properties false, as applicable:

comp_cfg.IntegrityChecks = false;

comp_cfg.ExtrinsicCalls = false;

comp_cfg.ResponsivenessChecks = false;

 Fix Run-Time Stack Overflows

13-59

Fix Run-Time Stack Overflows

If your C compiler reports a run-time stack overflow, set the value of the maximum
stack usage parameter to be less than the available stack size. Create a command-line
configuration object, coder.MexConfig and then set the StackUsageMax parameter.

13 Code Acceleration and Code Generation from MATLAB for Fixed-Point Algorithms

13-60

Code Generation with MATLAB Coder

MATLAB Coder codegen automatically converts MATLAB code directly to C code. It
generates standalone C code that is bit-true to fixed-point MATLAB code. Using Fixed-
Point Designer and MATLAB Coder software you can generate C code with algorithms
containing integer math only (i.e., without any floating-point math).

 Code Generation with MATLAB Function Block

13-61

Code Generation with MATLAB Function Block

In this section...

“Composing a MATLAB Language Function in a Simulink Model” on page 13-61
“MATLAB Function Block with Data Type Override” on page 13-61
“Fixed-Point Data Types with MATLAB Function Block” on page 13-63

Composing a MATLAB Language Function in a Simulink Model

The MATLAB Function block lets you compose a MATLAB language function in a
Simulink model that generates embeddable code. When you simulate the model or
generate code for a target environment, a function in a MATLAB Function block
generates efficient C/C++ code. This code meets the strict memory and data type
requirements of embedded target environments. In this way, the MATLAB Function
blocks bring the power of MATLAB for the embedded environment into Simulink.

For more information about the MATLAB Function block and code generation, refer to
the following:

• MATLAB Function block reference page in the Simulink documentation
• “What Is a MATLAB Function Block?” in the Simulink documentation
• “Code Generation Workflow” in the MATLAB Coder documentation

MATLAB Function Block with Data Type Override

When you use the MATLAB Function block in a Simulink model that specifies data type
override, the block determines the data type override equivalents of the input signal
and parameter types. The block then uses these equivalent values to run the simulation.
The following table shows how the MATLAB Function block determines the data type
override equivalent using

• The data type of the input signal or parameter
• The data type override settings in the Simulink model

For more information about data type override, see fxptdlg.

13 Code Acceleration and Code Generation from MATLAB for Fixed-Point Algorithms

13-62

Input Signal or
Parameter Type

Data Type Override
Setting

Data Type Override
Applies To Setting

Override Data Type

Double All numeric types

or Floating-point
Built-in double

Single All numeric types

or Floating-point
Built-in single

Inherited single

Scaled double All numeric types

or Floating-point
fi scaled double

Double All numeric types

or Floating-point
Built-in double

Single All numeric types

or Floating-point
Built-in single

Specified single

Scaled double All numeric types

or Floating-point
fi scaled double

Double All numeric types

or Floating-point
Built-in double

Single All numeric types

or Floating-point
Built-in single

Inherited double

Scaled double All numeric types

or Floating-point
fi scaled double

Double All numeric types

or Floating-point
Built-in double

Single All numeric types

or Floating-point
Built-in single

Specified double

Scaled double All numeric types

or Floating-point
fi scaled double

Double All numeric types

or Fixed-point
fi double

Single All numeric types

or Fixed-point
fi single

Inherited Fixed

Scaled double All numeric types

or Fixed-point
fi scaled double

 Code Generation with MATLAB Function Block

13-63

Input Signal or
Parameter Type

Data Type Override
Setting

Data Type Override
Applies To Setting

Override Data Type

Double All numeric types

or Fixed-point
fi double

Single All numeric types

or Fixed-point
fi single

Specified Fixed

Scaled double All numeric types

or Fixed-point
fi scaled double

For more information about using the MATLAB Function block with data type override,
see “Using Data Type Override with the MATLAB Function Block”.

Fixed-Point Data Types with MATLAB Function Block

Code generation from MATLAB supports a significant number of Fixed-Point Designer
functions. Refer to “Functions Supported for Code Acceleration or C Code Generation” on
page 13-5 for information about which Fixed-Point Designer functions are supported.

For more information on working with fixed-point MATLAB Function blocks, see:

• “Specifying Fixed-Point Parameters in the Model Explorer” on page 13-63
• “Using fimath Objects in MATLAB Function Blocks” on page 13-65
• “Sharing Models with Fixed-Point MATLAB Function Blocks” on page 13-67

Note: To simulate models using fixed-point data types in Simulink, you must have a
Fixed-Point Designer license.

Specifying Fixed-Point Parameters in the Model Explorer

You can specify parameters for an MATLAB Function block in a fixed-point model using
the Model Explorer. Try the following exercise:

1 Place a MATLAB Function block in a new model. You can find the block in the
Simulink User-Defined Functions library.

2 Open the Model Explorer by selecting View > Model Explorer from your model.
3 Expand the untitled* node in the Model Hierarchy pane of the Model Explorer.

Then, select the MATLAB Function node. The Model Explorer now appears as
shown in the following figure.

13 Code Acceleration and Code Generation from MATLAB for Fixed-Point Algorithms

13-64

The following parameters in the Dialog pane apply to MATLAB Function blocks in
models that use fixed-point and integer data types:

Treat these inherited Simulink signal types as fi objects
Choose whether to treat inherited fixed-point and integer signals as fi objects.

• When you select Fixed-point, the MATLAB Function block treats all fixed-point
inputs as Fixed-Point Designer fi objects.

• When you select Fixed-point & Integer, the MATLAB Function block treats
all fixed-point and integer inputs as Fixed-Point Designer fi objects.

MATLAB Function block fimath
Specify the fimath properties for the block to associate with the following objects:

• All fixed-point and integer input signals to the MATLAB Function block that you
choose to treat as fi objects.

 Code Generation with MATLAB Function Block

13-65

• All fi and fimath objects constructed in the MATLAB Function block.

You can select one of the following options for the MATLAB Function block
fimath:

• Same as MATLAB — When you select this option, the block uses the same
fimath properties as the current default fimath. The edit box appears dimmed
and displays the current default fimath in read-only form.

• Specify Other — When you select this option, you can specify your own fimath
object in the edit box.

For more information on these parameters, see “Using fimath Objects in MATLAB
Function Blocks” on page 13-65.

Using fimath Objects in MATLAB Function Blocks

The MATLAB Function block fimath parameter enables you to specify one set of
fimath object properties for the MATLAB Function block. The block associates the
fimath properties you specify with the following objects:

• All fixed-point and integer input signals to the MATLAB Function block that you
choose to treat as fi objects.

• All fi and fimath objects constructed in the MATLAB Function block.

You can set these parameters on the following dialog box, which you can access through
either the Model Explorer or the “Ports and Data Manager”.

13 Code Acceleration and Code Generation from MATLAB for Fixed-Point Algorithms

13-66

• To access this pane through the Model Explorer:

• Select View > Model Explorer from your model menu.
• Then, select the MATLAB Function block from the Model Hierarchy pane on the

left side of the Model Explorer.
• To access this pane through the Ports and Data Manager, select Tools > Edit Data/

Ports from the MATLAB Editor menu.

When you select Same as MATLAB for the MATLAB Function block fimath, the
MATLAB Function block uses the current default fimath. The current default fimath
appears dimmed and in read-only form in the edit box.

 Code Generation with MATLAB Function Block

13-67

When you select Specify other the block allows you to specify your own fimath object
in the edit box. You can do so in one of two ways:

• Constructing the fimath object inside the edit box.
• Constructing the fimath object in the MATLAB or model workspace and then

entering its variable name in the edit box.

Note: If you use this option and plan to share your model with others, make sure you
define the variable in the model workspace. See “Sharing Models with Fixed-Point
MATLAB Function Blocks” on page 13-67 for more information on sharing models.

The Fixed-Point Designer isfimathlocal function supports code generation for
MATLAB.

Sharing Models with Fixed-Point MATLAB Function Blocks

When you collaborate with a coworker, you can share a fixed-point model using the
MATLAB Function block. To share a model, make sure that you move any variables you
define in the MATLAB workspace, including fimath objects, to the model workspace.
For example, try the following:

1 Place a MATLAB Function block in a new model. You can find the block in the
Simulink User-Defined Functions library.

2 Define a fimath object in the MATLAB workspace that you want to use for any
Simulink fixed-point signal entering the MATLAB Function block as an input:

F = fimath('RoundingMethod','Floor','OverflowAction','Wrap',...

 'ProductMode','KeepLSB','ProductWordLength',32,...

 'SumMode','KeepLSB','SumWordLength',32)

F =

 RoundingMethod: Floor

 OverflowAction: Wrap

 ProductMode: KeepLSB

 ProductWordLength: 32

 SumMode: KeepLSB

 SumWordLength: 32

 CastBeforeSum: true

3 Open the Model Explorer by selecting View > Model Explorer from your model.
4 Expand the untitled* node in the Model Hierarchy pane of the Model Explorer,

and select the MATLAB Function node.

13 Code Acceleration and Code Generation from MATLAB for Fixed-Point Algorithms

13-68

5 Select Specify other for the MATLAB Function block fimath parameter and
enter the variable F into the edit box on the Dialog pane. Click Apply to save your
changes.

You have now defined the fimath properties to be associated with all Simulink
fixed-point input signals and all fi and fimath objects constructed within the block.

6 Select the Base Workspace node in the Model Hierarchy pane. You can see the
variable F that you have defined in the MATLAB workspace listed in the Contents
pane. If you send this model to a coworker, that coworker must first define that same
variable in the MATLAB workspace to get the same results.

7 Cut the variable F from the base workspace, and paste it into the model workspace
listed under the node for your model, in this case, untitled*. The Model Explorer
now appears as shown in the following figure.

You can now email your model to a coworker. Because you included the required
variables in the workspace of the model itself, your coworker can simply run the

 Code Generation with MATLAB Function Block

13-69

model and get the correct results. Receiving and running the model does not require
any extra steps.

13 Code Acceleration and Code Generation from MATLAB for Fixed-Point Algorithms

13-70

Generate Fixed-Point FIR Code Using MATLAB Function Block

In this section...

“Program the MATLAB Function Block” on page 13-70
“Prepare the Inputs” on page 13-71
“Create the Model” on page 13-71
“Define the fimath Object Using the Model Explorer” on page 13-73
“Run the Simulation” on page 13-73

Program the MATLAB Function Block

The following example shows how to create a fixed-point, lowpass, direct form FIR
filter in Simulink. To create the FIR filter, you use Fixed-Point Designer software and
the MATLAB Function block. In this example, you perform the following tasks in the
sequence shown:

1 Place a MATLAB Function block in a new model. You can find the block in the
Simulink User-Defined Functions library.

2 Save your model as cgen_fi.
3 Double-click the MATLAB Function block in your model to open the MATLAB

Function Block Editor. Type or copy and paste the following MATLAB code,
including comments, into the Editor:

function [yout,zf] = dffirdemo(b, x, zi) %#codegen

%codegen_fi doc model example

%Initialize the output signal yout and the final conditions zf

Ty = numerictype(1,12,8);

yout = fi(zeros(size(x)),'numerictype',Ty);

zf = zi;

% FIR filter code

for k=1:length(x);

 % Update the states: z = [x(k);z(1:end-1)]

 zf(:) = [x(k);zf(1:end-1)];

 % Form the output: y(k) = b*z

 yout(k) = b*zf;

end

 Generate Fixed-Point FIR Code Using MATLAB Function Block

13-71

% Plot the outputs only in simulation.

% This does not generate C code.

figure;

subplot(211);plot(x); title('Noisy Signal');grid;

subplot(212);plot(yout); title('Filtered Signal');grid;

Prepare the Inputs

Define the filter coefficients b, noise x, and initial conditions zi by typing the following
code at the MATLAB command line:

b=fidemo.fi_fir_coefficients;

load mtlb

x = mtlb;

n = length(x);

noise = sin(2*pi*2140*(0:n-1)'./Fs);

x = x + noise;

zi = zeros(length(b),1);

Create the Model

1 Add blocks to your model to create the following system.

13 Code Acceleration and Code Generation from MATLAB for Fixed-Point Algorithms

13-72

2 Set the block parameters in the model to these “Fixed-Point FIR Code Example
Parameter Values” on page 13-74.

3 From the model menu, select Simulation > Model Configuration Parameters
and set the following parameters.

Parameter Value

Stop time 0

 Generate Fixed-Point FIR Code Using MATLAB Function Block

13-73

Parameter Value

Type Fixed-step

Solver discrete (no continuous states)

Click Apply to save your changes.

Define the fimath Object Using the Model Explorer

1 Open the Model Explorer for the model.
2 Click the cgen_fi > MATLAB Function node in the Model Hierarchy pane. The

dialog box for the MATLAB Function block appears in the Dialog pane of the Model
Explorer.

3 Select Specify other for the MATLAB Function block fimath parameter on the
MATLAB Function block dialog box. You can then create the following fimath object
in the edit box:

fimath('RoundingMethod','Floor','OverflowAction','Wrap',...

 'ProductMode','KeepLSB','ProductWordLength',32,...

 'SumMode','KeepLSB','SumWordLength',32)

The fimath object you define here is associated with fixed-point inputs to the
MATLAB Function block as well as the fi object you construct within the block.

By selecting Specify other for the MATLAB Function block fimath, you ensure
that your model always uses the fimath properties you specified.

Run the Simulation

1 Run the simulation by selecting your model and typing Ctrl+T. While the simulation
is running, information outputs to the MATLAB command line. You can look at the
plots of the noisy signal and the filtered signal.

2 Next, build embeddable C code for your model by selecting the model and typing Ctrl
+B. While the code is building, information outputs to the MATLAB command line. A
folder called coder_fi_grt_rtw is created in your current working folder.

3 Navigate to coder_fi_grt_rtw > cgen_fi.c. In this file, you can see the code
generated from your model. Search for the following comment in your code:

/* codegen_fi doc model example */

This search brings you to the beginning of the section of the code that your MATLAB
Function block generated.

13 Code Acceleration and Code Generation from MATLAB for Fixed-Point Algorithms

13-74

Fixed-Point FIR Code Example Parameter Values

Block Parameter Value

Constant value b

Interpret vector
parameters as 1-D

Not selected

Sampling mode Sample based

Sample time inf

Mode Fixed point

Signedness Signed

Scaling Slope and bias

Word length 12

Slope 2^-12

Constant

Bias 0

Constant value x+noise

Interpret vector
parameters as 1-D

Unselected

Sampling mode Sample based

Sample time 1

Mode Fixed point

Signedness Signed

Scaling Slope and bias

Word length 12

Slope 2^-8

Constant1

Bias 0

Constant value zi

Interpret vector
parameters as 1-D

Unselected

Sampling mode Sample based

Constant2

Sample time inf

 Fixed-Point FIR Code Example Parameter Values

13-75

Block Parameter Value

Mode Fixed point

Signedness Signed

Scaling Slope and bias

Word length 12

Slope 2^-8

Bias 0

Variable name yout

Limit data points to last inf

Decimation 1

Sample time -1

Save format Array

To Workspace

Log fixed-point data as a
fi object

Selected

Variable name zf

Limit data points to last inf

Decimation 1

Sample time -1

Save format Array

To Workspace1

Log fixed-point data as a
fi object

Selected

Variable name noisyx

Limit data points to last inf

Decimation 1

Sample time -1

Save format Array

To Workspace2

Log fixed-point data as a
fi object

Selected

13 Code Acceleration and Code Generation from MATLAB for Fixed-Point Algorithms

13-76

Accelerate Code for Variable-Size Data

In this section...

“Disable Support for Variable-Size Data” on page 13-76
“Control Dynamic Memory Allocation” on page 13-76
“Accelerate Code for MATLAB Functions with Variable-Size Data” on page 13-77
“Accelerate Code for a MATLAB Function That Expands a Vector in a Loop” on page
13-79

Variable-size data is data whose size might change at run time. MATLAB supports
bounded and unbounded variable-size data for code generation. Bounded variable-
size data has fixed upper bounds. This data can be allocated statically on the stack
or dynamically on the heap. Unbounded variable-size data does not have fixed upper
bounds. This data must be allocated on the heap. By default, for MEX and C/C++ code
generation, support for variable-size data is enabled and dynamic memory allocation is
enabled for variable-size arrays whose size exceeds a configurable threshold.

Disable Support for Variable-Size Data

By default, for MEX and C/C++ code acceleration, support for variable-size data is
enabled. You modify variable sizing settings at the command line.

1 Create a configuration object for code generation.

cfg = coder.mexconfig;

2 Set the EnableVariableSizing option:

cfg.EnableVariableSizing = false;

3 Using the -config option, pass the configuration object to fiaccel :

fiaccel -config cfg foo

Control Dynamic Memory Allocation

By default, dynamic memory allocation is enabled for variable-size arrays whose size
exceeds a configurable threshold. If you disable support for variable-size data, you also
disable dynamic memory allocation. You can modify dynamic memory allocation settings
at the command line.

 Accelerate Code for Variable-Size Data

13-77

1 Create a configuration object for code acceleration. For example, for a MEX function:

mexcfg = coder.mexconfig;

2 Set the DynamicMemoryAllocation option:

Setting Action

mexcfg.DynamicMemoryAllocation='Off'; Dynamic memory allocation is
disabled. All variable-size data
is allocated statically on the
stack.

mexcfg.DynamicMemoryAllocation='AllVariableSizeArrays'; Dynamic memory allocation
is enabled for all variable-size
arrays. All variable-size data
is allocated dynamically on the
heap.

mexcfg.DynamicMemoryAllocation='Threshold'; Dynamic memory allocation
is enabled for all variable-
size arrays whose size (in
bytes) is greater than or
equal to the value specified
using the Dynamic memory
allocation threshold

parameter. Variable-size
arrays whose size is less than
this threshold are allocated on
the stack.

3 Optionally, if you set Dynamic memory allocation to ‘Threshold’, configure
Dynamic memory allocation threshold to fine tune memory allocation.

4 Using the -config option, pass the configuration object to fiaccel:

fiaccel -config mexcfg foo

Accelerate Code for MATLAB Functions with Variable-Size Data

Here is a basic workflow that generates MEX code.

1 In the MATLAB Editor, add the compilation directive %#codegen at the top of your
function.

13 Code Acceleration and Code Generation from MATLAB for Fixed-Point Algorithms

13-78

This directive:

• Indicates that you intend to generate code for the MATLAB algorithm
• Turns on checking in the MATLAB Code Analyzer to detect potential errors

during code generation
2 Address issues detected by the Code Analyzer.

In some cases, the MATLAB Code Analyzer warns you when your code assigns
data a fixed size but later grows the data, such as by assignment or concatenation
in a loop. If that data is supposed to vary in size at run time, you can ignore these
warnings.

3 Generate a MEX function using fiaccel. Use the following command-line options:

• -args {coder.typeof...} if you have variable-size inputs
• -report to generate a code generation report

For example:

fiaccel -report foo -args {coder.typeof(0,[2 4],1)}

This command uses coder.typeof to specify one variable-size input for function
foo. The first argument, 0, indicates the input data type (double) and complexity
(real). The second argument, [2 4], indicates the size, a matrix with two
dimensions. The third argument, 1, indicates that the input is variable sized. The
upper bound is 2 for the first dimension and 4 for the second dimension.

Note: During compilation, fiaccel detects variables and structure fields that
change size after you define them, and reports these occurrences as errors. In
addition, fiaccel performs a runtime check to generate errors when data exceeds
upper bounds.

4 Fix size mismatch errors:

Cause: How To Fix: For More Information:

You try to change the
size of data after its size
has been locked.

Declare the data to be
variable sized.

See “Diagnosing and Fixing
Size Mismatch Errors”.

5 Fix upper bounds errors

 Accelerate Code for Variable-Size Data

13-79

Cause: How To Fix: For More Information:

MATLAB cannot
determine or compute
the upper bound

Specify an upper bound. See “Specifying Upper
Bounds for Variable-Size
Data” and “Diagnosing
and Fixing Size Mismatch
Errors”.

MATLAB attempts to
compute an upper bound
for unbounded variable-
size data.

If the data is unbounded,
enable dynamic memory
allocation.

See “Control Dynamic
Memory Allocation” on page
13-76

6 Generate C/C++ code using the fiaccel function.

Accelerate Code for a MATLAB Function That Expands a Vector in a Loop

• “About the MATLAB Function uniquetol” on page 13-79
• “Step 1: Add Compilation Directive for Code Generation” on page 13-80
• “Step 2: Address Issues Detected by the Code Analyzer” on page 13-80
• “Step 3: Generate MEX Code” on page 13-80
• “Step 4: Fix the Size Mismatch Error” on page 13-82
• “Step 5: Compare Execution Speed of MEX Function to Original Code” on page

13-84

About the MATLAB Function uniquetol

This example uses the function uniquetol. This function returns in vector B a version of
input vector A, where the elements are unique to within tolerance tol of each other. In
vector B, abs(B(i) - B(j)) > tol for all i and j. Initially, assume input vector A can store
up to 100 elements.

function B = uniquetol(A, tol)

A = sort(A);

B = A(1);

k = 1;

for i = 2:length(A)

 if abs(A(k) - A(i)) > tol

 B = [B A(i)];

 k = i;

13 Code Acceleration and Code Generation from MATLAB for Fixed-Point Algorithms

13-80

 end

end

Step 1: Add Compilation Directive for Code Generation

Add the %#codegen compilation directive at the top of the function:

function B = uniquetol(A, tol) %#codegen

A = sort(A);

B = A(1);

k = 1;

for i = 2:length(A)

 if abs(A(k) - A(i)) > tol

 B = [B A(i)];

 k = i;

 end

end

Step 2: Address Issues Detected by the Code Analyzer

The Code Analyzer detects that variable B might change size in the for- loop. It issues
this warning:

The variable 'B' appears to change size on every loop iteration.

Consider preallocating for speed.

In this function, vector B should expand in size as it adds values from vector A. Therefore,
you can ignore this warning.

Step 3: Generate MEX Code

To generate MEX code, use the fiaccel function.

1 Generate a MEX function for uniquetol:

T = numerictype(1, 16, 15);

fiaccel -report uniquetol -args {coder.typeof(fi(0,T),[1 100],1),coder.typeof(fi(0,T))}

What do these command-line options mean?

T = numerictype(1, 16, 15) creates a signed numerictype object with a 16-bit
word length and 15-bit fraction length that you use to specify the data type of the
input arguments for the function uniquetol.

 Accelerate Code for Variable-Size Data

13-81

The fiaccel function -args option specifies the class, complexity, and size of each
input to function uniquetol:

• The first argument, coder.typeof, defines a variable-size input. The expression
coder.typeof(fi(0,T),[1 100],1) defines input A as a vector of real, signed
embedded.fi objects that have a 16-bit word length and 15-bit fraction length.
The vector has a fixed upper bound; its first dimension is fixed at 1 and its second
dimension can vary in size up to 100 elements.

For more information, see “Specify Variable-Size Inputs at the Command Line”.
• The second argument, coder.typeof(fi(0,T)), defines input tol as a real,

signed embedded.fi object with a 16-bit word length and 15-bit fraction length.

The -report option instructs fiaccel to generate a code generation report, even if
no errors or warnings occur.

For more information, see thefiaccel reference page.

Executing this command generates a compiler error:

??? Size mismatch (size [1 x 1] ~= size [1 x 2]).

The size to the left is the size

of the left-hand side of the assignment.

2 Open the error report and select the Variables tab.

13 Code Acceleration and Code Generation from MATLAB for Fixed-Point Algorithms

13-82

The error indicates a size mismatch between the left-hand side and right-hand side of the
assignment statement B = [B A(i)];. The assignment B = A(1) establishes the size
of B as a fixed-size scalar (1 x 1). Therefore, the concatenation of [B A(i)] creates a 1 x
2 vector.

Step 4: Fix the Size Mismatch Error

To fix this error, declare B to be a variable-size vector.

1 Add this statement to the uniquetol function:

coder.varsize('B');

It should appear before B is used (read). For example:

function B = uniquetol(A, tol) %#codegen

 Accelerate Code for Variable-Size Data

13-83

A = sort(A);

coder.varsize('B');

B = A(1);

k = 1;

for i = 2:length(A)

 if abs(A(k) - A(i)) > tol

 B = [B A(i)];

 k = i;

 end

end

The function coder.varsize declares every instance of B in uniquetol to be
variable sized.

2 Generate code again using the same command:

fiaccel -report uniquetol -args {coder.typeof(fi(0,T),[1 100],1),coder.typeof(fi(0,T))}

In the current folder, fiaccel generates a MEX function for uniquetol named
uniquetol_mex and provides a link to the code generation report.

3 Click the View report link.
4 In the code generation report, select the Variables tab.

13 Code Acceleration and Code Generation from MATLAB for Fixed-Point Algorithms

13-84

The size of variable B is 1x:?, indicating that it is variable size with no upper
bounds.

Step 5: Compare Execution Speed of MEX Function to Original Code

Run the original MATLAB algorithm and MEX function with the same inputs for the
same number of loop iterations and compare their execution speeds.

1 Create inputs of the correct class, complexity, and size to pass to the uniquetol
MATLAB and MEX functions.

x = fi(rand(1,90), T);

tol = fi(0, T);

2 Run the original uniquetol function in a loop and time how long it takes to execute
10 iterations of the loop.

tic; for k=1:10, b = uniquetol(x,tol); end; tSim=toc

 Accelerate Code for Variable-Size Data

13-85

3 Run the generated MEX function with the same inputs for the same number of loop
iterations.

tic; for k=1:10, b = uniquetol_mex(x,tol); end; tSim_mex=toc

4 Compare the execution times.

r = tSim/tSim_mex

This example shows that generating a MEX function using fiaccel greatly
accelerates the execution of the fixed-point algorithm.

13 Code Acceleration and Code Generation from MATLAB for Fixed-Point Algorithms

13-86

Accelerate Fixed-Point Simulation

This example shows how to accelerate fixed-point algorithms using fiaccel function.
You generate a MEX function from MATLAB® code, run the generated MEX function,
and compare the execution speed with MATLAB code simulation.

Description of the Example

This example uses a first-order feedback loop. It also uses a quantizer to avoid infinite
bit growth. The output signal is delayed by one sample and fed back to dampen the input
signal.

Copy Required File

You need this MATLAB-file to run this example. Copy it to a temporary directory. This
step requires write-permission to the system's temporary directory.

tempdirObj = fidemo.fiTempdir('fiaccelbasicsdemo');

fiacceldir = tempdirObj.tempDir;

fiaccelsrc = ...

 fullfile(matlabroot,'toolbox','fixedpoint','fidemos','+fidemo','fiaccelFeedback.m');

copyfile(fiaccelsrc,fiacceldir,'f');

Inspect the MATLAB Feedback Function Code

The MATLAB function that performs the feedback loop is in the file
fiaccelFeedback.m. This code quantizes the input, and performs the feedback loop
action :

 Accelerate Fixed-Point Simulation

13-87

type(fullfile(fiacceldir,'fiaccelFeedback.m'))

function [y,w] = fiaccelFeedback(x,a,y,w)

%FIACCELFEEDBACK Quantizer and feedback loop used in FIACCELBASICSDEMO.

% Copyright 1984-2013 The MathWorks, Inc.

%#codegen

for n = 1:length(x)

 y(n) = quantize(x(n) - a*w, true, 16, 12, 'floor', 'wrap');

 w = y(n);

end

The following variables are used in this function:

• x is the input signal vector.
• y is the output signal vector.
• a is the feedback gain.
• w is the unit-delayed output signal.

Create the Input Signal and Initialize Variables

rng('default'); % Random number generator

x = fi(2*rand(1000,1)-1,true,16,15); % Input signal

a = fi(.9,true,16,15); % Feedback gain

y = fi(zeros(size(x)),true,16,12); % Initialize output. Fraction length

 % is chosen to prevent overflow

w = fi(0,true,16,12); % Initialize delayed output

A = coder.Constant(a); % Declare "a" constant for code

 % generation

Run Normal Mode

tic,

y = fiaccelFeedback(x,a,y,w);

t1 = toc;

Build the MEX Version of the Feedback Code

fiaccel fiaccelFeedback -args {x,A,y,w} -o fiaccelFeedback_mex

Run the MEX Version

tic

13 Code Acceleration and Code Generation from MATLAB for Fixed-Point Algorithms

13-88

y2 = fiaccelFeedback_mex(x,y,w);

t2 = toc;

Acceleration Ratio

Code acceleration provides optimizations for accelerating fixed-point algorithms through
MEX file generation. Fixed-Point Designer™ provides a convenience function fiaccel
to convert your MATLAB code to a MEX function, which can greatly accelerate the
execution speed of your fixed-point algorithms.

r = t1/t2

r =

 127.6524

Clean up Temporary Files

clear fiaccelFeedback_mex;

tempdirObj.cleanUp;

 Code Generation Readiness Tool

13-89

Code Generation Readiness Tool

In this section...

“What Information Does the Code Generation Readiness Tool Provide?” on page
13-89
“Summary Tab” on page 13-90
“Code Structure Tab” on page 13-92
“See Also” on page 13-95

What Information Does the Code Generation Readiness Tool Provide?

The code generation readiness tool screens MATLAB code for features and functions
that are not supported for code generation. The tool provides a report that lists the
source files that contain unsupported features and functions. The report also provides
an indication of how much work you must do to make the MATLAB code suitable for
code generation. The tool might not detect all code generation issues. Under certain
circumstances, it might report false errors. Because the tool might not detect all issues,
or might report false errors, generate a MEX function to verify that your code is suitable
for code generation before generating C code.

13 Code Acceleration and Code Generation from MATLAB for Fixed-Point Algorithms

13-90

Summary Tab

The Summary tab provides a Code Generation Readiness Score which ranges from
1 to 5. A score of 1 indicates that the tool has detected issues that require extensive
changes to the MATLAB code to make it suitable for code generation. A score of 5
indicates that the tool has not detected code generation issues; the code is ready to use
with no or minimal changes.

 Code Generation Readiness Tool

13-91

On this tab, the tool also provides information about:

• MATLAB syntax issues. These issues are reported in the MATLAB editor. Use the
code analyzer to learn more about the issues and how to fix them.

• Unsupported MATLAB function calls.
• Unsupported MATLAB language features, such as recursion, cell arrays, and nested

functions.
• Unsupported data types.

13 Code Acceleration and Code Generation from MATLAB for Fixed-Point Algorithms

13-92

Code Structure Tab

If the code that you are checking calls other MATLAB functions, or you are checking
multiple entry-point functions, the tool displays the Code Structure Tab.

This tab provides information about the relative size of each file and how suitable each
file is for code generation.

 Code Generation Readiness Tool

13-93

Code Distribution

The Code Distribution pane provides a pie chart that shows the relative sizes of the
files and how suitable each file is for code generation. This information is useful during
the planning phase of a project for estimation and scheduling purposes. If the report
indicates that there are multiple files not yet suitable for code generation, consider fixing
files that require minor changes before addressing files with significant issues.

Call Tree

The Call Tree pane provides information on the nesting of function calls. For each called
function, the report provides a Code Generation Readiness score which ranges from
1 to 5. A score of 1 indicates that the tool has detected issues that require extensive
changes to the MATLAB code to make it suitable for code generation. A score of 5
indicates that the tool has not detected code generation issues; the code is ready to use
with no or minimal changes. The report also lists the number of lines of code in each file.

Show MATLAB Functions

If you select Show MATLAB Functions, the report also lists the MATLAB functions
called by your function code. For each of these MATLAB functions, if the function is
supported for code generation, the report sets Code Generation Readiness to Yes.

13 Code Acceleration and Code Generation from MATLAB for Fixed-Point Algorithms

13-94

 Code Generation Readiness Tool

13-95

See Also

• “Check Code Using the Code Generation Readiness Tool”

13 Code Acceleration and Code Generation from MATLAB for Fixed-Point Algorithms

13-96

Check Code Using the Code Generation Readiness Tool

Run Code Generation Readiness Tool at the Command Line

1 Navigate to the folder that contains the file that you want to check for code
generation readiness.

2 At the MATLAB command prompt, enter:

coder.screener('filename')

The Code Generation Readiness tool opens for the file named filename, provides
a code generation readiness score, and lists issues that must be fixed prior to code
generation.

Run the Code Generation Readiness Tool From the Current Folder Browser

1 In the current folder browser, right-click the file that you want to check for code
generation readiness.

2 From the context menu, select Check Code Generation Readiness.

The Code Generation Readiness tool opens for the selected file and provides a
code generation readiness score and lists issues that must be fixed prior to code
generation.

See Also

• “Code Generation Readiness Tool” on page 13-89

 Check Code Using the MATLAB Code Analyzer

13-97

Check Code Using the MATLAB Code Analyzer

The code analyzer checks your code for problems and recommends modifications. You can
use the code analyzer to check your code interactively in the MATLAB Editor while you
work.

To verify that continuous code checking is enabled:

1 In MATLAB, select the Home tab and then click Preferences.
2 In the Preferences dialog box, select Code Analyzer.
3 In the Code Analyzer Preferences pane, verify that Enable integrated warning

and error messages is selected.

13 Code Acceleration and Code Generation from MATLAB for Fixed-Point Algorithms

13-98

Fix Errors Detected at Code Generation Time

When the code generation software detects errors or warnings, it automatically generates
an error report. The error report describes the issues and provides links to the MATLAB
code with errors.

To fix the errors, modify your MATLAB code to use only those MATLAB features that
are supported for code generation. For more information, see “Algorithm Design Basics”.
Choose a debugging strategy for detecting and correcting code generation errors in your
MATLAB code. For more information, see “Debugging Strategies”.

When code generation is complete, the software generates a MEX function that you can
use to test your implementation in MATLAB.

If your MATLAB code calls functions on the MATLAB path, unless the code generation
software determines that these functions should be extrinsic or you declare them to be
extrinsic, it attempts to compile these functions. See “Resolution of Function Calls for
Code Generation”. To get detailed diagnostics, add the %#codegen directive to each
external function that you want codegen to compile.

See Also

• “Use Fixed-Point Code Generation Reports”
• “Why Test MEX Functions in MATLAB?”
• “When to Generate Code from MATLAB Algorithms”
• “Debugging Strategies”
• “Declaring MATLAB Functions as Extrinsic Functions”

 Avoid Multiword Operations in Generated Code

13-99

Avoid Multiword Operations in Generated Code

This example shows how to avoid multiword operations in generated code by using the
accumpos function instead of simple addition in your MATLAB algorithm. Similarly, you
can use accumneg for subtraction.

This example requires a MATLAB Coder license.

Write a simple MATLAB algorithm that adds two numbers and returns the result.

function y = my_add1(a, b)

y = a+b;

Write a second MATLAB algorithm that adds two numbers using accumpos and returns
the result.

function y = my_add2(a, b)

y = accumpos(a, b); % floor, wrap

accumpos adds a and b using the data type of a. b is cast into the data type of a. If a is
a fi object, by default, accumpos sets the rounding mode to 'Floor' and the overflow
action to 'Wrap'. It ignores the fimath properties of a and b.

Compare the outputs of the two functions in MATLAB.

a = fi(1.25, 1, 32,5);

b = fi(0.125, 0, 32);

%%

y1 = my_add1(a, b)

y2 = my_add2(a, b)

y1 =

 1.3750

 DataTypeMode: Fixed-point: binary point scaling

 Signedness: Signed

 WordLength: 62

 FractionLength: 34

y2 =

 1.3750

13 Code Acceleration and Code Generation from MATLAB for Fixed-Point Algorithms

13-100

 DataTypeMode: Fixed-point: binary point scaling

 Signedness: Signed

 WordLength: 32

 FractionLength: 5

For the simple addition, the word length grows but using accumpos, the word length of
the result is the same as that of a.

Generate C code for the function my_add1. First, disable use of the long long data type
because it is not usually supported by the target hardware.

hw = coder.HardwareImplementation;

hw.ProdHWDeviceType = 'Generic->32-bit Embedded Processor';

hw.ProdLongLongMode = false;

hw.ProdBitPerLong = 32;

cfg = coder.config('lib');

cfg.HardwareImplementation = hw;

codegen my_add1 -args {a,b} -report -config cfg

MATLAB Coder generates a C static library and provides a link to the code generation
report.

View the generated code for the simple addition. Click the View report link to open the
code generation report and then scroll to the code for the my_add1 function.

/* Function Declarations */

static void MultiWordAdd(const unsigned long u1[], const unsigned long u2[],

 unsigned long y[], int n);

static void MultiWordSignedWrap(const unsigned long u1[], int n1, unsigned int

 n2, unsigned long y[]);

static void sLong2MultiWord(long u, unsigned long y[], int n);

static void sMultiWord2MultiWord(const unsigned long u1[], int n1, unsigned long

 y[], int n);

static void sMultiWord2sMultiWordSat(const unsigned long u1[], int n1, unsigned

 long y[], int n);

static void sMultiWordShl(const unsigned long u1[], int n1, unsigned int n2,

 unsigned long y[], int n);

static void sMultiWordShr(const unsigned long u1[], int n1, unsigned int n2,

 unsigned long y[], int n);

static void uLong2MultiWord(unsigned long u, unsigned long y[], int n);

The generated C code contains multiple multiword operations.

Generate C code for the function my_add2.

 Avoid Multiword Operations in Generated Code

13-101

codegen my_add2 -args {a,b} -report -config cfg

View the generated code for the addition using accumpos. Click the View report link
to open the code generation report and then scroll to the code for the my_add2 function.

int my_add2(int a, unsigned int b)

{

 int y;

 y = a + (int)(b >> 29);

 /* floor, wrap */

 return y;

}

For this function, the generated code contains no multiword operations.

13 Code Acceleration and Code Generation from MATLAB for Fixed-Point Algorithms

13-102

Find Potential Data Type Issues in Generated Code

In this section...

“Data Type Issues Overview” on page 13-102
“Enable Highlighting of Potential Data Type Issues” on page 13-102
“Find and Address Cumbersome Operations” on page 13-103
“Find and Address Expensive Rounding” on page 13-105
“Find and Address Expensive Comparison Operations” on page 13-106

Data Type Issues Overview

When you convert MATLAB code to fixed point, you can highlight potential data type
issues in the generated HTML report. The report highlights MATLAB code that requires
single-precision, double-precision, or expensive fixed-point operations.

• The double-precision check highlights expressions that result in a double-precision
operation. Manual inspection of code to find unwanted doubles can be time-consuming
and error prone.

• The single-precision check highlights expressions that result in a single operation.
• The expensive fixed-point operations check identifies optimization opportunities

for fixed-point code. It highlights expressions in the MATLAB code that require
cumbersome multiplication or division, or expensive rounding. For more information
on optimizing generated fixed-point code, see “Tips for Making Generated Code More
Efficient”.

Enable Highlighting of Potential Data Type Issues

Procedure 13.9. Enable the highlight option using the Fixed-Point Converter app

1 On the Convert to Fixed Point page, click the Settings arrow .
2 Under Plotting and Reporting, set Highlight potential data type issues to

Yes.

When conversion is complete, open the fixed-point conversion HTML report to view the
highlighting. Click View report in the Type Validation Output tab.

 Find Potential Data Type Issues in Generated Code

13-103

Procedure 13.10. Enable the highlight option using the command-line interface

1 Create a fixed-point code configuration object:

fixptcfg = coder.config('fixpt');

2 Set the HighlightPotentialDataTypeIssues property of the configuration object
to true.

fixptcfg.HighlightPotentialDataTypeIssues = true;

Find and Address Cumbersome Operations

Cumbersome operations usually occur due to an insufficient range of output. Avoid
inputs to a multiply or divide operation that have word lengths larger than the base
integer type of your processor. Software can process operations with larger word lengths,
but this approach requires more code and runs slower.

This example requires Embedded Coder® and Fixed-Point Designer licenses to run.

1 Create the function myMul.

function out = myMul(in1, in2)

 out = in1 * in2;

end

2 Generate code for myMul.

cfg = coder.config('lib');

cfg.GenerateReport = true;

cfg.HighlightPotentialDataTypeIssues = true;

codegen -config cfg myMul -args {fi(1, 1, 33, 4), fi(1, 1, 32, 4)}

3 Click View report.
4 In the Code Generation Report, on the left pane, click the MATLAB code tab.
5 Expand the Highlight section and select the Expensive fixed-point operations

check box.

13 Code Acceleration and Code Generation from MATLAB for Fixed-Point Algorithms

13-104

The in1 * in2 operation is highlighted in the HTML report. On the bottom pane,
click the Variables tab. The word length of in1 is 33, and the word length of in2
is 32. Hovering over the highlighted expression reveals that the product has a
word length of 65, which is larger than the target word length of 64. Therefore, the
software detects a cumbersome operation.

To resolve this issue, modify the data types of in1 and in2 so the word length of the
product does not exceed the target word length.

 Find Potential Data Type Issues in Generated Code

13-105

Find and Address Expensive Rounding

Traditional handwritten code, especially for control applications, almost always uses
"no effort" rounding. For example, for unsigned integers and two's complement signed
integers, shifting right and dropping the bits is equivalent to rounding to floor. To get
results comparable to, or better than, what you expect from traditional handwritten code,
use the floor rounding method.

This example requires Embedded Coder and Fixed-Point Designer licenses to run.

1 Create the function myRounding.

function [quot] = myRounding(in1, in2)

 quot = in1 / in2;

end

2 Generate code for myRounding.

cfg = coder.config('lib');

cfg.GenerateReport = true;

cfg.HighlightPotentialDataTypeIssues = true;

codegen -config cfg myRounding -args {fi(1, 1, 32, 2), fi(1, 1, 32, 4)}

3 Click View report.
4 In the Code Generation Report, on the left pane, click the MATLAB code tab.
5 Expand the Highlight section and select the Expensive fixed-point operations

check box.

13 Code Acceleration and Code Generation from MATLAB for Fixed-Point Algorithms

13-106

This division operation uses the default rounding method, nearest. Changing the
rounding method to Floor provides a more efficient implementation.

Find and Address Expensive Comparison Operations

Comparison operations generate extra code when a casting operation is required to do
the comparison. For example, before comparing an unsigned integer to a signed integer,
one of the inputs must be cast to the signedness of the other. Consider optimizing the
data types of the input arguments so that a cast is not required in the generated code.

This example requires Embedded Coder and Fixed-Point Designer licenses to run.

 Find Potential Data Type Issues in Generated Code

13-107

1 Create the function myRelop.

function out = myRelop(in1, in2)

 out = in1 > in2;

end

2 Generate code for myRelop.

cfg = coder.config('lib');

cfg.GenerateReport = true;

cfg.HighlightPotentialDataTypeIssues = true;

codegen -config cfg myRelop -args {fi(1, 1, 32, 1.5, 9, 17), fi(1, 0, 32, 16)}

3 Click View report.
4 In the Code Generation Report, on the left pane, click the MATLAB code tab.
5 Expand the Highlight section and select the Expensive fixed-point operations

check box.

13 Code Acceleration and Code Generation from MATLAB for Fixed-Point Algorithms

13-108

The first input argument, in1, is signed with slope bias scaling, while in2 is
unsigned with binary point scaling. Extra code is generated because a cast must
occur before the two inputs can be compared.

Change the signedness and scaling of one of the inputs to generate more efficient
code.

14

Interoperability with Other Products

• “fi Objects with Simulink” on page 14-2
• “fi Objects with DSP System Toolbox” on page 14-8
• “Ways to Generate Code” on page 14-13

14 Interoperability with Other Products

14-2

fi Objects with Simulink

In this section...

“Reading Fixed-Point Data from the Workspace” on page 14-2
“Writing Fixed-Point Data to the Workspace” on page 14-2
“Setting the Value and Data Type of Block Parameters” on page 14-6
“Logging Fixed-Point Signals” on page 14-6
“Accessing Fixed-Point Block Data During Simulation” on page 14-6

Reading Fixed-Point Data from the Workspace

You can read fixed-point data from the MATLAB workspace into a Simulink model via
the From Workspace block. To do so, the data must be in a structure format with a fi
object in the values field. In array format, the From Workspace block only accepts real,
double-precision data.

To read in fi data, the Interpolate data parameter of the From Workspace block must
not be selected, and the Form output after final data value by parameter must be set
to anything other than Extrapolation.

Writing Fixed-Point Data to the Workspace

You can write fixed-point output from a model to the MATLAB workspace via the To
Workspace block in either array or structure format. Fixed-point data written by a To
Workspace block to the workspace in structure format can be read back into a Simulink
model in structure format by a From Workspace block.

Note To write fixed-point data to the MATLAB workspace as a fi object, select the Log
fixed-point data as a fi object check box on the To Workspace block dialog. Otherwise,
fixed-point data is converted to double and written to the workspace as double.

 fi Objects with Simulink

14-3

For example, you can use the following code to create a structure in the MATLAB
workspace with a fi object in the values field. You can then use the From Workspace
block to bring the data into a Simulink model.

a = fi([sin(0:10)' sin(10:-1:0)'])

a =

 0 -0.5440

 0.8415 0.4121

 0.9093 0.9893

 0.1411 0.6570

 -0.7568 -0.2794

 -0.9589 -0.9589

 -0.2794 -0.7568

 0.6570 0.1411

 0.9893 0.9093

 0.4121 0.8415

 -0.5440 0

 DataTypeMode: Fixed-point: binary point scaling

 Signedness: Signed

 WordLength: 16

 FractionLength: 15

s.signals.values = a

s =

 signals: [1x1 struct]

s.signals.dimensions = 2

s =

 signals: [1x1 struct]

s.time = [0:10]'

s =

 signals: [1x1 struct]

 time: [11x1 double]

14 Interoperability with Other Products

14-4

The From Workspace block in the following model has the fi structure s in the Data
parameter.

Remember, to write fixed-point data to the MATLAB workspace as a fi object, select
the Log fixed-point data as a fi object check box on the To Workspace block dialog.
Otherwise, fixed-point data is converted to double and written to the workspace as
double.

In the model, the following parameters in the Solver pane of the Model Configuration
Parameters dialog have the indicated settings:

• Start time — 0.0
• Stop time — 10.0
• Type — Fixed-step
• Solver — Discrete (no continuous states)
• Fixed step size (fundamental sample time) — 1.0

 fi Objects with Simulink

14-5

The To Workspace block writes the result of the simulation to the MATLAB workspace as
a fi structure.

simout.signals.values

ans =

 0 -8.7041

 13.4634 6.5938

 14.5488 15.8296

 2.2578 10.5117

 -12.1089 -4.4707

 -15.3428 -15.3428

 -4.4707 -12.1089

 10.5117 2.2578

 15.8296 14.5488

14 Interoperability with Other Products

14-6

 6.5938 13.4634

 -8.7041 0

DataTypeMode: Fixed-point: binary point scaling

 Signedness: Signed

 WordLength: 32

 FractionLength: 25

Setting the Value and Data Type of Block Parameters

You can use Fixed-Point Designer expressions to specify the value and data type of block
parameters in Simulink. Refer to “Block Support for Data and Signal Types” in the
Simulink documentation for more information.

Logging Fixed-Point Signals

When fixed-point signals are logged to the MATLAB workspace via signal logging, they
are always logged as fi objects.

To enable signal logging for a signal:

1 Select the signal.
2 Open the Record dropdown.
3 Select Log/Unlog Selected Signals.

For more information, refer to “Export Signal Data Using Signal Logging” in the
Simulink documentation.

When you log signals from a referenced model or Stateflow® chart in your model, the
word lengths of fi objects may be larger than you expect. The word lengths of fixed-point
signals in referenced models and Stateflow charts are logged as the next largest data
storage container size.

Accessing Fixed-Point Block Data During Simulation

Simulink provides an application program interface (API) that enables programmatic
access to block data, such as block inputs and outputs, parameters, states, and work
vectors, while a simulation is running. You can use this interface to develop MATLAB

 fi Objects with Simulink

14-7

programs capable of accessing block data while a simulation is running or to access the
data from the MATLAB command line. Fixed-point signal information is returned to you
via this API as fi objects. For more information on the API, refer to “Accessing Block
Data During Simulation” in the Simulink documentation.

14 Interoperability with Other Products

14-8

fi Objects with DSP System Toolbox

In this section...

“Reading Fixed-Point Signals from the Workspace” on page 14-8
“Writing Fixed-Point Signals to the Workspace” on page 14-8
“fi Objects with dfilt Objects” on page 14-12

Reading Fixed-Point Signals from the Workspace

You can read fixed-point data from the MATLAB workspace into a Simulink model
using the Signal From Workspace and Triggered Signal From Workspace blocks from
DSP System Toolbox software. Enter the name of the defined fi variable in the Signal
parameter of the Signal From Workspace or Triggered Signal From Workspace block.

Writing Fixed-Point Signals to the Workspace

Fixed-point output from a model can be written to the MATLAB workspace via the To
Workspace or Triggered To Workspace block from the blockset. The fixed-point data is
always written as a 2-D or 3-D array.

Note To write fixed-point data to the MATLAB workspace as a fi object, select the Log
fixed-point data as a fi object check box on the Signal To Workspace or Triggered To
Workspace block dialog. Otherwise, fixed-point data is converted to double and written
to the workspace as double.

 fi Objects with DSP System Toolbox

14-9

For example, you can use the following code to create a fi object in the MATLAB
workspace. You can then use the Signal From Workspace block to bring the data into a
Simulink model.

a = fi([sin(0:10)' sin(10:-1:0)'])

a =

 0 -0.5440

 0.8415 0.4121

 0.9093 0.9893

 0.1411 0.6570

 -0.7568 -0.2794

 -0.9589 -0.9589

 -0.2794 -0.7568

 0.6570 0.1411

 0.9893 0.9093

 0.4121 0.8415

 -0.5440 0

 DataTypeMode: Fixed-point: binary point scaling

 Signedness: Signed

 WordLength: 16

 FractionLength: 15

The Signal From Workspace block in the following model has these settings:

• Signal — a
• Sample time — 1
• Samples per frame — 2
• Form output after final data value by — Setting to zero

The following parameters in the Solver pane of the Model Configuration Parameters
dialog have these settings:

• Start time — 0.0
• Stop time — 10.0
• Type — Fixed-step
• Solver — Discrete (no continuous states)

14 Interoperability with Other Products

14-10

• Fixed step size (fundamental sample time) — 1.0

Remember, to write fixed-point data to the MATLAB workspace as a fi object, select
the Log fixed-point data as a fi object check box on the Signal To Workspace block
dialog. Otherwise, fixed-point data is converted to double and written to the workspace
as double.

The Signal To Workspace block writes the result of the simulation to the MATLAB
workspace as a fi object.

yout =

(:,:,1) =

 fi Objects with DSP System Toolbox

14-11

 0.8415 -0.1319

 -0.8415 -0.9561

(:,:,2) =

 1.0504 1.6463

 0.7682 0.3324

(:,:,3) =

 -1.7157 -1.2383

 0.2021 0.6795

(:,:,4) =

 0.3776 -0.6157

 -0.9364 -0.8979

(:,:,5) =

 1.4015 1.7508

 0.5772 0.0678

(:,:,6) =

 -0.5440 0

 -0.5440 0

14 Interoperability with Other Products

14-12

 DataTypeMode: Fixed-point: binary point scaling

 Signedness: Signed

 WordLength: 17

 FractionLength: 15

fi Objects with dfilt Objects

When the Arithmetic property is set to 'fixed', you can use an existing fi object as
the input, states, or coefficients of a dfilt object in DSP System Toolbox software. Also,
fixed-point filters in the toolbox return fi objects as outputs. Refer to the DSP System
Toolbox software documentation for more information.

 Ways to Generate Code

14-13

Ways to Generate Code

There are several ways to use Fixed-Point Designer software to generate code:

• The Fixed-Point Designer fiaccel function converts your fixed-point MATLAB code
to a MEX function and can greatly accelerate the execution speed of your fixed-point
algorithms.

• The MATLAB Coder codegen function automatically converts MATLAB code to C/C
++ code. Using the MATLAB Coder software allows you to accelerate your MATLAB
code that uses Fixed-Point Designer software. To use the codegen function with
Fixed-Point Designer software, you also need to have a MATLAB Coder license. For
more information, see “C Code Generation at the Command Line” in the MATLAB
Coder documentation.

• The MATLAB Function block allows you to use MATLAB code in your Simulink
models that generate embeddable C/C++ code. To use the MATLAB Function block
with Fixed-Point Designer software, you also need a Simulink license. For more
information on the MATLAB Function block, see the Simulink documentation.

15

Calling Functions for Code Generation

• “Resolution of Function Calls for Code Generation” on page 15-2
• “Resolution of File Types on Code Generation Path” on page 15-6
• “Compilation Directive %#codegen” on page 15-8
• “Call Local Functions” on page 15-9
• “Call Supported Toolbox Functions” on page 15-10
• “Call MATLAB Functions” on page 15-11

15 Calling Functions for Code Generation

15-2

Resolution of Function Calls for Code Generation

From a MATLAB function, you can call local functions, supported toolbox functions,
and other MATLAB functions. MATLAB resolves function names for code generation as
follows:

 Resolution of Function Calls for Code Generation

15-3

Subfunction?

Function
on the code
generation

path?

Function
on

MATLAB
path?

Extrinsic
function?

Function
on

MATLAB
path?

YesYes
Dispatch to
MATLAB

for execution
at runtime

No

No

No

Yes

Suitable
for code

 generation?

Yes

Yes

Yes

Generate

C code

Start

Generate error

No

No

No

15 Calling Functions for Code Generation

15-4

Key Points About Resolving Function Calls

The diagram illustrates key points about how MATLAB resolves function calls for code
generation:

• Searches two paths, the code generation path and the MATLAB path

See “Compile Path Search Order” on page 15-4.
• Attempts to compile functions unless the code generation software determines that it

should not compile them or you explicitly declare them to be extrinsic.

If a MATLAB function is not supported for code generation, you can declare it to
be extrinsic by using the construct coder.extrinsic, as described in “Declaring
MATLAB Functions as Extrinsic Functions”. During simulation, the code generation
software generates code for the call to an extrinsic function, but does not generate
the function's internal code. Therefore, simulation can run only on platforms where
MATLAB software is installed. During standalone code generation, MATLAB
attempts to determine whether the extrinsic function affects the output of the
function in which it is called — for example by returning mxArrays to an output
variable. Provided that the output does not change, MATLAB proceeds with code
generation, but excludes the extrinsic function from the generated code. Otherwise,
compilation errors occur.

The code generation software detects calls to many common visualization functions,
such as plot, disp, and figure. The software treats these functions like extrinsic
functions but you do not have to declare them extrinsic using the coder.extrinsic
function.

• Resolves file type based on precedence rules described in “Resolution of File Types on
Code Generation Path” on page 15-6

Compile Path Search Order

During code generation, function calls are resolved on two paths:

1 Code generation path

MATLAB searches this path first during code generation. The code generation path
contains the toolbox functions supported for code generation.

2 MATLAB path

 Resolution of Function Calls for Code Generation

15-5

If the function is not on the code generation path, MATLAB searches this path.

MATLAB applies the same dispatcher rules when searching each path (see “Function
Precedence Order”).

When to Use the Code Generation Path

Use the code generation path to override a MATLAB function with a customized version.
A file on the code generation path shadows a file of the same name on the MATLAB path.

15 Calling Functions for Code Generation

15-6

Resolution of File Types on Code Generation Path

MATLAB uses the following precedence rules for code generation:

 Resolution of File Types on Code Generation Path

15-7

MEX-file?

MDL-file?

P-file?

M-file and
MEX-file in same

directory?

Yes

No

No

No

Yes

M-file?

Yes

Yes

Start

No

Compile
M-file

Generate
error

YesNo

15 Calling Functions for Code Generation

15-8

Compilation Directive %#codegen

Add the %#codegen directive (or pragma) to your function after the function signature
to indicate that you intend to generate code for the MATLAB algorithm. Adding this
directive instructs the MATLAB code analyzer to help you diagnose and fix violations
that would result in errors during code generation.

function y = my_fcn(x) %#codegen

....

 Call Local Functions

15-9

Call Local Functions

Local functions are functions defined in the body of MATLAB function. They work the
same way for code generation as they do when executing your algorithm in the MATLAB
environment.

The following example illustrates how to define and call a local function mean:

function [mean, stdev] = stats(vals)

%#codegen

% Calculates a statistical mean and a standard

% deviation for the values in vals.

len = length(vals);

mean = avg(vals, len);

stdev = sqrt(sum(((vals-avg(vals,len)).^2))/len);

plot(vals,'-+');

function mean = avg(array,size)

mean = sum(array)/size;

15 Calling Functions for Code Generation

15-10

Call Supported Toolbox Functions

You can call toolbox functions directly if they are supported for code generation. For a
list of supported functions, see “Functions and Objects Supported for C and C++ Code
Generation — Alphabetical List” on page 25-2.

 Call MATLAB Functions

15-11

Call MATLAB Functions

The code generation software attempts to generate code for functions, even if they
are not supported for C code generation. The software detects calls to many common
visualization functions, such as plot, disp, and figure. The software treats these
functions like extrinsic functions but you do not have to declare them extrinsic using
coder.extrinsic. During simulation, the code generation software generates code
for these functions, but does not generate their internal code. During standalone code
generation, MATLAB attempts to determine whether the visualization function affects
the output of the function in which it is called. Provided that the output does not change,
MATLAB proceeds with code generation, but excludes the visualization function from the
generated code. Otherwise, compilation errors occur.

For example, you might want to call plot to visualize your results in the MATLAB
environment. If you generate a MEX function from a function that calls plot and then
run the generated MEX function, the code generation software dispatches calls to the
plot function to MATLAB. If you generate a library or executable, the generated code
does not contain calls to the plot function. The code generation report highlights calls
from your MATLAB code to extrinsic functions so that it is easy to determine which
functions are supported only in the MATLAB environment.

For unsupported functions other than common visualization functions, you must declare
the functions (like pause) to be extrinsic (see “Resolution of Function Calls for Code
Generation” on page 15-2). Extrinsic functions are not compiled, but instead executed in
MATLAB during simulation (see “How MATLAB Resolves Extrinsic Functions During
Simulation” on page 15-16).

There are two ways to declare a function to be extrinsic:

15 Calling Functions for Code Generation

15-12

• Use the coder.extrinsic construct in main functions or local functions (see
“Declaring MATLAB Functions as Extrinsic Functions” on page 15-12).

• Call the function indirectly using feval (see “Calling MATLAB Functions Using
feval” on page 15-16).

Declaring MATLAB Functions as Extrinsic Functions

To declare a MATLAB function to be extrinsic, add the coder.extrinsic construct at
the top of the main function or a local function:

coder.extrinsic('function_name_1', ... , 'function_name_n');

Declaring Extrinsic Functions

The following code declares the MATLAB patch function extrinsic in the local function
create_plot:

function c = pythagoras(a,b,color) %#codegen

% Calculates the hypotenuse of a right triangle

% and displays the triangle.

c = sqrt(a^2 + b^2);

create_plot(a, b, color);

function create_plot(a, b, color)

%Declare patch and axis as extrinsic

coder.extrinsic('patch');

x = [0;a;a];

y = [0;0;b];

patch(x, y, color);

axis('equal');

The code generation software detects that axis is not supported for code generation and
automatically treats it as an extrinsic function. The compiler does not generate code for
patch and axis, but instead dispatches them to MATLAB for execution.

To test the function, follow these steps:

1 Convert pythagoras to a MEX function by executing this command at the MATLAB
prompt:

 Call MATLAB Functions

15-13

codegen -report pythagoras -args {1, 1, [.3 .3 .3]}

2 Click the link to the code generation report and then, in the report, view the
MATLAB code for create_plot.

The report highlights the patch and axis functions to indicate that they are
supported only within the MATLAB environment.

3 Run the MEX function by executing this command:

pythagoras_mex(3, 4, [1.0 0.0 0.0]);

MATLAB displays a plot of the right triangle as a red patch object:

15 Calling Functions for Code Generation

15-14

When to Use the coder.extrinsic Construct

Use the coder.extrinsic construct to:

• Call MATLAB functions that do not produce output — such as pause — during
simulation, without generating unnecessary code (see “How MATLAB Resolves
Extrinsic Functions During Simulation” on page 15-16).

• Make your code self-documenting and easier to debug. You can scan the source code
for coder.extrinsic statements to isolate calls to MATLAB functions, which can
potentially create and propagate mxArrays (see “Working with mxArrays” on page
15-17).

 Call MATLAB Functions

15-15

• Save typing. With one coder.extrinsic statement, each subsequent function call
is extrinsic, as long as the call and the statement are in the same scope (see “Scope of
Extrinsic Function Declarations” on page 15-15).

• Declare the MATLAB function(s) extrinsic throughout the calling function scope (see
“Scope of Extrinsic Function Declarations” on page 15-15). To narrow the scope,
use feval (see “Calling MATLAB Functions Using feval” on page 15-16).

Rules for Extrinsic Function Declarations

Observe the following rules when declaring functions extrinsic for code generation:

• Declare the function extrinsic before you call it.
• Do not use the extrinsic declaration in conditional statements.

Scope of Extrinsic Function Declarations

The coder.extrinsic construct has function scope. For example, consider the following
code:

function y = foo %#codegen

coder.extrinsic('rat','min');

[N D] = rat(pi);

y = 0;

y = min(N, D);

In this example, rat and min as treated as extrinsic every time they are called in the
main function foo. There are two ways to narrow the scope of an extrinsic declaration
inside the main function:

• Declare the MATLAB function extrinsic in a local function, as in this example:

function y = foo %#codegen

coder.extrinsic('rat');

[N D] = rat(pi);

y = 0;

y = mymin(N, D);

function y = mymin(a,b)

coder.extrinsic('min');

y = min(a,b);

Here, the function rat is extrinsic every time it is called inside the main function
foo, but the function min is extrinsic only when called inside the local function
mymin.

15 Calling Functions for Code Generation

15-16

• Call the MATLAB function using feval, as described in “Calling MATLAB Functions
Using feval” on page 15-16.

Calling MATLAB Functions Using feval

The function feval is automatically interpreted as an extrinsic function during code
generation. Therefore, you can use feval to conveniently call functions that you want to
execute in the MATLAB environment, rather than compiled to generated code.

Consider the following example:

function y = foo

coder.extrinsic('rat');

[N D] = rat(pi);

y = 0;

y = feval('min', N, D);

Because feval is extrinsic, the statement feval('min', N, D) is evaluated by
MATLAB — not compiled — which has the same result as declaring the function min
extrinsic for just this one call. By contrast, the function rat is extrinsic throughout the
function foo.

How MATLAB Resolves Extrinsic Functions During Simulation

MATLAB resolves calls to extrinsic functions — functions that do not support code
generation — as follows:

 Call MATLAB Functions

15-17

During simulation, MATLAB generates code for the call to an extrinsic function, but does
not generate the function's internal code. Therefore, you can run the simulation only on
platforms where you install MATLAB software.

During code generation, MATLAB attempts to determine whether the extrinsic function
affects the output of the function in which it is called — for example by returning
mxArrays to an output variable (see “Working with mxArrays” on page 15-17).
Provided that the output does not change, MATLAB proceeds with code generation, but
excludes the extrinsic function from the generated code. Otherwise, MATLAB issues a
compiler error.

Working with mxArrays

The output of an extrinsic function is an mxArray — also called a MATLAB array. The
only valid operations for mxArrays are:

• Storing mxArrays in variables

15 Calling Functions for Code Generation

15-18

• Passing mxArrays to functions and returning them from functions
• Converting mxArrays to known types at run time

To use mxArrays returned by extrinsic functions in other operations, you must first
convert them to known types, as described in “Converting mxArrays to Known Types” on
page 15-18.

Converting mxArrays to Known Types

To convert an mxArray to a known type, assign the mxArray to a variable whose type is
defined. At run time, the mxArray is converted to the type of the variable assigned to it.
However, if the data in the mxArray is not consistent with the type of the variable, you
get a run-time error.

For example, consider this code:

function y = foo %#codegen

coder.extrinsic('rat');

[N D] = rat(pi);

y = min(N, D);

Here, the top-level function foo calls the extrinsic MATLAB function rat, which returns
two mxArrays representing the numerator N and denominator D of the rational fraction
approximation of pi. Although you can pass these mxArrays to another MATLAB
function — in this case, min — you cannot assign the mxArray returned by min to the
output y.

If you run this function foo in a MATLAB Function block in a Simulink model, the code
generates the following error during simulation:

Function output 'y' cannot be of MATLAB type.

To fix this problem, define y to be the type and size of the value that you expect min to
return — in this case, a scalar double — as follows:

function y = foo %#codegen

coder.extrinsic('rat');

[N D] = rat(pi);

y = 0; % Define y as a scalar of type double

y = min(N,D);

 Call MATLAB Functions

15-19

Restrictions on Extrinsic Functions for Code Generation

The full MATLAB run-time environment is not supported during code generation.
Therefore, the following restrictions apply when calling MATLAB functions extrinsically:

• MATLAB functions that inspect the caller, or read or write to the caller's workspace
do not work during code generation. Such functions include:

• dbstack

• evalin

• assignin

• save

• The MATLAB debugger cannot inspect variables defined in extrinsic functions.
• Functions in generated code may produce unpredictable results if your extrinsic

function performs the following actions at run time:

• Change folders
• Change the MATLAB path
• Delete or add MATLAB files
• Change warning states
• Change MATLAB preferences
• Change Simulink parameters

Limit on Function Arguments

You can call functions with up to 64 inputs and 64 outputs.

16

Code Generation for MATLAB Classes

• “MATLAB Classes Definition for Code Generation” on page 16-2
• “Classes That Support Code Generation” on page 16-7
• “Generate Code for MATLAB Value Classes” on page 16-8
• “Generate Code for MATLAB Handle Classes and System Objects” on page 16-13
• “MATLAB Classes in Code Generation Reports” on page 16-15
• “Troubleshooting Issues with MATLAB Classes” on page 16-18

16 Code Generation for MATLAB Classes

16-2

MATLAB Classes Definition for Code Generation

To generate efficient standalone code for MATLAB classes, you must use classes
differently than when running your code in the MATLAB environment.

What’s Different More Information

Class must be in a single file. Because
of this limitation, code generation is not
supported for a class definition that uses an
@-folder.

“Creating a Single, Self-Contained Class
Definition File”

Restricted set of language features. “Language Limitations” on page 16-2
Restricted set of code generation features. “Code Generation Features Not Compatible

with Classes” on page 16-3
Definition of class properties. “Defining Class Properties for Code

Generation” on page 16-4
Use of handle classes. “Generate Code for MATLAB Handle

Classes and System Objects” on page
16-13

Calls to base class constructor. “Calls to Base Class Constructor” on page
16-5

Global variables containing MATLAB
objects are not supported for code
generation.

N/A

Inheritance from built-in MATLAB classes
is not supported.

“Inheritance from Built-In MATLAB
Classes Not Supported” on page 16-6

Language Limitations

Although code generation support is provided for common features of classes such
as properties and methods, there are a number of advanced features which are not
supported, such as:

• Events
• Listeners
• Arrays of objects

 MATLAB Classes Definition for Code Generation

16-3

• Recursive data structures

• Linked lists
• Trees
• Graphs

• Overloadable operators subsref, subsassign, and subsindex

In MATLAB, classes can define their own versions of the subsref, subsassign, and
subsindex methods. Code generation does not support classes that have their own
definitions of these methods.

• The empty method

In MATLAB, classes have a built-in static method, empty, which creates an empty
array of the class. Code generation does not support this method.

• The following MATLAB handle class methods:

• addlistener

• delete

• eq

• findobj

• findpro

• The AbortSet property attribute

Code Generation Features Not Compatible with Classes

• You can generate code for entry-point MATLAB functions that use classes, but you
cannot generate code directly for a MATLAB class.

For example, if ClassNameA is a class definition, you cannot generate code by
executing:

codegen ClassNameA

• If an entry-point MATLAB function has an input or output that is a MATLAB class,
you cannot generate code for this function.

For example, if function foo takes one input, a, that is a MATLAB object, you cannot
generate code for foo by executing:

16 Code Generation for MATLAB Classes

16-4

codegen foo -args {a}

• Code generation does not support assigning an object of a value class into a
nontunable property. For example, obj.prop=v; is invalid when prop is a
nontunable property and v is an object based on a value class.

• You cannot use coder.extrinsic to declare a class or method as extrinsic.
• You cannot pass a MATLAB class to the function.
• If you use classes in code in the MATLAB Function block, you cannot use the

debugger to view class information.
• The coder.nullcopy function does not support MATLAB classes as inputs.

Defining Class Properties for Code Generation

For code generation, you must define class properties differently than you normally
would when running your code in the MATLAB environment:

• After defining a property, do not assign it an incompatible type. Do not use a property
before attempting to grow it.

When you define class properties for code generation, consider the same factors that
you take into account when defining variables. In the MATLAB language, variables
can change their class, size, or complexity dynamically at run time so you can use
the same variable to hold a value of varying class, size, or complexity. C and C++ use
static typing. Before using variables, to determine their type, the code generation
software requires a complete assignment to each variable. Similarly, before using
properties, you must explicitly define their class, size, and complexity.

• Initial values:

• If the property does not have an explicit initial value, the code generation software
assumes that it is undefined at the beginning of the constructor. The code
generation software does not assign an empty matrix as the default.

• If the property does not have an initial value and the code generation software
cannot determine that the property is assigned prior to first use, the software
generates a compilation error.

• For System objects, if a nontunable property is a structure, you must completely
assign the structure. You cannot do partial assignment using subscripting.

For example, for a nontunable property, you can use the following assignment:

 MATLAB Classes Definition for Code Generation

16-5

mySystemObject.nonTunableProperty=struct('fieldA','a','fieldB','b');

You cannot use the following partial assignments:

mySystemObject.nonTunableProperty.fieldA = a;

mySystemObject.nonTunableProperty.fieldB = b;

• If dynamic memory allocation is enabled, code generation supports variable-size
properties for handle classes. Without dynamic memory allocation, you cannot
generate code for handle classes that have variable-size properties.

• coder.varsize is not supported for class properties.
• MATLAB computes class initial values at class loading time before code generation.

If you use persistent variables in MATLAB class property initialization, the value of
the persistent variable computed when the class loads belongs to MATLAB; it is not
the value used at code generation time. If you use coder.target in MATLAB class
property initialization, coder.target('MATLAB') returns true (1).

Calls to Base Class Constructor

If a class constructor contains a call to the constructor of the base class, the call to the
base class constructor must come before for, if, return, switch or while statements.

For example, if you define a class B based on class A:

classdef B < A

 methods

 function obj = B(varargin)

 if nargin == 0

 a = 1;

 b = 2;

 elseif nargin == 1

 a = varargin{1};

 b = 1;

 elseif nargin == 2

 a = varargin{1};

 b = varargin{2};

 end

 obj = obj@A(a,b);

 end

 end

end

16 Code Generation for MATLAB Classes

16-6

Because the class definition for B uses an if statement before calling the base class
constructor for A, you cannot generate code for function callB:

function [y1,y2] = callB

x = B;

y1 = x.p1;

y2 = x.p2;

end

However, you can generate code for callB if you define class B as:

classdef B < A

 methods

 function obj = NewB(varargin)

 [a,b] = getaandb(varargin{:});

 obj = obj@A(a,b);

 end

 end

end

function [a,b] = getaandb(varargin)

if nargin == 0

 a = 1;

 b = 2;

elseif nargin == 1

 a = varargin{1};

 b = 1;

elseif nargin == 2

 a = varargin{1};

 b = varargin{2};

end

end

Inheritance from Built-In MATLAB Classes Not Supported

You cannot generate code for classes that inherit from built-in MATLAB classes. For
example, you cannot generate code for the following class:

classdef myclass < double

 Classes That Support Code Generation

16-7

Classes That Support Code Generation

You can generate code for MATLAB value and handle classes and user-defined System
objects. Your class can have multiple methods and properties and can inherit from
multiple classes.

To generate code for: Example:

Value classes “Generate Code for MATLAB Value
Classes” on page 16-8

Handle classes including user-defined
System objects

“Generate Code for MATLAB Handle
Classes and System Objects” on page
16-13

For more information, see:

• “Classes in the MATLAB Language”
• “MATLAB Classes Definition for Code Generation” on page 16-2

16 Code Generation for MATLAB Classes

16-8

Generate Code for MATLAB Value Classes

This example shows how to generate code for a MATLAB value class and then view the
generated code in the code generation report.

1 In a writable folder, create a MATLAB value class, Shape. Save the code as
Shape.m.

classdef Shape

% SHAPE Create a shape at coordinates

% centerX and centerY

 properties

 centerX;

 centerY;

 end

 properties (Dependent = true)

 area;

 end

 methods

 function out = get.area(obj)

 out = obj.getarea();

 end

 function obj = Shape(centerX,centerY)

 obj.centerX = centerX;

 obj.centerY = centerY;

 end

 end

 methods(Abstract = true)

 getarea(obj);

 end

 methods(Static)

 function d = distanceBetweenShapes(shape1,shape2)

 xDist = abs(shape1.centerX - shape2.centerX);

 yDist = abs(shape1.centerY - shape2.centerY);

 d = sqrt(xDist^2 + yDist^2);

 end

 end

end

2 In the same folder, create a class, Square, that is a subclass of Shape. Save the code
as Square.m.

classdef Square < Shape

% Create a Square at coordinates center X and center Y

 Generate Code for MATLAB Value Classes

16-9

% with sides of length of side

 properties

 side;

 end

 methods

 function obj = Square(side,centerX,centerY)

 obj@Shape(centerX,centerY);

 obj.side = side;

 end

 function Area = getarea(obj)

 Area = obj.side^2;

 end

 end

end

3 In the same folder, create a class, Rhombus, that is a subclass of Shape. Save the
code as Rhombus.m.

classdef Rhombus < Shape

 properties

 diag1;

 diag2;

 end

 methods

 function obj = Rhombus(diag1,diag2,centerX,centerY)

 obj@Shape(centerX,centerY);

 obj.diag1 = diag1;

 obj.diag2 = diag2;

 end

 function Area = getarea(obj)

 Area = 0.5*obj.diag1*obj.diag2;

 end

 end

end

4 Write a function that uses this class.

function [TotalArea, Distance] = use_shape

%#codegen

s = Square(2,1,2);

r = Rhombus(3,4,7,10);

TotalArea = s.area + r.area;

Distance = Shape.distanceBetweenShapes(s,r);

5 Generate a static library for use_shape and generate a code generation report.

16 Code Generation for MATLAB Classes

16-10

codegen -config:lib -report use_shape

codegen generates a C static library with the default name, use_shape, and
supporting files in the default folder, codegen/lib/use_shape.

6 Click the View report link.
7 In the report, on the MATLAB code tab, click the link to the Rhombus class.

The report displays the class definition of the Rhombus class and highlights the
class constructor. On the Variables tab, it provides details of the variables used
in the class. If a variable is a MATLAB object, by default, the report displays the
object without displaying its properties. To view the list of properties, expand the
list. Within the list of properties, the list of inherited properties is collapsed. In the
following report, the lists of properties and inherited properties are expanded.

8 At the top right side of the report, expand the Calls list.

 Generate Code for MATLAB Value Classes

16-11

The Calls list shows that there is a call to the Rhombus constructor from use_shape
and that this constructor calls the Shape constructor.

9 The constructor for the Rhombus class calls the Shape method of the base Shape
class: obj@Shape. In the report, click the Shape link in this call.

16 Code Generation for MATLAB Classes

16-12

The link takes you to the Shape method in the Shape class definition.

 Generate Code for MATLAB Handle Classes and System Objects

16-13

Generate Code for MATLAB Handle Classes and System Objects

This example shows how to generate code for a user-defined System object and then view
the generated code in the code generation report.

1 In a writable folder, create a System object, AddOne, which subclasses from
matlab.System. Save the code as AddOne.m.

classdef AddOne < matlab.System

% ADDONE Compute an output value that increments the input by one

 methods (Access=protected)

 % stepImpl method is called by the step method

 function y = stepImpl(~,x)

 y = x+1;

 end

 end

end

2 Write a function that uses this System object.

function y = testAddOne(x)

%#codegen

 p = AddOne();

 y = p.step(x);

end

3 Generate a MEX function for this code.

codegen -report testAddOne -args {0}

The -report option instructs codegen to generate a code generation report, even
if no errors or warnings occur. The -args option specifies that the testAddOne
function takes one scalar double input.

>> codegen -report testAddOne -args {0}

Code generation successful: View report

4 Click the View report link.
5 In the report, on the MATLAB Code tab Functions panel, click testAddOne, then

click the Variables tab. You can view information about the variable p on this tab.

16 Code Generation for MATLAB Classes

16-14

6 To view the class definition, on the Classes panel, click AddOne.

 MATLAB Classes in Code Generation Reports

16-15

MATLAB Classes in Code Generation Reports

What Reports Tell You About Classes

Code generation reports:

• Provide a hierarchical tree of the classes used in your MATLAB code.
• Display a list of methods for each class in the MATLAB code tab.
• Display the objects used in your MATLAB code together with their properties on the

Variables tab.
• Provide a filter so that you can sort methods by class, size, and complexity.
• List the set of calls from and to the selected method in the Calls list.

How Classes Appear in Code Generation Reports

In the MATLAB Code Tab

The report displays an alphabetical hierarchical list of the classes used in the your
MATLAB code. For each class, you can:

• Expand the class information to view the class methods.
• View a class method by clicking its name. The report displays the methods in the

context of the full class definition.
• Filter the methods by size, complexity, and class by using the Filter functions and

methods option.

Default Constructors

If a class has a default constructor, the report displays the constructor in italics.
Specializations

If the same class is specialized into multiple different classes, the report differentiates
the specializations by grouping each one under a single node in the tree. The report
associates the class definition functions and static methods with the primary node. It
associates the instance-specific methods with the corresponding specialized node.

For example, consider a base class, Shape that has two specialized subclasses,
Rhombus and Square. The Shape class has an abstract method, getarea, and a
static method, distanceBetweenShapes. The code generation report, displays a

16 Code Generation for MATLAB Classes

16-16

node for the specialized Rhombus and Square classes with their constructors and
getarea method. It displays a node for the Shape class and its associated static method,
distanceBetweenShapes, and two instances of the Shape class, Shape1 and Shape2.

Packages

If you define classes as part of a package, the report displays the package in the list
of classes. You can expand the package to view the classes that it contains. For more
information about packages, see “Packages Create Namespaces”.

In the Variables Tab

The report displays the objects in the selected function or class. By default, for classes
that have properties, the list of properties is collapsed. To expand the list, click the
+ symbol next to the object name. Within the list of properties, the list of inherited
properties is collapsed. To expand the list of inherited properties, click the + symbol next
to Inherited.

The report displays the properties using just the base property name, not the fully
qualified name. For example, if your code uses variable obj1 that is a MATLAB object

 MATLAB Classes in Code Generation Reports

16-17

with property prop1, then the report displays the property as prop1 not obj1.prop1.
When you sort the Variables column, the sort order is based on the fully qualified
property name.

In the Call Stack

The call stack lists the functions and methods in the order that the top-level function
calls them. It also lists the local functions that each function calls.

How to Generate a Code Generation Report

Add the -report option to your codegen command (requires a MATLAB Coder license)

16 Code Generation for MATLAB Classes

16-18

Troubleshooting Issues with MATLAB Classes

Class class does not have a property with name name

If a MATLAB class has a method, mymethod, that returns a handle class with a property,
myprop, you cannot generate code for the following type of assignment:

obj.mymethod().myprop=...

For example, consider the following classes:

classdef MyClass < handle

 properties

 myprop

 end

 methods

 function this = MyClass

 this.myprop = MyClass2;

 end

 function y = mymethod(this)

 y = this.myprop;

 end

 end

end

classdef MyClass2 < handle

 properties

 aa

 end

end

You cannot generate code for function foo.

function foo

h = MyClass;

h.mymethod().aa = 12;

In this function, h.mymethod() returns a handle object of type MyClass2. In MATLAB,
the assignment h.mymethod().aa = 12; changes the property of that object. Code
generation does not support this assignment.

 Troubleshooting Issues with MATLAB Classes

16-19

Workaround

Rewrite the code to return the object and then assign a value to a property of the object.

function foo

h = MyClass;

b=h.mymethod();

b.aa=12;

17

Defining Data for Code Generation

• “Data Definition for Code Generation” on page 17-2
• “Code Generation for Complex Data” on page 17-4
• “Code Generation for Characters” on page 17-9
• “Array Size Restrictions for Code Generation” on page 17-10
• “Code Generation for Constants in Structures and Arrays” on page 17-11

17 Defining Data for Code Generation

17-2

Data Definition for Code Generation

To generate efficient standalone code, you must define the following types and classes
of data differently than you normally would when running your code in the MATLAB
environment:

Data What's Different More Information

Arrays Maximum number of
elements is restricted

“Array Size Restrictions for
Code Generation” on page
17-10

Complex numbers • Complexity of variables
must be set at time of
assignment and before
first use

• Expressions containing
a complex number or
variable evaluate to a
complex result, even if
the result is zero

Note: Because MATLAB
does not support complex
integer arithmetic, you
cannot generate code for
functions that use complex
integer arithmetic

“Code Generation for
Complex Data” on page
17-4

Characters Restricted to 8 bits of
precision

“Code Generation for
Characters” on page
17-9

Enumerated data • Supports integer-based
enumerated types only

• Restricted use in
switch statements and
for-loops

“Enumerated Data”

Function handles • Same bound variable
cannot reference

“Function Handles”

 Data Definition for Code Generation

17-3

Data What's Different More Information

different function
handles

• Cannot pass function
handles to or from
primary or extrinsic
functions

• Cannot view function
handles from the
debugger

17 Defining Data for Code Generation

17-4

Code Generation for Complex Data

In this section...

“Restrictions When Defining Complex Variables” on page 17-4
“Code Generation for Complex Data with Zero-Valued Imaginary Parts” on page
17-4
“Results of Expressions That Have Complex Operands” on page 17-8

Restrictions When Defining Complex Variables

For code generation, you must set the complexity of variables at the time of assignment.
Assign a complex constant to the variable or use the complex function. For example:

x = 5 + 6i; % x is a complex number by assignment.

y = complex(5,6); % y is the complex number 5 + 6i.

After assignment, you cannot change the complexity of a variable. Code generation for
the following function fails because x(k) = 3 + 4i changes the complexity of x.

function x = test1()

x = zeros(3,3); % x is real

for k = 1:numel(x)

 x(k) = 3 + 4i;

end

end

To resolve this issue, assign a complex constant to x.

function x = test1()

x = zeros(3,3)+ 0i; %x is complex

for k = 1:numel(x)

 x(k) = 3 + 4i;

end

end

Code Generation for Complex Data with Zero-Valued Imaginary Parts

For code generation, complex data that has all zero-valued imaginary parts remains
complex. This data does not become real. This behavior has the following implications:

 Code Generation for Complex Data

17-5

• In some cases, results from functions that sort complex data by absolute value can
differ from the MATLAB results. See “Functions That Sort Complex Values by
Absolute Value” on page 17-5.

• For functions that require that complex inputs are sorted by absolute value, complex
inputs with zero-valued imaginary parts must be sorted by absolute value. These
functions include ismember, union, intersect, setdiff, and setxor.

Functions That Sort Complex Values by Absolute Value

Functions that sort complex values by absolute value include sort, issorted,
sortrows, median, min, and max. These functions sort complex numbers by absolute
value even when the imaginary parts are zero. In general, sorting the absolute values
produces a different result than sorting the real parts. Therefore, when inputs to these
functions are complex with zero-valued imaginary parts in generated code, but real
in MATLAB, the generated code can produce different results than MATLAB. In the
following examples, the input to sort is real in MATLAB, but complex with zero-valued
imaginary parts in the generated code:

• You Pass Real Inputs to a Function Generated for Complex Inputs

1 Write this function:

function myout = mysort(A)

myout = sort(A);

end

2 Call mysort in MATLAB.

A = -2:2;

mysort(A)

ans =

 -2 -1 0 1 2

3 Generate a MEX function for complex inputs.

A = -2:2;

codegen mysort -args {complex(A)} -report

4 Call the MEX Function with real inputs.

mysort_mex(A)

ans =

17 Defining Data for Code Generation

17-6

 0 1 -1 2 -2

You generated the MEX function for complex inputs, therefore, it treats the
real inputs as complex numbers with zero-valued imaginary parts. It sorts the
numbers by the absolute values of the complex numbers. Because the imaginary
parts are zero, the MEX function returns the results to the MATLAB workspace
as real numbers. See “Inputs and Outputs for MEX Functions Generated for
Complex Arguments” on page 17-7.

• Input to sort Is Output from a Function That Returns Complex in Generated Code

1 Write this function:

function y = myfun(A)

x = eig(A);

y = sort(x,'descend');

The output from eig is the input to sort. In generated code, eig returns a
complex result. Therefore, in the generated code, x is complex.

2 Call myfun in MATLAB.

A = [2 3 5;0 5 5;6 7 4];

myfun(A)

ans =

 12.5777

 2.0000

 -3.5777

The result of eig is real. Therefore, the inputs to sort are real.
3 Generate a MEX function for complex inputs.

codegen myfun -args {complex(A)}

4 Call the MEX function.

myfun_mex(A)

ans =

 12.5777

 -3.5777

 2.0000

 Code Generation for Complex Data

17-7

In the MEX function, eig returns a complex result. Therefore, the inputs to
sort are complex. The MEX function sorts the inputs in descending order of the
absolute values.

Inputs and Outputs for MEX Functions Generated for Complex Arguments

For MEX functions created by fiaccel:

• Suppose that you generate the MEX function for complex inputs. If you call the MEX
function with real inputs, the MEX function transforms the real inputs to complex
values with zero-valued imaginary parts.

• If the MEX function returns complex values that have all zero-valued imaginary
parts, the MEX function returns the values to the MATLAB workspace as real values.
For example, consider this function:

function y = foo()

 y = 1 + 0i; % y is complex with imaginary part equal to zero

end

If you generate a MEX function for foo and view the code generation report, you see
that y is complex.

codegen foo -report

If you run the MEX function, you see that in the MATLAB workspace, the result of
foo_mex is the real value 1.

z = foo_mex

ans =

 1

17 Defining Data for Code Generation

17-8

Results of Expressions That Have Complex Operands

In general, expressions that contain one or more complex operands produce a complex
result in generated code, even if the value of the result is zero. Consider the following line
of code:

z = x + y;

Suppose that at run time, x has the value 2 + 3i and y has the value 2 - 3i. In
MATLAB, this code produces the real result z = 4. During code generation, the types
for x and y are known, but their values are not known. Because either or both operands
in this expression are complex, z is defined as a complex variable requiring storage for a
real and an imaginary part. z equals the complex result 4 + 0i in generated code, not 4,
as in MATLAB code.

Exceptions to this behavior are:

• When the imaginary parts of complex results are zero, MEX functions return the
results to the MATLAB workspace as real values. See “Inputs and Outputs for MEX
Functions Generated for Complex Arguments” on page 17-7.

• When the imaginary part of the argument is zero, complex arguments to extrinsic
functions are real .

function y = foo()

 coder.extrinsic('sqrt')

 x = 1 + 0i; % x is complex

 y = sqrt(x); % x is real, y is real

end

• Functions that take complex arguments but produce real results return real values.

y = real(x); % y is the real part of the complex number x.

y = imag(x); % y is the real-valued imaginary part of x.

y = isreal(x); % y is false (0) for a complex number x.

• Functions that take real arguments but produce complex results return complex
values.

z = complex(x,y); % z is a complex number for a real x and y.

 Code Generation for Characters

17-9

Code Generation for Characters

The complete set of Unicode characters is not supported for code generation. Characters
are restricted to 8 bits of precision in generated code. Because many mathematical
operations require more than 8 bits of precision, it is recommended that you do not
perform arithmetic with characters if you intend to generate code from your MATLAB
algorithm.

17 Defining Data for Code Generation

17-10

Array Size Restrictions for Code Generation

For code generation, the maximum number of elements of an array is constrained by the
code generation software and the target hardware.

For fixed-size arrays and variable-size arrays that use static memory allocation, the
maximum number of elements is the smaller of:

• intmax('int32').
• The largest integer that fits in the C int data type on the target hardware.

For variable-size arrays that use dynamic memory allocation, the maximum number of
elements is the smaller of:

• intmax('int32').
• The largest power of 2 that fits in the C int data type on the target hardware.

These restrictions apply even on a 64-bit platform.

For a fixed-size array, if the number of elements exceeds the maximum, the code
generation software reports an error at compile time. For a variable-size array, if the
number of elements exceeds the maximum during execution of the generated MEX in
MATLAB, the MEX code reports an error. Generated standalone code cannot report
array size violations.

See Also

• “Variable-Size Data”

 Code Generation for Constants in Structures and Arrays

17-11

Code Generation for Constants in Structures and Arrays

The code generation software does not recognize constant structure fields or array
elements in the following cases:

Fields or elements are assigned inside control constructs

In the following code, the code generation software recognizes that the structure fields
s.a and s.b are constants.

function y = mystruct()

s.a = 3;

s.b = 5;

y = zeros(s.a,s.b);

If any structure field is assigned inside a control construct, the code generation software
does not recognize the constant fields. This limitation also applies to arrays with constant
elements. Consider the following code:

function y = mystruct(x)

s.a = 3;

if x > 1

 s.b = 4;

else

 s.b = 5;

end

y = zeros(s.a,s.b);

The code generation software does not recognize that s.a and s.b are constant. If
variable-sizing is enabled, y is treated as a variable-size array. If variable-sizing is
disabled, the code generation software reports an error.

Constants are assigned to array elements using non-scalar indexing

In the following code, the code generation software recognizes that a(1) is constant.

function y = myarray()

a = zeros(1,3);

a(1) = 20;

y = coder.const(a(1));

In the following code, because a(1) is assigned using non-scalar indexing, the code
generation software does not recognize that a(1) is constant.

17 Defining Data for Code Generation

17-12

function y = myarray()

a = zeros(1,3);

a(1:2) = 20;

y = coder.const(a(1));

A function returns a structure or array that has constant and nonconstant elements

For an output structure that has both constant and nonconstant fields, the code
generation software does not recognize the constant fields. This limitation also applies to
arrays that have constant and nonconstant elements. Consider the following code:

function y = mystruct_out(x)

s = create_structure(x);

y = coder.const(s.a);

function s = create_structure(x)

s.a = 10;

s.b = x;

Because create_structure returns a structure s that has one constant field and one
nonconstant field, the code generation software does not recognize that s.a is constant.
The coder.const call fails because s.a is not constant.

18

Defining Functions for Code
Generation

• “Specify Variable Numbers of Arguments” on page 18-2
• “Supported Index Expressions” on page 18-3
• “Apply Operations to a Variable Number of Arguments” on page 18-4
• “Implement Wrapper Functions” on page 18-6
• “Pass Property/Value Pairs” on page 18-7
• “Variable Length Argument Lists for Code Generation” on page 18-9

18 Defining Functions for Code Generation

18-2

Specify Variable Numbers of Arguments

You can use varargin in a function definition to specify that the function accepts a
variable number of input arguments for a given input argument. You can use varargout
in a function definition to specify that the function returns a variable number of
arguments for a given output argument.

When you use varargin and varargout for code generation, there are the following
limitations:

• You cannot use varargout in the function definition for a top-level function.
• You cannot use varargin in the function definition for a top-level function in

a MATLAB Function block in a Simulink model, or in a MATLAB function in a
Stateflow diagram.

• If you use varargin to define an argument to a top-level function, the code
generation software generates the function with a fixed number of arguments. This
fixed number of arguments is based on the number of example arguments that you
provide on the command line or in a MATLAB Coder project test file.

Common applications of varargin and varargout for code generation are to:

• “Apply Operations to a Variable Number of Arguments” on page 18-4
• “Implement Wrapper Functions” on page 18-6
• “Pass Property/Value Pairs” on page 18-7

Code generation relies on loop unrolling to produce simple and efficient code for
varargin and varargout. This technique permits most common uses of varargin and
varargout, but some uses are not allowed (see “Variable Length Argument Lists for
Code Generation” on page 18-9).

For more information about using varargin and varargout in MATLAB functions, see
Passing Variable Numbers of Arguments.

 Supported Index Expressions

18-3

Supported Index Expressions

In MATLAB, varargin and varargout are cell arrays. Generated code does not support
cell arrays, but does allow you to use the most common syntax — curly braces {} — for
indexing into varargin and varargout arrays, as in this example:

%#codegen

function [x,y,z] = fcn(a,b,c)

[x,y,z] = subfcn(a,b,c);

function varargout = subfcn(varargin)

for i = 1:length(varargin)

 varargout{i} = varargin{i};

end

You can use the following index expressions. The exp arguments must be constant
expressions or depend on a loop index variable.

Expression Description

varargin{exp} Read the value of element exp
varargin{exp1: exp2} Read the values of elements

exp1 through exp2

varargin

(read only)

varargin{:} Read the values of all
elements

varargout

(read and write)
varargout{exp} Read or write the value of

element exp

Note: The use of () is not supported for indexing into varargin and varargout arrays.

18 Defining Functions for Code Generation

18-4

Apply Operations to a Variable Number of Arguments

You can use varargin and varargout in for-loops to apply operations to a variable
number of arguments. To index into varargin and varargout arrays in generated
code, the value of the loop index variable must be known at compile time. Therefore,
during code generation, the compiler attempts to automatically unroll these for-loops.
Unrolling eliminates the loop logic by creating a separate copy of the loop body in the
generated code for each iteration. Within each iteration, the loop index variable becomes
a constant. For example, the following function automatically unrolls its for-loop in the
generated code:

%#codegen

function [cmlen,cmwth,cmhgt] = conv_2_metric(inlen,inwth,inhgt)

[cmlen,cmwth,cmhgt] = inch_2_cm(inlen,inwth,inhgt);

function varargout = inch_2_cm(varargin)

for i = 1:length(varargin)

 varargout{i} = varargin{i} * 2.54;

end

When to Force Loop Unrolling

To automatically unroll for-loops containing varargin and varargout expressions,
the relationship between the loop index expression and the index variable must be
determined at compile time.

In the following example, the function fcn cannot detect a logical relationship between
the index expression j and the index variable i:

%#codegen

function [x,y,z] = fcn(a,b,c)

[x,y,z] = subfcn(a,b,c);

function varargout = subfcn(varargin)

j = 0;

for i = 1:length(varargin)

 j = j+1;

 varargout{j} = varargin{j};

end

As a result, the function does not unroll the loop and generates a compilation error:

 Apply Operations to a Variable Number of Arguments

18-5

Nonconstant expression or empty matrix.

This expression must be constant because

its value determines the size or class of some expression.

To fix the problem, you can force loop unrolling by wrapping the loop header in the
function coder.unroll, as follows:

%#codegen

function [x,y,z] = fcn(a,b,c)

 [x,y,z] = subfcn(a,b,c);

function varargout = subfcn(varargin)

 j = 0;

 for i = coder.unroll(1:length(varargin))

 j = j + 1;

 varargout{j} = varargin{j};

 end;

Using Variable Numbers of Arguments in a for-Loop

The following example multiplies a variable number of input dimensions in inches by
2.54 to convert them to centimeters:

%#codegen

function [cmlen,cmwth,cmhgt] = conv_2_metric(inlen,inwth,inhgt)

[cmlen,cmwth,cmhgt] = inch_2_cm(inlen,inwth,inhgt);

function varargout = inch_2_cm(varargin)

for i = 1:length(varargin)

 varargout{i} = varargin{i} * 2.54;

end

Key Points About the Example

• varargin and varargout appear in the local function inch_2_cm, not in the top-
level function conv_2_metric.

• The index into varargin and varargout is a for-loop variable

For more information, see “Variable Length Argument Lists for Code Generation” on
page 18-9.

18 Defining Functions for Code Generation

18-6

Implement Wrapper Functions

You can use varargin and varargout to write wrapper functions that accept up to 64
inputs and pass them directly to another function.

Passing Variable Numbers of Arguments from One Function to Another

The following example passes a variable number of inputs to different optimization
functions, based on a specified input method:

%#codegen

function answer = fcn(method,a,b,c)

answer = optimize(method,a,b,c);

function answer = optimize(method,varargin)

 if strcmp(method,'simple')

 answer = simple_optimization(varargin{:});

 else

 answer = complex_optimization(varargin{:});

 end

...

Key Points About the Example

• You can use {:} to read all elements of varargin and pass them to another function.
• You can mix variable and fixed numbers of arguments.

For more information, see “Variable Length Argument Lists for Code Generation” on
page 18-9.

 Pass Property/Value Pairs

18-7

Pass Property/Value Pairs

You can use varargin to pass property/value pairs in functions. However, for code
generation, you must take precautions to avoid type mismatch errors when evaluating
varargin array elements in a for-loop:

If Do This:

You assign varargin array elements to
local variables in the for-loop

Verify that for all pairs, the size, type, and
complexity are the same for each property
and the same for each value

Properties or values have different sizes,
types, or complexity

Do not assign varargin array elements to
local variables in a for-loop; reference the
elements directly

For example, in the following function test1, the sizes of the property strings and
numeric values are not the same in each pair:

%#codegen

function test1

 v = create_value('size', 18, 'rgb', [240 9 44]);

end

function v = create_value(varargin)

 v = new_value();

 for i = 1 : 2 : length(varargin)

 name = varargin{i};

 value = varargin{i+1};

 switch name

 case 'size'

 v = set_size(v, value);

 case 'rgb'

 v = set_color(v, value);

 otherwise

 end

 end

end

...

Generated code determines the size, type, and complexity of a local variable based on its
first assignment. In this example, the first assignments occur in the first iteration of the
for-loop:

18 Defining Functions for Code Generation

18-8

• Defines local variable name with size equal to 4

• Defines local variable value with a size of scalar

However, in the second iteration, the size of the property string changes to 3 and the size
of the numeric value changes to a vector, resulting in a type mismatch error. To avoid
such errors, reference varargin array values directly, not through local variables, as
highlighted in this code:

%#codegen

function test1

 v = create_value('size', 18, 'rgb', [240 9 44]);

end

function v = create_value(varargin)

 v = new_value();

 for i = 1 : 2 : length(varargin)

 switch varargin{i}

 case 'size'

 v = set_size(v, varargin{i+1});

 case 'rgb'

 v = set_color(v, varargin{i+1});

 otherwise

 end

 end

end

...

 Variable Length Argument Lists for Code Generation

18-9

Variable Length Argument Lists for Code Generation

Use variable length argument lists in top-level functions according to guidelines

When you use varargin and varargout for code generation, there are the following
limitations:

• You cannot use varargout in the function definition for a top-level function.
• You cannot use varargin in the function definition for a top-level function in

a MATLAB Function block in a Simulink model, or in a MATLAB function in a
Stateflow diagram.

• If you use varargin to define an argument to a top-level function, the code
generation software generates the function with a fixed number of arguments. This
fixed number of arguments is based on the number of example arguments that you
provide on the command line or in a MATLAB Coder project test file.

A top-level function is:

• The function called by Simulink in a MATLAB Function block or by Stateflow in a
MATLAB function.

• The function that you provide on the command line to codegen or fiaccel.

For example, the following code generates compilation errors:

%#codegen

function varargout = inch_2_cm(varargin)

for i = 1:length(varargin)

 varargout{i} = varargin{i} * 2.54;

end

To fix the problem, write a top-level function that specifies a fixed number of inputs
and outputs. Then call inch_2_cm as an external function or local function, as in this
example:

%#codegen

function [cmL, cmW, cmH] = conv_2_metric(inL, inW, inH)

[cmL, cmW, cmH] = inch_2_cm(inL, inW, inH);

function varargout = inch_2_cm(varargin)

for i = 1:length(varargin)

 varargout{i} = varargin{i} * 2.54;

end

18 Defining Functions for Code Generation

18-10

Use curly braces {} to index into the argument list

For code generation, you can use curly braces {}, but not parentheses (), to index
into varargin and varargout arrays. For more information, see “Supported Index
Expressions” on page 18-3.

Verify that indices can be computed at compile time

If you use an expression to index into varargin or varargout, make sure that the value
of the expression can be computed at compile time. For examples, see “Apply Operations
to a Variable Number of Arguments” on page 18-4.

Do not write to varargin

Generated code treats varargin as a read-only variable. If you want to write to input
arguments, copy the values into a local variable.

19

Defining MATLAB Variables for C/C++
Code Generation

• “Variables Definition for Code Generation” on page 19-2
• “Best Practices for Defining Variables for C/C++ Code Generation” on page 19-3
• “Eliminate Redundant Copies of Variables in Generated Code” on page 19-7
• “Reassignment of Variable Properties” on page 19-9
• “Define and Initialize Persistent Variables” on page 19-10
• “Reuse the Same Variable with Different Properties” on page 19-11
• “Avoid Overflows in for-Loops” on page 19-15
• “Supported Variable Types” on page 19-17

19 Defining MATLAB Variables for C/C++ Code Generation

19-2

Variables Definition for Code Generation

In the MATLAB language, variables can change their properties dynamically at run time
so you can use the same variable to hold a value of any class, size, or complexity. For
example, the following code works in MATLAB:

function x = foo(c) %#codegen

if(c>0)

 x = 0;

else

 x = [1 2 3];

end

disp(x);

end

However, statically-typed languages like C must be able to determine variable properties
at compile time. Therefore, for C/C++ code generation, you must explicitly define the
class, size, and complexity of variables in MATLAB source code before using them. For
example, rewrite the above source code with a definition for x:

function x = foo(c) %#codegen

x = zeros(1,3);

if(c>0)

 x = 0;

else

 x = [1 2 3];

end

disp(x);

end

For more information, see “Best Practices for Defining Variables for C/C++ Code
Generation” on page 19-3.

 Best Practices for Defining Variables for C/C++ Code Generation

19-3

Best Practices for Defining Variables for C/C++ Code Generation

In this section...

“Define Variables By Assignment Before Using Them” on page 19-3
“Use Caution When Reassigning Variables” on page 19-5
“Use Type Cast Operators in Variable Definitions” on page 19-5
“Define Matrices Before Assigning Indexed Variables” on page 19-6

Define Variables By Assignment Before Using Them

For C/C++ code generation, you should explicitly and unambiguously define the class,
size, and complexity of variables before using them in operations or returning them as
outputs. Define variables by assignment, but note that the assignment copies not only
the value, but also the size, class, and complexity represented by that value to the new
variable. For example:

Assignment: Defines:

a = 14.7; a as a real double scalar.
b = a; b with properties of a (real double scalar).
c = zeros(5,2); c as a real 5-by-2 array of doubles.
d = [1 2 3 4 5; 6 7 8 9 0]; d as a real 5-by-2 array of doubles.
y = int16(3); y as a real 16-bit integer scalar.

Define properties this way so that the variable is defined on the required execution paths
during C/C++ code generation (see Defining a Variable for Multiple Execution Paths).

The data that you assign to a variable can be a scalar, matrix, or structure. If your
variable is a structure, define the properties of each field explicitly (see Defining Fields in
a Structure).

Initializing the new variable to the value of the assigned data sometimes results in
redundant copies in the generated code. To avoid redundant copies, you can define
variables without initializing their values by using the coder.nullcopy construct as
described in “Eliminate Redundant Copies of Variables in Generated Code” on page
19-7.

19 Defining MATLAB Variables for C/C++ Code Generation

19-4

When you define variables, they are local by default; they do not persist between function
calls. To make variables persistent, see “Define and Initialize Persistent Variables” on
page 19-10.

Defining a Variable for Multiple Execution Paths

Consider the following MATLAB code:

...

if c > 0

 x = 11;

end

% Later in your code ...

if c > 0

 use(x);

end

...

Here, x is assigned only if c > 0 and used only when c > 0. This code works in
MATLAB, but generates a compilation error during code generation because it detects
that x is undefined on some execution paths (when c <= 0),.

To make this code suitable for code generation, define x before using it:

x = 0;

...

if c > 0

 x = 11;

end

% Later in your code ...

if c > 0

 use(x);

end

...

Defining Fields in a Structure

Consider the following MATLAB code:

...

if c > 0

 s.a = 11;

 disp(s);

else

 s.a = 12;

 Best Practices for Defining Variables for C/C++ Code Generation

19-5

 s.b = 12;

end

% Try to use s

use(s);

...

Here, the first part of the if statement uses only the field a, and the else clause uses
fields a and b. This code works in MATLAB, but generates a compilation error during C/
C++ code generation because it detects a structure type mismatch. To prevent this error,
do not add fields to a structure after you perform certain operations on the structure. For
more information, see “Structure Definition for Code Generation”.

To make this code suitable for C/C++ code generation, define all fields of s before using it.

...

% Define all fields in structure s

s = struct(‘a’,0, ‘b’, 0);

if c > 0

 s.a = 11;

 disp(s);

else

 s.a = 12;

 s.b = 12;

end

% Use s

use(s);

...

Use Caution When Reassigning Variables

In general, you should adhere to the "one variable/one type" rule for C/C++ code
generation; that is, each variable must have a specific class, size and complexity.
Generally, if you reassign variable properties after the initial assignment, you get a
compilation error during code generation, but there are exceptions, as described in
“Reassignment of Variable Properties” on page 19-9.

Use Type Cast Operators in Variable Definitions

By default, constants are of type double. To define variables of other types, you can
use type cast operators in variable definitions. For example, the following code defines
variable y as an integer:

...

19 Defining MATLAB Variables for C/C++ Code Generation

19-6

x = 15; % x is of type double by default.

y = uint8(x); % y has the value of x, but cast to uint8.

...

Define Matrices Before Assigning Indexed Variables

When generating C/C++ code from MATLAB, you cannot grow a variable by writing into
an element beyond its current size. Such indexing operations produce run-time errors.
You must define the matrix first before assigning values to its elements.

For example, the following initial assignment is not allowed for code generation:

g(3,2) = 14.6; % Not allowed for creating g

 % OK for assigning value once created

For more information about indexing matrices, see “Incompatibility with MATLAB in
Matrix Indexing Operations for Code Generation” on page 26-31.

 Eliminate Redundant Copies of Variables in Generated Code

19-7

Eliminate Redundant Copies of Variables in Generated Code

In this section...

“When Redundant Copies Occur” on page 19-7
“How to Eliminate Redundant Copies by Defining Uninitialized Variables” on page
19-7
“Defining Uninitialized Variables” on page 19-8

When Redundant Copies Occur

During C/C++ code generation, MATLAB checks for statements that attempt to access
uninitialized memory. If it detects execution paths where a variable is used but is
potentially not defined, it generates a compile-time error. To prevent these errors, define
variables by assignment before using them in operations or returning them as function
outputs.

Note, however, that variable assignments not only copy the properties of the assigned
data to the new variable, but also initialize the new variable to the assigned value.
This forced initialization sometimes results in redundant copies in C/C++ code. To
eliminate redundant copies, define uninitialized variables by using the coder.nullcopy
function, as described in “How to Eliminate Redundant Copies by Defining Uninitialized
Variables” on page 19-7.

How to Eliminate Redundant Copies by Defining Uninitialized Variables

1 Define the variable with coder.nullcopy.
2 Initialize the variable before reading it.

When the uninitialized variable is an array, you must initialize all of its elements
before passing the array as an input to a function or operator — even if the function
or operator does not read from the uninitialized portion of the array.

What happens if you access uninitialized data?

Uninitialized memory contains arbitrary values. Therefore, accessing uninitialized
data may lead to segmentation violations or nondeterministic program behavior
(different runs of the same program may yield inconsistent results).

19 Defining MATLAB Variables for C/C++ Code Generation

19-8

Defining Uninitialized Variables

In the following code, the assignment statement X = zeros(1,N) not only defines X to
be a 1-by-5 vector of real doubles, but also initializes each element of X to zero.

function X = fcn %#codegen

N = 5;

X = zeros(1,N);

for i = 1:N

 if mod(i,2) == 0

 X(i) = i;

 else

 X(i) = 0;

 end

end

This forced initialization creates an extra copy in the generated code. To eliminate this
overhead, use coder.nullcopy in the definition of X:

function X = fcn2 %#codegen

N = 5;

X = coder.nullcopy(zeros(1,N));

for i = 1:N

 if mod(i,2) == 0

 X(i) = i;

 else

 X(i) = 0;

 end

end

 Reassignment of Variable Properties

19-9

Reassignment of Variable Properties

For C/C++ code generation, there are certain variables that you can reassign after the
initial assignment with a value of different class, size, or complexity:

Dynamically sized variables

A variable can hold values that have the same class and complexity but different sizes.
If the size of the initial assignment is not constant, the variable is dynamically sized in
generated code. For more information, see “Variable-Size Data”.

Variables reused in the code for different purposes

You can reassign the type (class, size, and complexity) of a variable after the initial
assignment if each occurrence of the variable can have only one type. In this case, the
variable is renamed in the generated code to create multiple independent variables.
For more information, see “Reuse the Same Variable with Different Properties” on page
19-11.

19 Defining MATLAB Variables for C/C++ Code Generation

19-10

Define and Initialize Persistent Variables

Persistent variables are local to the function in which they are defined, but they retain
their values in memory between calls to the function. To define persistent variables for C/
C++ code generation, use the persistent statement, as in this example:

persistent PROD_X;

The definition should appear at the top of the function body, after the header and
comments, but before the first use of the variable. During code generation, the value of
the persistent variable is initialized to an empty matrix by default. You can assign your
own value after the definition by using the isempty statement, as in this example:

function findProduct(inputvalue) %#codegen

persistent PROD_X

if isempty(PROD_X)

 PROD_X = 1;

end

PROD_X = PROD_X * inputvalue;

end

 Reuse the Same Variable with Different Properties

19-11

Reuse the Same Variable with Different Properties

In this section...

“When You Can Reuse the Same Variable with Different Properties” on page 19-11
“When You Cannot Reuse Variables” on page 19-11
“Limitations of Variable Reuse” on page 19-14

When You Can Reuse the Same Variable with Different Properties

You can reuse (reassign) an input, output, or local variable with different class, size, or
complexity if MATLAB can unambiguously determine the properties of each occurrence
of this variable during C/C++ code generation. If so, MATLAB creates separate uniquely
named local variables in the generated code. You can view these renamed variables in
the code generation report (see “Use Fixed-Point Code Generation Reports”).

A common example of variable reuse is in if-elseif-else or switch-case
statements. For example, the following function example1 first uses the variable t in an
if statement, where it holds a scalar double, then reuses t outside the if statement to
hold a vector of doubles.

function y = example1(u) %#codegen

if all(all(u>0))

 % First, t is used to hold a scalar double value

 t = mean(mean(u)) / numel(u);

 u = u - t;

end

% t is reused to hold a vector of doubles

t = find(u > 0);

y = sum(u(t(2:end-1)));

To compile this example and see how MATLAB renames the reused variable t, see
Variable Reuse in an if Statement.

When You Cannot Reuse Variables

You cannot reuse (reassign) variables if it is not possible to determine the class, size, and
complexity of an occurrence of a variable unambiguously during code generation. In this
case, variables cannot be renamed and a compilation error occurs.

For example, the following example2 function assigns a fixed-point value to x in the if
statement and reuses x to store a matrix of doubles in the else clause. It then uses x

19 Defining MATLAB Variables for C/C++ Code Generation

19-12

after the if-else statement. This function generates a compilation error because after
the if-else statement, variable x can have different properties depending on which if-
else clause executes.

function y = example2(use_fixpoint, data) %#codegen

 if use_fixpoint

 % x is fixed-point

 x = fi(data, 1, 12, 3);

 else

 % x is a matrix of doubles

 x = data;

 end

 % When x is reused here, it is not possible to determine its

 % class, size, and complexity

 t = sum(sum(x));

 y = t > 0;

end

Variable Reuse in an if Statement

To see how MATLAB renames a reused variable t:

1 Create a MATLAB file example1.m containing the following code.

function y = example1(u) %#codegen

if all(all(u>0))

 % First, t is used to hold a scalar double value

 t = mean(mean(u)) / numel(u);

 u = u - t;

end

% t is reused to hold a vector of doubles

t = find(u > 0);

y = sum(u(t(2:end-1)));

end

2 Compile example1.

For example, to generate a MEX function, enter:

codegen -o example1x -report example1.m -args {ones(5,5)}

Note: codegen requires a MATLAB Coder license.

 Reuse the Same Variable with Different Properties

19-13

When the compilation is complete, codegen generates a MEX function, example1x
in the current folder, and provides a link to the code generation report.

3 Open the code generation report.
4 In the MATLAB code pane of the code generation report, place your pointer over the

variable t inside the if statement.

The code generation report highlights both instances of t in the if statement
because they share the same class, size, and complexity. It displays the data type
information for t at this point in the code. Here, t is a scalar double.

5 In the MATLAB code pane of the report, place your pointer over the variable t
outside the for-loop.

This time, the report highlights both instances of t outside the if statement. The
report indicates that t might hold up to 25 doubles. The size of t is :25, that is, a
column vector containing a maximum of 25 doubles.

6 Click the Variables tab to view the list of variables used in example1.

19 Defining MATLAB Variables for C/C++ Code Generation

19-14

The report displays a list of the variables in example1. There are two uniquely
named local variables t>1 and t>2.

7 In the list of variables, place your pointer over t>1.

The code generation report highlights both instances of t in the if statement.
8 In the list of variables, place your pointer over t>2

The code generation report highlights both instances of t outside the if statement.

Limitations of Variable Reuse

The following variables cannot be renamed in generated code:

• Persistent variables.
• Global variables.
• Variables passed to C code using coder.ref, coder.rref, coder.wref.
• Variables whose size is set using coder.varsize.
• Variables whose names are controlled using coder.cstructname.
• The index variable of a for-loop when it is used inside the loop body.
• The block outputs of a MATLAB Function block in a Simulink model.
• Chart-owned variables of a MATLAB function in a Stateflow chart.

 Avoid Overflows in for-Loops

19-15

Avoid Overflows in for-Loops

When memory integrity checks are enabled, if the code generation software detects that a
loop variable might overflow on the last iteration of the for-loop, it reports an error.

To avoid this error, use the workarounds provided in the following table.

Loop conditions causing the error Workaround

• The loop counter increments by 1
• The end value equals the maximum

value of the integer type
• The loop is not covering the full range of

the integer type

Rewrite the loop so that the end value is
not equal to the maximum value of the
integer type. For example, replace:

N=intmax('int16')

for k=N-10:N

with:

for k=1:10

• The loop counter decrements by 1
• The end value equals the minimum

value of the integer type
• The loop is not covering the full range of

the integer type

Rewrite the loop so that the end value is
not equal to the minimum value of the
integer type. For example, replace:

N=intmin('int32')

for k=N+10:-1:N

with:

for k=10:-1:1

• The loop counter increments or
decrements by 1

• The start value equals the minimum or
maximum value of the integer type

• The end value equals the maximum or
minimum value of the integer type

The loop covers the full range of the integer
type.

Rewrite the loop casting the type of the
loop counter start, step, and end values to
a bigger integer or to double For example,
rewrite:

M= intmin('int16');

N= intmax('int16');

for k=M:N

 % Loop body

end

to

M= intmin('int16');

N= intmax('int16');

for k=int32(M):int32(N)

 % Loop body

19 Defining MATLAB Variables for C/C++ Code Generation

19-16

Loop conditions causing the error Workaround
end

• The loop counter increments or
decrements by a value not equal to 1

• On last loop iteration, the loop variable
value is not equal to the end value

Note: The software error checking is
conservative. It may incorrectly report a
loop as being potentially infinite.

Rewrite the loop so that the loop variable
on the last loop iteration is equal to the end
value.

 Supported Variable Types

19-17

Supported Variable Types

You can use the following data types for C/C++ code generation from MATLAB:

Type Description

char Character array (string)
complex Complex data. Cast function takes real and imaginary

components
double Double-precision floating point
int8, int16, int32,
int64

Signed integer

logical Boolean true or false
single Single-precision floating point
struct Structure
uint8, uint16,
uint32, uint64

Unsigned integer

Fixed-point See “Fixed-Point Data Types”.

20

Design Considerations for C/C++
Code Generation

• “When to Generate Code from MATLAB Algorithms” on page 20-2
• “Which Code Generation Feature to Use” on page 20-4
• “Prerequisites for C/C++ Code Generation from MATLAB” on page 20-5
• “MATLAB Code Design Considerations for Code Generation” on page 20-6
• “Differences in Behavior After Compiling MATLAB Code” on page 20-8
• “MATLAB Language Features Supported for C/C++ Code Generation” on page

20-12

20 Design Considerations for C/C++ Code Generation

20-2

When to Generate Code from MATLAB Algorithms

Generating code from MATLAB algorithms for desktop and embedded systems allows
you to perform your software design, implementation, and testing completely within the
MATLAB workspace. You can:

• Verify that your algorithms are suitable for code generation
• Generate efficient, readable, and compact C/C++ code automatically, which eliminates

the need to manually translate your MATLAB algorithms and minimizes the risk of
introducing errors in the code.

• Modify your design in MATLAB code to take into account the specific requirements of
desktop and embedded applications, such as data type management, memory use, and
speed.

• Test the generated code and easily verify that your modified algorithms are
functionally equivalent to your original MATLAB algorithms.

• Generate MEX functions to:

• Accelerate MATLAB algorithms in certain applications.
• Speed up fixed-point MATLAB code.

• Generate hardware description language (HDL) from MATLAB code.

When Not to Generate Code from MATLAB Algorithms

Do not generate code from MATLAB algorithms for the following applications. Use the
recommended MathWorks product instead.

To: Use:

Deploy an application that uses handle
graphics

MATLAB Compiler™

Use Java MATLAB Compiler SDK™
Use toolbox functions that do not support
code generation

Toolbox functions that you rewrite for
desktop and embedded applications

Deploy MATLAB based GUI applications
on a supported MATLAB host

MATLAB Compiler

Deploy web-based or Windows
applications

MATLAB Compiler SDK

 When to Generate Code from MATLAB Algorithms

20-3

To: Use:

Interface C code with MATLAB MATLAB mex function

20 Design Considerations for C/C++ Code Generation

20-4

Which Code Generation Feature to Use

To... Use... Required Product To Explore Further...

Generate MEX
functions for verifying
generated code

codegen function MATLAB Coder Try this in “MEX
Function Generation at
the Command Line”.

MATLAB Coder app MATLAB Coder Try this in “C Code
Generation Using the
MATLAB Coder App”.

Produce readable,
efficient, and compact
code from MATLAB
algorithms for
deployment to desktop
and embedded
systems.

codegen function MATLAB Coder Try this in “C Code
Generation at the
Command Line”.

MATLAB Coder app MATLAB CoderGenerate MEX
functions to accelerate
MATLAB algorithms

codegen function MATLAB Coder
See “Accelerate
MATLAB Algorithms”.

Integrate MATLAB
code into Simulink

MATLAB Function
block

Simulink Try this in “Track Object
Using MATLAB Code”.

Speed up fixed-point
MATLAB code

fiaccel function Fixed-Point Designer Learn more in “Code
Acceleration and
Code Generation from
MATLAB”.

Integrate custom C
code into MATLAB
and generate efficient,
readable code

codegen function MATLAB Coder Learn more in “Specify
External File Locations”.

Integrate custom
C code into code
generated from
MATLAB

coder.ceval function MATLAB Coder Learn more in
coder.ceval.

Generate HDL from
MATLAB code

MATLAB Function
block

Simulink and
HDL Coder

Learn more at
www.mathworks.com/

products/

slhdlcoder.

http://www.mathworks.com/products/slhdlcoder/
http://www.mathworks.com/products/slhdlcoder/
http://www.mathworks.com/products/slhdlcoder/

 Prerequisites for C/C++ Code Generation from MATLAB

20-5

Prerequisites for C/C++ Code Generation from MATLAB

To generate C/C++ or MEX code from MATLAB algorithms, you must install the
following software:

• MATLAB Coder product
• C/C++ compiler

20 Design Considerations for C/C++ Code Generation

20-6

MATLAB Code Design Considerations for Code Generation

When writing MATLAB code that you want to convert into efficient, standalone C/C++
code, you must consider the following:

• Data types

C and C++ use static typing. To determine the types of your variables before use,
MATLAB Coder requires a complete assignment to each variable.

• Array sizing

Variable-size arrays and matrices are supported for code generation. You can define
inputs, outputs, and local variables in MATLAB functions to represent data that
varies in size at run time.

• Memory

You can choose whether the generated code uses static or dynamic memory allocation.

With dynamic memory allocation, you potentially use less memory at the expense
of time to manage the memory. With static memory, you get better speed, but with
higher memory usage. Most MATLAB code takes advantage of the dynamic sizing
features in MATLAB, therefore dynamic memory allocation typically enables you
to generate code from existing MATLAB code without modifying it much. Dynamic
memory allocation also allows some programs to compile even when upper bounds
cannot be found.

Static allocation reduces the memory footprint of the generated code, and therefore is
suitable for applications where there is a limited amount of available memory, such as
embedded applications.

• Speed

Because embedded applications must run in real time, the code must be fast enough
to meet the required clock rate.

To improve the speed of the generated code:

• Choose a suitable C/C++ compiler. Do not use the default compiler that
MathWorks supplies with MATLAB for Windows 32-bit platforms.

• Consider disabling run-time checks.

 MATLAB Code Design Considerations for Code Generation

20-7

By default, for safety, the code generated for your MATLAB code contains memory
integrity checks and responsiveness checks. Generally, these checks result in more
generated code and slower simulation. Disabling run-time checks usually results
in streamlined generated code and faster simulation. Disable these checks only if
you have verified that array bounds and dimension checking is unnecessary.

See Also

• “Data Definition Basics”
• “Variable-Size Data”
• “Bounded Versus Unbounded Variable-Size Data”
• “Control Dynamic Memory Allocation”
• “Control Run-Time Checks”

20 Design Considerations for C/C++ Code Generation

20-8

Differences in Behavior After Compiling MATLAB Code

In this section...

“Why Are There Differences?” on page 20-8
“Character Size” on page 20-8
“Order of Evaluation in Expressions” on page 20-8
“Termination Behavior” on page 20-9
“Size of Variable-Size N-D Arrays” on page 20-9
“Size of Empty Arrays” on page 20-10
“Floating-Point Numerical Results” on page 20-10
“NaN and Infinity Patterns” on page 20-10
“Code Generation Target” on page 20-11
“MATLAB Class Initial Values” on page 20-11
“Variable-Size Support for Code Generation” on page 20-11
“Complex Numbers” on page 20-11

Why Are There Differences?

To convert MATLAB code to C/C++ code that works efficiently, the code generation
process introduces optimizations that intentionally cause the generated code to behave
differently — and sometimes produce different results — from the original source code.
This section describes these differences.

Character Size

MATLAB supports 16-bit characters, but the generated code represents characters in 8
bits, the standard size for most embedded languages like C. See “Code Generation for
Characters” on page 17-9.

Order of Evaluation in Expressions

Generated code does not enforce order of evaluation in expressions. For most expressions,
order of evaluation is not significant. However, for expressions with side effects, the

 Differences in Behavior After Compiling MATLAB Code

20-9

generated code may produce the side effects in different order from the original MATLAB
code. Expressions that produce side effects include those that:

• Modify persistent or global variables
• Display data to the screen
• Write data to files
• Modify the properties of handle class objects

In addition, the generated code does not enforce order of evaluation of logical operators
that do not short circuit.

For more predictable results, it is good coding practice to split expressions that depend on
the order of evaluation into multiple statements. For example, rewrite:

A = f1() + f2();

as

A = f1();

A = A + f2();

so that the generated code calls f1 before f2.

Termination Behavior

Generated code does not match the termination behavior of MATLAB source code. For
example, optimizations remove infinite loops from generated code if they do not have side
effects. As a result, the generated code may terminate even though the corresponding
MATLAB code does not.

Size of Variable-Size N-D Arrays

For variable-size N-D arrays, the size function might return a different result in
generated code than in MATLAB source code. The size function sometimes returns
trailing ones (singleton dimensions) in generated code, but always drops trailing ones
in MATLAB. For example, for an N-D array X with dimensions [4 2 1 1], size(X)
might return [4 2 1 1] in generated code, but always returns [4 2] in MATLAB. See
“Incompatibility with MATLAB in Determining Size of Variable-Size N-D Arrays” on
page 26-28.

20 Design Considerations for C/C++ Code Generation

20-10

Size of Empty Arrays

The size of an empty array in generated code might be different from its size in MATLAB
source code. See “Incompatibility with MATLAB in Determining Size of Empty Arrays”
on page 26-29.

Floating-Point Numerical Results

The generated code might not produce the same floating-point numerical results as
MATLAB in the following situations:

When computer hardware uses extended precision registers

Results vary depending on how the C/C++ compiler allocates extended precision floating-
point registers. Computation results might not match MATLAB calculations because of
different compiler optimization settings or different code surrounding the floating-point
calculations.

For certain advanced library functions

The generated code might use different algorithms to implement certain advanced
library functions, such as fft, svd, eig, mldivide, and mrdivide.

For example, the generated code uses a simpler algorithm to implement svd to
accommodate a smaller footprint. Results might also vary according to matrix properties.
For example, MATLAB might detect symmetric or Hermitian matrices at run time and
switch to specialized algorithms that perform computations faster than implementations
in the generated code.

For implementation of BLAS library functions

For implementations of BLAS library functions. Generated C/C++ code uses reference
implementations of BLAS functions, which may produce different results from platform-
specific BLAS implementations in MATLAB.

NaN and Infinity Patterns

The generated code might not produce exactly the same pattern of NaN and inf values
as MATLAB code when these values are mathematically meaningless. For example, if
MATLAB output contains a NaN, output from the generated code should also contain a
NaN, but not necessarily in the same place.

 Differences in Behavior After Compiling MATLAB Code

20-11

Code Generation Target

The coder.target function returns different values in MATLAB than in the generated
code. The intent is to help you determine whether your function is executing in MATLAB
or has been compiled for a simulation or code generation target. See coder.target.

MATLAB Class Initial Values

Before code generation, at class loading time, MATLAB computes class initial values.
The code generation software uses the value that MATLAB computes. It does not
recompute the initial value. If the initialization uses a function call to compute the
initial value, the code generation software does not execute this function. If the function
modifies a global state, for example, a persistent variable, code generation software
might provide a different initial value than MATLAB. For more information, see
“Defining Class Properties for Code Generation”.

Variable-Size Support for Code Generation

For incompatibilities with MATLAB in variable-size support for code generation, see:

• “Incompatibility with MATLAB for Scalar Expansion”
• “Incompatibility with MATLAB in Determining Size of Variable-Size N-D Arrays”
• “Incompatibility with MATLAB in Determining Size of Empty Arrays”
• “Incompatibility with MATLAB in Vector-Vector Indexing”
• “Incompatibility with MATLAB in Matrix Indexing Operations for Code Generation”

Complex Numbers

See “Code Generation for Complex Data” on page 17-4.

20 Design Considerations for C/C++ Code Generation

20-12

MATLAB Language Features Supported for C/C++ Code
Generation

MATLAB supports the following language features in generated code:

• N-dimensional arrays (see “Array Size Restrictions for Code Generation” on page
17-10)

• Matrix operations, including deletion of rows and columns
• Variable-sized data (see “Variable-Size Data Definition for Code Generation” on page

26-3)
• Subscripting (see “Incompatibility with MATLAB in Matrix Indexing Operations for

Code Generation” on page 26-31)
• Complex numbers (see “Code Generation for Complex Data” on page 17-4)
• Numeric classes (see “Supported Variable Types” on page 19-17)
• Double-precision, single-precision, and integer math
• Fixed-point arithmetic (see “Code Acceleration and Code Generation from MATLAB”)
• Program control statements if, switch, for, while, and break
• Arithmetic, relational, and logical operators
• Local functions
• Persistent variables (see “Define and Initialize Persistent Variables” on page 19-10)
• Global variables.
• Structures (see “Structure Definition for Code Generation”)
• Characters (see “Code Generation for Characters” on page 17-9)
• Function handles (see “Function Handle Definition for Code Generation”)
• Frames
• Variable length input and output argument lists
• Subset of MATLAB toolbox functions (see “Functions and Objects Supported for C and

C++ Code Generation — Alphabetical List” on page 25-2)
• Subset of functions and System objects in Aerospace Toolbox, Communications

System Toolbox™, Computer Vision System Toolbox™, DSP System Toolbox, Fixed-
Point Designer, Image Processing Toolbox™, Signal Processing Toolbox™, Phased
Array System Toolbox™, Statistics and Machine Learning Toolbox™ (see “Functions
and Objects Supported for C and C++ Code Generation — Category List” on page
25-147)

 MATLAB Language Features Supported for C/C++ Code Generation

20-13

• MATLAB classes (see “MATLAB Classes Definition for Code Generation”)
• Ability to call functions (see “Resolution of Function Calls for Code Generation” on

page 15-2)

MATLAB Language Features Not Supported for C/C++ Code Generation

MATLAB does not support the following features in generated code:

• Anonymous functions
• Cell arrays
• Java
• Nested functions
• Recursion
• Sparse matrices
• try/catch statements

21

Code Generation for Enumerated
Data

• “Enumerated Data Definition for Code Generation” on page 21-2
• “Enumerated Types Supported for Code Generation” on page 21-3
• “When to Use Enumerated Data for Code Generation” on page 21-6
• “Generate Code for Enumerated Data from MATLAB Algorithms” on page 21-7
• “Define Enumerated Data for Code Generation” on page 21-8
• “Operations on Enumerated Data for Code Generation” on page 21-10
• “Include Enumerated Data in Control Flow Statements” on page 21-13
• “Customize Enumerated Types for Code Generation” on page 21-19
• “Control Names of Enumerated Type Values in Generated Code” on page 21-24
• “Change and Reload Enumerated Data Types” on page 21-27
• “Restrictions on Use of Enumerated Data in for-Loops” on page 21-28
• “Toolbox Functions That Support Enumerated Types for Code Generation” on page

21-29

21 Code Generation for Enumerated Data

21-2

Enumerated Data Definition for Code Generation

To generate efficient standalone code for enumerated data, you must define and use
enumerated types differently than you do in the MATLAB environment:

Difference More Information

Supports integer-based enumerated types
only

“Enumerated Types Supported for Code
Generation” on page 21-3

Name of each enumerated data type must
be unique

“Naming Enumerated Types for Code
Generation” on page 21-9

Each enumerated data type must be
defined in a separate file on the MATLAB
path

“Define Enumerated Data for Code
Generation” on page 21-8 and
“Generate Code for Enumerated Data from
MATLAB Algorithms” on page 21-7

Restricted set of operations “Operations on Enumerated Data for Code
Generation” on page 21-10

Restricted use in for-loops “Restrictions on Use of Enumerated Data
in for-Loops” on page 21-28

 Enumerated Types Supported for Code Generation

21-3

Enumerated Types Supported for Code Generation

An enumerated type is a user-defined type whose values belong to a predefined set
of enumerated values. Each enumerated value consists of a name and an underlying
numeric value.

You define an enumerated data type in an enumeration class definition file. For code
generation, you must base the class on int8, uint8, int16, uint16, or int32. For
example:

classdef PrimaryColors < int32

 enumeration

 Red(1),

 Blue(2),

 Yellow(4)

 end

end

In this example, the statement classdef PrimaryColors < int32 means
that the enumerated type PrimaryColors is based on the built-in type int32.
PrimaryColors inherits the characteristics of the int32 type. It also defines its own
unique characteristics. For example, PrimaryColors is restricted to three enumerated
values:

Enumerated Value Enumerated Name Underlying Numeric Value

Red(1) Red 1
Blue(2) Blue 2
Yellow(4) Yellow 4

Enumeration Class Base Types for Code Generation

For code generation, you must base an enumerated type on one of the following built-in
MATLAB integer data types:

• int8

• uint8

• int16

• uint16

21 Code Generation for Enumerated Data

21-4

• int32

If you use MATLAB Coder to generate C/C++ code , you can use the base type to control
the size of an enumerated type in the generated code. You can:

• Represent an enumerated type as a fixed-size integer that is portable to different
targets.

• Reduce memory usage.
• Interface to legacy code.
• Match company standards.

The base type determines the representation of the enumerated type in generated C/C++
code.

C Code Representation for Base Type int32

If the base type is int32, the code generation software generates a C enumeration type.
Consider the following MATLAB enumerated type definition:

classdef LEDcolor < int32

 enumeration

 GREEN(1),

 RED(2)

 end

 end

This enumerated type definition results in the following C code:

enum LEDcolor

{

 GREEN = 1,

 RED

};

typedef enum LEDcolor LEDcolor;

C Code Representation for Base Type Other Than int32

For built-in integer base types other than int32, the code generation software generates
a typedef statement for the enumerated type and #define statements for the
enumerated values. Consider the following MATLAB enumerated type definition:

 Enumerated Types Supported for Code Generation

21-5

classdef LEDcolor < int16

 enumeration

 GREEN(1),

 RED(2)

 end

end

This enumerated type definition results in the following C code:

typedef short LEDcolor;

#define GREEN ((LEDcolor)1)

#define RED ((LEDcolor)2)

The C type in the typedef statement depends on:

• The integer sizes defined for the production hardware in the
Hardware Implementation object or the project settings. See
coder.HardwareImplementation in the MATLAB Coder documentation.

• The setting that determines use of built-in C types or MathWorks typedefs in
the generated code. See “Specify Data Types Used in Generated Code” and “How
MATLAB Coder Infers C/C++ Data Types” in the MATLAB Coder documentation.

21 Code Generation for Enumerated Data

21-6

When to Use Enumerated Data for Code Generation

You can use enumerated types to represent program states and to control program logic,
especially when you restrict data to a predetermined set of values and refer to these
values by name. You can sometimes achieve these goals by using integers or strings,
however, enumerated types offer the following advantages:

• More readable code than integers.
• More robust error checking than integers or strings.

For example, if you mistype the name of an element in the enumerated type, you get a
compile-time error that the element does not belong to the set of allowable values.

• More efficient code than strings.

For example, comparisons of enumerated values execute faster than comparisons of
strings.

 Generate Code for Enumerated Data from MATLAB Algorithms

21-7

Generate Code for Enumerated Data from MATLAB Algorithms

The basic workflow for generating code for enumerated types in MATLAB code is:

1 Define an enumerated data type that inherits from a base type that code generation
supports. See “Enumerated Types Supported for Code Generation”.

2 Save the enumerated data type in a file on the MATLAB path.
3 Write a MATLAB function that uses the enumerated type.
4 Specify enumerated type inputs using the project or the command-line interface.
5 Generate code.

This workflow requires a MATLAB Coder license.

See Also

• “Define Enumerated Data for Code Generation”

21 Code Generation for Enumerated Data

21-8

Define Enumerated Data for Code Generation

To define enumerated data for code generation from MATLAB algorithms:

1 Create a class definition file.

In the Command Window, select File > New > Class.

2 Enter the class definition:

classdef EnumTypeName < BaseType

EnumTypeName is a case-sensitive string that must be unique among data type
names and workspace variable names. BaseType must be int8, uint8, int16,
uint16, or int32.

For example, the following code defines an enumerated type called sysMode that
inherits from the built-in type int32:

classdef sysMode < int32

 ...

end

3 Define enumerated values in an enumeration section:

classdef EnumTypeName < BaseType

 enumeration

 EnumName(N)

 ...

 end

end

For example, the following code defines a set of two values for enumerated type
sysMode:

classdef sysMode < int32

 enumeration

 OFF(0),

 ON(1)

 end

end

Each enumerated value consists of a string EnumName and an underlying integer
N. Each EnumName must be unique within its type. If the enumerated value name

 Define Enumerated Data for Code Generation

21-9

does not include the class name prefix, EnumName must be unique across enumerated
types. See “Control Names of Enumerated Type Values in Generated Code” on page
21-24.

The underlying integers do not have to be consecutive or ordered, or unique within or
across types.

4 Save the file on the MATLAB path.

The name of the file must match the name of the enumerated data type. The match
is case sensitive.

For examples, see “Include Enumerated Data in Control Flow Statements” on page
21-13.

Naming Enumerated Types for Code Generation

You must use a unique name for each enumerated data type. Do not use the name of:

• A toolbox function supported for code generation.
• Another data type.
• A variable in the MATLAB base workspace.

For example, you cannot name an enumerated data type mode because MATLAB for code
generation provides a toolbox function of the same name.

For a list of toolbox functions supported for code generation, see “Functions and Objects
Supported for C and C++ Code Generation — Alphabetical List”.

21 Code Generation for Enumerated Data

21-10

Operations on Enumerated Data for Code Generation
To generate efficient standalone code for enumerated data, you are restricted to the
following operations. The examples use the following enumerated class definition:

classdef LEDcolor < int32

 enumeration

 GREEN(1),

 RED(2)

 end

 end

.

Assignment Operator, =

Example Result

xon = LEDcolor.GREEN

xoff = LEDcolor.RED

xon =

 GREEN

xoff =

 RED

Relational Operators, < > <= >= == ~=

Example Result

xon == xoff ans =

 0

xon <= xoff ans =

 1

xon > xoff ans =

 0

Cast Operation

Example Result

double(LEDcolor.RED) ans =

 Operations on Enumerated Data for Code Generation

21-11

Example Result

 2

z = 2

y = LEDcolor(z)

z =

 2

y =

 RED

Indexing Operation

Example Result

m = [1 2]

n = LEDcolor(m)

p = n(LEDcolor.GREEN)

m =

 1 2

n =

 GREEN RED

p =

 GREEN

Control Flow Statements: if, switch, while

Statement Example Executable Example

if if state == sysMode.ON

 led = LEDcolor.GREEN;

else

 led = LEDcolor.RED;

end

“if Statement with
Enumerated Data
Types” on page
21-13

switch switch button

 case VCRButton.Stop

 state = VCRState.Stop;

“switch Statement
with Enumerated

21 Code Generation for Enumerated Data

21-12

Statement Example Executable Example
 case VCRButton.PlayOrPause

 state = VCRState.Play;

 case VCRButton.Next

 state = VCRState.Forward;

 case VCRButton.Previous

 state = VCRState.Rewind;

 otherwise

 state = VCRState.Stop;

end

Data Types” on page
21-14

while while state ~= State.Ready

 switch state

 case State.Standby

 initialize();

 state = State.Boot;

 case State.Boot

 boot();

 state = State.Ready;

 end

end

“while Statement
with Enumerated
Data Types” on page
21-16

 Include Enumerated Data in Control Flow Statements

21-13

Include Enumerated Data in Control Flow Statements

The following examples define enumerated types that use the base type int32. You can
base an enumerated type on one of these built-in integer types:

• int8

• uint8

• int16

• uint16

• int32

The base type determines the representation of the enumerated type in the generated C/
C++ code. See “Enumerated Types Supported for Code Generation” on page 21-3.

if Statement with Enumerated Data Types

This example defines the enumeration types LEDcolor and sysMode. The function
displayState uses these enumerated data types to activate an LED display.

Class Definition: sysMode

classdef sysMode < int32

 enumeration

 OFF(0),

 ON(1)

 end

end

This definition must reside on the MATLAB path in a file with the same name as the
class, sysMode.m.

Class Definition: LEDcolor

classdef LEDcolor < int32

 enumeration

 GREEN(1),

 RED(2)

 end

 end

This definition must reside on the MATLAB path in a file called LEDcolor.m.

21 Code Generation for Enumerated Data

21-14

MATLAB Function: displayState

This function uses enumerated data to activate an LED display, based on the state of
a device. It lights a green LED display to indicate the ON state and lights a red LED
display to indicate the OFF state.

function led = displayState(state)

%#codegen

if state == sysMode.ON

 led = LEDcolor.GREEN;

else

 led = LEDcolor.RED;

end

Build and Test a MEX Function for displayState

1 Generate a MEX function for displayState. Use the -args option to pass one of
the allowable values for the enumerated data input as a sample value.

codegen displayState -args {sysMode.ON}

2 Test the function. For example,

displayState(sysMode.OFF)

ans =

 RED

switch Statement with Enumerated Data Types

This example is based on the definition of the enumeration types VCRState and
VCRButton. The function VCR uses these enumerated data types to set the state of the
VCR.

Class Definition: VCRState

classdef VCRState < int32

 enumeration

 Stop(0),

 Pause(1),

 Play(2),

 Forward(3),

 Include Enumerated Data in Control Flow Statements

21-15

 Rewind(4)

 end

end

This definition must reside on the MATLAB path in a file with the same name as the
class, VCRState.m.

Class Definition: VCRButton

classdef VCRButton < int32

 enumeration

 Stop(1),

 PlayOrPause(2),

 Next(3),

 Previous(4)

 end

end

This definition must reside on the MATLAB path in a file with the same name as the
class, VCRButton.m.

MATLAB Function: VCR

This function uses enumerated data to set the state of a VCR, based on the initial state of
the VCR and the state of the VCR button.

function s = VCR(button)

%#codegen

persistent state

if isempty(state)

 state = VCRState.Stop;

end

switch state

 case {VCRState.Stop, VCRState.Forward, VCRState.Rewind}

 state = handleDefault(button);

 case VCRState.Play

 switch button

 case VCRButton.PlayOrPause, state = VCRState.Pause;

 otherwise, state = handleDefault(button);

 end

 case VCRState.Pause

21 Code Generation for Enumerated Data

21-16

 switch button

 case VCRButton.PlayOrPause, state = VCRState.Play;

 otherwise, state = handleDefault(button);

 end

end

s = state;

function state = handleDefault(button)

switch button

 case VCRButton.Stop, state = VCRState.Stop;

 case VCRButton.PlayOrPause, state = VCRState.Play;

 case VCRButton.Next, state = VCRState.Forward;

 case VCRButton.Previous, state = VCRState.Rewind;

 otherwise, state = VCRState.Stop;

end

Build and Test a MEX Function for VCR

1 Generate a MEX function for VCR. Use the -args option to pass one of the allowable
values for the enumerated data input as a sample value.

codegen -args {VCRButton.Stop} VCR

2 Test the function. For example,

s = VCR(VCRButton.Stop)

s =

 Stop

while Statement with Enumerated Data Types

This example is based on the definition of the enumeration type State. The function
Setup uses this enumerated data type to set the state of a device.

Class Definition: State

classdef State < int32

 enumeration

 Standby(0),

 Boot(1),

 Ready(2)

 end

end

 Include Enumerated Data in Control Flow Statements

21-17

This definition must reside on the MATLAB path in a file with the same name as the
class, State.m.

MATLAB Function: Setup

The following function Setup uses enumerated data to set the state of a device.

function s = Setup(initState)

%#codegen

state = initState;

if isempty(state)

 state = State.Standby;

end

while state ~= State.Ready

 switch state

 case State.Standby

 initialize();

 state = State.Boot;

 case State.Boot

 boot();

 state = State.Ready;

 end

end

s = state;

function initialize()

% Perform initialization.

function boot()

% Boot the device.

Build and Test a MEX Executable for Setup

1 Generate a MEX executable for Setup. Use the -args option to pass one of the
allowable values for the enumerated data input as a sample value.

codegen Setup -args {State.Standby}

2 Test the function. For example,

s = Setup(State.Standby)

s =

21 Code Generation for Enumerated Data

21-18

 Ready

 Customize Enumerated Types for Code Generation

21-19

Customize Enumerated Types for Code Generation

Customizing Enumerated Types

For code generation, you can customize an enumerated type by using the same
techniques that work with MATLAB classes, as described in Modifying Superclass
Methods and Properties. You can customize an enumerated type by including a methods
section in the enumerated class definition. You can override the following methods
to customize the behavior of an enumerated type. To override a method, include a
customized version of the method in the methods section in the enumerated class
definition. If you do not want to override the inherited methods, omit the methods
section.

21 Code Generation for Enumerated Data

21-20

Method Description Default Value
Returned or Specified

When to Use

addClassNameToEnumNames Specifies whether
the class name
becomes a prefix in
the generated code.

false — prefix is
not used.

If you want the class
name to become
a prefix in the
generated code,
override this method
to set the return
value to true. See
“Control Names of
Enumerated Type
Values in Generated
Code” on page
21-24.

getDefaultValue Returns the default
enumerated value.

First value in the
enumerated class
definition.

If you want the
default value for the
enumerated type
to be something
other than the first
value listed in the
enumerated class
definition, override
this method to specify
a default value. See
“Specify a Default
Enumerated Value”
on page 21-21.

 Customize Enumerated Types for Code Generation

21-21

Method Description Default Value
Returned or Specified

When to Use

getHeaderFile Specifies the
file in which the
enumerated class
is defined for code
generation.

'' If you want to use
an enumerated
class definition that
is specified in a
custom header file,
override this method
to return the path to
this header file. In
this case, the code
generation software
does not generate
the class definition.
See “Specify a
Header File” on page
21-22

Specify a Default Enumerated Value

If the value of a variable that is cast to an enumerated type does not match one of the
enumerated type values:

• Generated MEX reports an error.
• Generated C/C++ code replaces the value of the variable with the enumerated type

default value.

Unless you specify otherwise, the default value for an enumerated type is the first value
in the enumerated class definition. To specify a different default value, add your own
getDefaultValue method to the methods section. The following code shows a shell for
the getDefaultValue method:

function retVal = getDefaultValue()

% GETDEFAULTVALUE Returns the default enumerated value.

% This value must be an instance of the enumerated class.

% If this method is not defined, the first enumerated value is used.

 retVal = ThisClass.EnumName;

end

To customize this method, provide a value for ThisClass.EnumName that specifies
the default that you want. ThisClass must be the name of the class within which the

21 Code Generation for Enumerated Data

21-22

method exists. EnumName must be the name of an enumerated value defined in that
class. For example:

classdef LEDcolor < int32

 enumeration

 GREEN(1),

 RED(2)

 end

 methods (Static)

 function y = getDefaultValue()

 y = LEDcolor.RED;

 end

 end

end

This example defines the default as LEDcolor.RED. If this method does not appear,
the default value is LEDcolor.GREEN, because that value is the first value listed in the
enumerated class definition.

Specify a Header File

To prevent the declaration of an enumerated type from being embedded in the generated
code, allowing you to provide the declaration in an external file, include the following
method in the enumerated class methods section:

function y = getHeaderFile()

% GETHEADERFILE File where type is defined for generated code.

% If specified, this file is #included where required in the code.

% Otherwise, the type is written out in the generated code.

y = 'filename';

end

Substitute a legal filename for filename. Be sure to provide a filename suffix, typically
.h. Providing the method replaces the declaration that appears in the generated code
with an #include statement like:

#include "imported_enum_type.h"

The getHeaderFile method does not create the declaration file itself. You must provide
a file of the specified name that declares the enumerated data type. The file can also
contain definitions of enumerated types that you do not use in your MATLAB code.

For example, to use the definition of LEDcolor in my_LEDcolor.h:

 Customize Enumerated Types for Code Generation

21-23

1 Modify the definition of LEDcolor to override the getHeaderFile method to return
the name of the external header file:

classdef LEDcolor < int32

 enumeration

 GREEN(1),

 RED(2)

 end

 methods(Static)

 function y=getHeaderFile()

 y='my_LEDcolor.h';

 end

 end

end

2 In the current folder, provide a header file, my_LEDcolor.h, that contains the
definition:

enum LEDcolor

{

 GREEN = 1,

 RED

};

typedef enum LEDcolor LEDcolor;

3 Generate a library for the function displayState that takes one input of
enumerated data type sysMode.

codegen -config:lib -report displayState -args {sysMode.ON}

codegen generates a C static library with the default name, displayState, and
supporting files in the default folder, codegen/lib/displayState.

4 Click the View Report link.
5 In the report, on the C Code tab, click the link to the displayState_types.h file.

The header file contains a #include statement for the external header file.

#include "my_LEDcolor.h"

It does not include a declaration for the enumerated class.

21 Code Generation for Enumerated Data

21-24

Control Names of Enumerated Type Values in Generated Code

This example shows how to control whether generated enumerated type value names
include the class name prefix from the enumerated type definition. By default, the
generated enumerated type value name does not include the class name prefix.

1 Define the enumerated type sysMode. Store it in sysMode.m on the MATLAB path.

classdef sysMode < int32

 enumeration

 OFF(0),

 ON(1)

 end

end

2 Define the enumerated type LEDcolor. Store it in LEDcolor.m on the MATLAB
path.

classdef LEDcolor < int32

 enumeration

 GREEN(1),

 RED(2)

 end

 end

3 Define the function displayState, which uses enumerated data to activate an LED
display, based on the state of a device. displayState lights a green LED display to
indicate the ON state and lights a red LED display to indicate the OFF state. Store
in displayState.m on the MATLAB path.

function led = displayState(state)

%#codegen

if state == sysMode.ON

 led = LEDcolor.GREEN;

else

 led = LEDcolor.RED;

end

4 Generate a library for the function displayState that takes one input of
enumerated data type sysMode.

codegen -config:lib -report displayState -args {sysMode.ON}

 Control Names of Enumerated Type Values in Generated Code

21-25

codegen generates a C static library with the default name, displayState, and
supporting files in the default folder, codegen/lib/displayState.

5 Click the View Report link.
6 In the report, on the C Code tab, click the link to the displayState_types.h file.

The report displays the header file containing the enumerated data type definition.

enum LEDcolor

{

 GREEN = 1,

 RED

};

typedef enum LEDcolor LEDcolor;

The enumerated value names do not include the class name prefix LEDcolor_.
7 Modify the definition of LEDcolor to add the addClassNameToEnumNames method.

Set the return value to true so that the enumerated value names in the generated
code contain the class prefix.

classdef LEDcolor < int32

 enumeration

 GREEN(1),

 RED(2)

 end

 methods(Static)

 function y=addClassNameToEnumNames()

 y=true;

 end

 end

end

8 Clear existing class instances.

clear classes

9 Generate code.

codegen -config:lib -report displayState -args {sysMode.ON}

10 Open the code generation report and look at the enumerated type definition in
displayState_types.h.

21 Code Generation for Enumerated Data

21-26

enum LEDcolor

{

 LEDcolor_GREEN = 1,

 LEDcolor_RED

};

typedef enum LEDcolor LEDcolor;

The enumerated value names include the class name prefix.

 Change and Reload Enumerated Data Types

21-27

Change and Reload Enumerated Data Types

You can change the definition of an enumerated data type by editing and saving the file
that contains the definition. You do not need to inform MATLAB that a class definition
has changed. MATLAB automatically reads the modified definition when you save
the file. However, the class definition changes do not take full effect if class instances
(enumerated values) exist that reflect the previous class definition. Such instances might
exist in the base workspace or might be cached. The following table explains options for
removing instances of an enumerated data type from the base workspace and cache.

If In Base Workspace... If In Cache...

Do one of the following:

• Locate and delete specific obsolete
instances.

• Delete the classes from the workspace
by using the clear classes
command. For more information, see
clear.

• Clear MEX functions that are caching
instances of the class.

21 Code Generation for Enumerated Data

21-28

Restrictions on Use of Enumerated Data in for-Loops

Do not use enumerated data as the loop counter variable in for- loops

To iterate over a range of enumerated data with consecutive values, in the loop counter,
cast the enumerated data to a built-in integer type. The size of the built-in integer type
must be big enough to contain the enumerated value.

For example, suppose you define an enumerated type ColorCodes as follows:

classdef ColorCodes < int32

 enumeration

 Red(1),

 Blue(2),

 Green(3),

 Yellow(4),

 Purple(5)

 end

end

Because the enumerated values are consecutive, you can use ColorCodes data in a
for-loop like this:

...

for i = int32(ColorCodes.Red):int32(ColorCodes.Purple)

 c = ColorCodes(i);

 ...

end

 Toolbox Functions That Support Enumerated Types for Code Generation

21-29

Toolbox Functions That Support Enumerated Types for Code
Generation

The following MATLAB toolbox functions support enumerated types for code generation:

• cast

• cat

• circshift

• flipdim

• fliplr

• flipud

• histc

• intersect

• ipermute

• isequal

• isequaln

• isfinite

• isinf

• ismember

• isnan

• issorted

• length

• permute

• repmat

• reshape

• rot90

• setdiff

• setxor

• shiftdim

• sort

• sortrows

21 Code Generation for Enumerated Data

21-30

• squeeze

• union

• unique

22

Code Generation for Function Handles

• “Function Handle Definition for Code Generation” on page 22-2
• “Define and Pass Function Handles for Code Acceleration” on page 22-3
• “Function Handle Limitations for Code Generation” on page 22-5

22 Code Generation for Function Handles

22-2

Function Handle Definition for Code Generation

You can use function handles to invoke functions indirectly and parameterize operations
that you repeat frequently. You can perform the following operations with function
handles:

• Define handles that reference user-defined functions and built-in functions supported
for code generation (see “Functions and Objects Supported for C and C++ Code
Generation — Alphabetical List”)

Note: You cannot define handles that reference extrinsic MATLAB functions.
• Define function handles as scalar values
• Define structures that contain function handles
• Pass function handles as arguments to other functions (excluding extrinsic functions)

To generate efficient standalone code for enumerated data, you are restricted to using a
subset of the operations you can perform with function handles in MATLAB, as described
in “Function Handle Limitations for Code Generation” on page 22-5

 Define and Pass Function Handles for Code Acceleration

22-3

Define and Pass Function Handles for Code Acceleration

The following code example shows how to define and call function handles for code
acceleration.

function [y1, y2] = addval(m)

%#codegen

 disp(m);

 % Pass function handle to addone

 % to add one to each element of m

 y1 = map(@addone, m);

 disp(y1);

 % Pass function handle to addtwo

 % to add two to each element of m

 y2 = map(@addtwo, m);

 disp(y2);

 function y = map(f,m)

 y = m;

 for i = 1:numel(y)

 y(i) = f(y(i));

 end

 function y = addone(u)

 y = u + 1;

 function y = addtwo(u)

 y = u + 2;

This code passes function handles @addone and @addtwo to the function map which
increments each element of the matrix m by the amount prescribed by the referenced
function. Note that map stores the function handle in the input variable f and then uses
f to invoke the function — in this case addone first and then addtwo.

You can use the function fiaccel to convert the function addval to a MEX executable
that you can run in MATLAB. Follow these steps:

1 At the MATLAB command prompt, define and initialize a 3-by-3 matrix:

m = fi(magic(3));

22 Code Generation for Function Handles

22-4

2 Use fiaccel to compile the function to a MEX executable:

fiaccel addval -args {m}

3 Execute the function:

[y1, y2] = addval_mex(m);

 8 1 6

 3 5 7

 4 9 2

 DataTypeMode: Fixed-point: binary point scaling

 Signedness: Signed

 WordLength: 16

 FractionLength: 11

 9 2 7

 4 6 8

 5 10 3

 DataTypeMode: Fixed-point: binary point scaling

 Signedness: Signed

 WordLength: 16

 FractionLength: 11

 10 3 8

 5 7 9

 6 11 4

 DataTypeMode: Fixed-point: binary point scaling

 Signedness: Signed

 WordLength: 16

 FractionLength: 11

 Function Handle Limitations for Code Generation

22-5

Function Handle Limitations for Code Generation

You cannot use the same bound variable to reference different function handles.

After you bind a variable to a specific function, you cannot use the same variable to
reference two different function handles, as in this example:

%Incorrect code

...

x = @plus;

x = @minus;

...

This code produces a compilation error.

You cannot pass function handles to or from coder.ceval.

You cannot pass function handles as inputs to or outputs from coder.ceval. For
example, suppose that f and str.f are function handles:

f = @sin;

str.x = pi;

str.f = f;

The following statements result in compilation errors:

coder.ceval('foo', @sin);

coder.ceval('foo', f);

coder.ceval('foo', str);

You cannot pass function handles to or from extrinsic functions.

You cannot pass function handles to or from feval and other extrinsic MATLAB
functions. For more information, see “Declaring MATLAB Functions as Extrinsic
Functions” on page 15-12.

You cannot pass function handles to or from primary functions.

You cannot pass function handles as inputs to or outputs from primary functions. For
example, consider this function:

function x = plotFcn(fhandle, data)

assert(isa(fhandle,'function_handle') && isa(data,'double'));

22 Code Generation for Function Handles

22-6

plot(data, fhandle(data));

x = fhandle(data);

In this example, the function plotFcn receives a function handle and its data as primary
inputs. plotFcn attempts to call the function referenced by the fhandle with the input
data and plot the results. However, this code generates a compilation error. The error
indicates that the function isa does not recognize 'function_handle' as a class name
when called inside a MATLAB function to specify properties of primary inputs.

23

Generate Efficient and Reusable Code

• “Optimization Strategies” on page 23-2
• “Modularize MATLAB Code” on page 23-5
• “Eliminate Redundant Copies of Function Inputs” on page 23-6
• “Inline Code” on page 23-8
• “Control Inlining” on page 23-10
• “Fold Function Calls into Constants” on page 23-13
• “Control Stack Space Usage” on page 23-15
• “Stack Allocation and Performance” on page 23-16
• “Dynamic Memory Allocation and Performance” on page 23-17
• “Minimize Dynamic Memory Allocation” on page 23-18
• “Provide Maximum Size for Variable-Size Arrays” on page 23-19
• “Disable Dynamic Memory Allocation During Code Generation” on page 23-25
• “Set Dynamic Memory Allocation Threshold” on page 23-26
• “Excluding Unused Paths from Generated Code” on page 23-28
• “Prevent Code Generation for Unused Execution Paths” on page 23-29
• “Generate Code with Parallel for-Loops (parfor)” on page 23-31
• “Minimize Redundant Operations in Loops” on page 23-33
• “Unroll for-Loops” on page 23-35
• “Support for Integer Overflow and Non-Finites” on page 23-38
• “Integrate Custom Code” on page 23-40
• “MATLAB Coder Optimizations in Generated Code” on page 23-46
• “Generate Reusable Code” on page 23-49

23 Generate Efficient and Reusable Code

23-2

Optimization Strategies

MATLAB Coder introduces certain optimizations when generating C/C++ code or
MEX functions from your MATLAB code. For more information, see “MATLAB Coder
Optimizations in Generated Code”.

To optimize your generated code further, you can:

• Adapt your MATLAB code.
• Control code generation using the configuration object from the command-line or the

project settings dialog box.

To optimize the execution speed of generated code, for these conditions, perform the
following actions as necessary:

Condition Action

You have for-loops whose iterations are
independent of each other.

“Generate Code with Parallel for-Loops (parfor)”

You have variable-size arrays in your MATLAB
code.

“Minimize Dynamic Memory Allocation”

You have multiple variable-size arrays in your
MATLAB code. You want dynamic memory
allocation for larger arrays and static allocation
for smaller ones.

“Set Dynamic Memory Allocation Threshold”

You want your generated function to be called by
reference.

“Eliminate Redundant Copies of Function
Inputs”

You are calling small functions in your MATLAB
code.

“Inline Code”

You have limited target memory for your
generated code. You want to inline small
functions and generate separate code for larger
ones.

“Control Inlining”

You do not want to generate code for expressions
that contain constants only.

“Fold Function Calls into Constants”

You have loop operations in your MATLAB code
that do not depend on the loop index.

“Minimize Redundant Operations in Loops”

 Optimization Strategies

23-3

Condition Action

You have integer operations in your MATLAB
code. You know beforehand that integer
overflow does not occur during execution of your
generated code.

“Disable Support for Integer Overflow”

You know beforehand that Infs and NaNs do not
occur during execution of your generated code.

“Disable Support for Non-Finite Numbers”

You have for-loops with few iterations. “Unroll for-Loops”
You already have legacy C/C++ code optimized
for your target environment.

“Integrate Custom Code”

To optimize the memory usage of generated code, for these conditions, perform the
following actions as necessary:

Condition Action

You have if/else/elseif statements
or switch/case/otherwise statements
in your MATLAB code. You do not require
some branches of the statements in your
generated code.

“Prevent Code Generation for Unused
Execution Paths”

You want your generated function to be
called by reference.

“Eliminate Redundant Copies of Function
Inputs”

You have limited stack space for your
generated code.

“Control Stack Space Usage”

You are calling small functions in your
MATLAB code.

“Inline Code”

You have limited target memory for your
generated code. You want to inline small
functions and generate separate code for
larger ones.

“Control Inlining”

You do not want to generate code for
expressions that contain constants only.

“Fold Function Calls into Constants”

You have loop operations in your MATLAB
code that do not depend on the loop index.

“Minimize Redundant Operations in Loops”

You have integer operations in your
MATLAB code. You know beforehand that

“Disable Support for Integer Overflow”

23 Generate Efficient and Reusable Code

23-4

Condition Action

integer overflow does not occur during
execution of your generated code.
You know beforehand that Inf-s and NaN-
s does not occur during execution of your
generated code.

“Disable Support for Non-Finite Numbers”

Your MATLAB code has variables that are
large arrays or structures. The variable
reuse optimization preserves your variable
names. You want to see if the extra
memory required to preserve the variable
names of the large arrays or structures
affects performance.

“Reuse Large Arrays and Structures”

 Modularize MATLAB Code

23-5

Modularize MATLAB Code

For large MATLAB code, streamline code generation by modularizing the code:

1 Break up your MATLAB code into smaller, self-contained sections.
2 Save each section in a MATLAB function.
3 Generate C/C++ code for each function.
4 Call the generated C/C++ functions in sequence from a wrapper MATLAB function

using coder.ceval.
5 Generate C/C++ code for the wrapper function.

Besides streamlining code generation for the original MATLAB code, this approach also
supplies you with C/C++ codes for the individual sections. You can reuse these codes later
by integrating them with other generated C/C++ code using coder.ceval.

23 Generate Efficient and Reusable Code

23-6

Eliminate Redundant Copies of Function Inputs

You can reduce the number of copies in your generated code by writing functions that use
the same variable as both an input and an output. For example:

function A = foo(A, B) %#codegen

A = A * B;

end

This coding practice uses a reference parameter optimization. When a variable acts
as both input and output, MATLAB passes the variable by reference in the generated
code instead of redundantly copying the input to a temporary variable. In the preceding
example, input A is passed by reference in the generated code because it also acts as an
output for function foo:

...

/* Function Definitions */

void foo(double *A, double B)

{

 *A *= B;

}

...

The reference parameter optimization reduces memory usage and execution time,
especially when the variable passed by reference is a large data structure. To achieve
these benefits at the call site, call the function with the same variable as both input and
output.

By contrast, suppose that you rewrite function foo without the optimization:

function y = foo2(A, B) %#codegen

y = A * B;

end

MATLAB generates code that passes the inputs by value and returns the value of the
output:

...

/* Function Definitions */

double foo2(double A, double B)

{

 return A * B;

}

 Eliminate Redundant Copies of Function Inputs

23-7

...

In some cases, the output of the function cannot be a modified version of its inputs. If
you do not use the inputs later in the function, you can modify your code to operate on
the inputs instead of on a copy of the inputs. One method is to create additional return
values for the function. For example, consider the code:

function y1=foo(u1) %#codegen

 x1=u1+1;

 y1=bar(x1);

end

function y2=bar(u2)

 % Since foo does not use x1 later in the function,

 % it would be optimal to do this operation in place

 x2=u2.*2;

 % The change in dimensions in the following code

 % means that it cannot be done in place

 y2=[x2,x2];

end

You can modify this code to eliminate redundant copies.

function y1=foo(u1) %#codegen

 u1=u1+1;

 [y1, u1]=bar(u1);

end

function [y2, u2]=bar(u2)

 u2=u2.*2;

 % The change in dimensions in the following code

 % still means that it cannot be done in place

 y2=[u2,u2];

end

23 Generate Efficient and Reusable Code

23-8

Inline Code

MATLAB uses internal heuristics to determine whether to inline functions in the
generated code. You can use the coder.inline directive to fine-tune these heuristics for
individual functions. For more information, see coder.inline.

In this section...

“Prevent Function Inlining” on page 23-8
“Use Inlining in Control Flow Statements” on page 23-8

Prevent Function Inlining

In this example, function foo is not inlined in the generated code:

function y = foo(x)

 coder.inline('never');

 y = x;

end

Use Inlining in Control Flow Statements

You can use coder.inline in control flow code. If the software detects contradictory
coder.inline directives, the generated code uses the default inlining heuristic and
issues a warning.

Suppose you want to generate code for a division function that will be embedded in
a system with limited memory. To optimize memory use in the generated code, the
following function, inline_division, manually controls inlining based on whether it
performs scalar division or vector division:

function y = inline_division(dividend, divisor)

% For scalar division, inlining produces smaller code

% than the function call itself.

if isscalar(dividend) && isscalar(divisor)

 coder.inline('always');

else

% Vector division produces a for-loop.

% Prohibit inlining to reduce code size.

 coder.inline('never');

 Inline Code

23-9

end

if any(divisor == 0)

 error('Can not divide by 0');

end

y = dividend / divisor;

Related Examples
• “Control Inlining”

23 Generate Efficient and Reusable Code

23-10

Control Inlining

Restrict inlining when:

• The size of generated code exceeds desired limits due to excessive inlining of
functions. Suppose that you include the statement, coder.inline('always'),
inside a certain function. You then call that function at many different sites in your
code. The generated code can be large due to the function being inlined every time it is
called.

The call sites must be different. For instance, inlining does not lead to large code if
the function to be inlined is called several times inside a loop.

• You have limited RAM or stack space.

In this section...

“Control Size of Functions Inlined” on page 23-10
“Control Size of Functions After Inlining” on page 23-11
“Control Stack Size Limit on Inlined Functions” on page 23-11

Control Size of Functions Inlined

You can use the MATLAB Coder app or the command-line interface to control the
maximum size of functions that can be inlined. The function size is measured in terms of
an abstract number of instructions, not actual MATLAB instructions or instructions in
the target processor. Experiment with this parameter to obtain the inlining behavior that
you want.

• Using the app, in the project settings dialog box, on the All Settings tab, set the
value of the field, Inline threshold, to the maximum size that you want.

• At the command line, create a codegen configuration object. Set the value of the
property, InlineThreshold, to the maximum size that you want.

cfg = coder.config('lib');

cfg.InlineThreshold = 100;

Generate code using this configuration object.

 Control Inlining

23-11

Control Size of Functions After Inlining

You can use the MATLAB Coder app or the command-line interface to control the
maximum size of functions after inlining. The function size is measured in terms of an
abstract number of instructions, not actual MATLAB instructions or instructions in the
target processor. Experiment with this parameter to obtain the inlining behavior that
you want.

• Using the app, in the project settings dialog box, on the All Settings tab, set the
value of the field, Inline threshold max, to the maximum size that you want.

• At the command line, create a codegen configuration object. Set the value of the
property, InlineThresholdMax, to the maximum size that you want.

cfg = coder.config('lib');

cfg.InlineThresholdMax = 100;

Generate code using this configuration object.

Control Stack Size Limit on Inlined Functions

Specifying a limit on the stack space constrains the amount of inlining allowed. For
out-of-line functions, stack space for variables local to the function is released when
the function returns. However, for inlined functions, stack space remains occupied
by the local variables even after the function is executed. The value of the property,
InlineStackLimit, is measured in bytes. Based on information from the target
hardware settings, the software estimates the number of stack variables that a certain
value of InlineStackLimit can accomodate. This estimate excludes possible C compiler
optimizations such as putting variables in registers.

You can use the MATLAB Coder app or the command-line interface to control the stack
size limit on inlined functions.

• Using the app, in the project settings dialog box, on the All Settings tab, set the
value of the field, Inline stack limit, to the maximum size that you want.

• At the command line, create a codegen configuration object. Set the value of the
property, InlineThresholdMax, to the maximum size that you want.

cfg = coder.config('lib');

cfg.InlineStackLimit = 2000;

Generate code using this configuration object.

23 Generate Efficient and Reusable Code

23-12

Related Examples
• “Inline Code”

 Fold Function Calls into Constants

23-13

Fold Function Calls into Constants

This example shows how to specify constants in generated code using coder.const.
The code generation software folds an expression or a function call in a coder.const
statement into a constant in generated code. Because the generated code does not have
to evaluate the expression or call the function every time, this optimization reduces the
execution time of the generated code.

Write a function AddShift that takes an input Shift and adds it to the elements of
a vector. The vector consists of the square of the first 10 natural numbers. AddShift
generates this vector.

function y = AddShift(Shift) %#codegen

y = (1:10).^2+Shift;

Generate code for AddShift using the codegen command. Open the Code Generation
Report.

codegen -config:lib -launchreport AddShift -args 0

The code generation software generates code for creating the vector. It adds Shift
to each element of the vector during vector creation. The definition of AddShift in
generated code looks as follows:

void AddShift(double Shift, double y[10])

{

 int k;

 for (k = 0; k < 10; k++) {

 y[k] = (double)((1 + k) * (1 + k)) + Shift;

 }

}

Replace the statement

y = (1:10).^2+Shift;

with

y = coder.const((1:10).^2)+Shift;

Generate code for AddShift using the codegen command. Open the Code Generation
Report.

23 Generate Efficient and Reusable Code

23-14

codegen -config:lib -launchreport AddShift -args 0

The code generation software creates the vector containing the squares of the first 10
natural numbers. In the generated code, it adds Shift to each element of this vector.
The definition of AddShift in generated code looks as follows:

void AddShift(double Shift, double y[10])

{

 int i0;

 static const signed char iv0[10] = { 1, 4, 9, 16, 25, 36,

 49, 64, 81, 100 };

 for (i0 = 0; i0 < 10; i0++) {

 y[i0] = (double)iv0[i0] + Shift;

 }

}

See Also
coder.const

 Control Stack Space Usage

23-15

Control Stack Space Usage

This example shows how to set the maximum stack space that the generated code uses.
Set the maximum stack usage when:

• You have limited stack space, for instance, in embedded targets.
• Your C compiler reports a run-time stack overflow.

The value of the property, StackUsageMax, is measured in bytes. Based on information
from the target hardware settings, the software estimates the number of stack variables
that a certain value of StackUsageMax can accomodate. This estimate excludes possible
C compiler optimizations such as putting variables in registers.

Control Stack Space Usage Using the MATLAB Coder App

1 To open the Generate dialog box, on the Generate Code page, click the Generate

arrow .
2 Set Build type to Source Code, Static Library, Dynamic Library, or

Executable (depending on your requirements).
3 Click More Settings.
4 On the Memory tab, set Stack usage max to the value that you want.

Control Stack Space Usage at the Command Line

1 Create a configuration object for code generation.

Use coder.config with arguments 'lib','dll', or 'exe' (depending on your
requirements). For example:

cfg = coder.config('lib');

2 Set the property, StackUsageMax, to the value that you want.

cfg.StackUsageMax=400000;

More About
• “Stack Allocation and Performance”

23 Generate Efficient and Reusable Code

23-16

Stack Allocation and Performance

By default, local variables are allocated on the stack. Large variables that do not fit on
the stack are statically allocated in memory.

Stack allocation typically uses memory more efficiently than static allocation. However,
stack space is sometimes limited, typically in embedded processors. MATLAB Coder
allows you to manually set a limit on the stack space usage to make your generated
code suitable for your target hardware. You can choose this limit based on the target
hardware configurations. For more information, see “Control Stack Space Usage”.

 Dynamic Memory Allocation and Performance

23-17

Dynamic Memory Allocation and Performance

To achieve faster execution of generated code, minimize dynamic (or run-time) memory
allocation of arrays.

MATLAB Coder does not provide a size for unbounded arrays in generated code. Instead,
such arrays are referenced indirectly through pointers. For such arrays, memory cannot
be allocated during compilation of generated code. Based on storage requirements
for the arrays, memory is allocated and freed at run time as required. This run-time
allocation and freeing of memory leads to slower execution of the generated code. For
more information on dynamic memory allocation, see “Bounded Versus Unbounded
Variable-Size Data”.

When Dynamic Memory Allocation Occurs

Dynamic memory allocation occurs when the code generation software cannot find upper
bounds for variable-size arrays. The software cannot find upper bounds when you specify
the size of an array using a variable that is not a compile-time constant. An example of
such a variable is an input variable (or a variable computed from an input variable).

Instances in the MATLAB code that can lead to dynamic memory allocation are:

• Array initialization: You specify array size using a variable whose value is known only
at run time.

• After initialization of an array:

• You declare the array as variable-size using coder.varsize without explicit
upper bounds. After this declaration, you expand the array by concatenation inside
a loop. The number of loop runs is known only at run time.

• You use a reshape function on the array. At least one of the size arguments to the
reshape function is known only at run time.

If you know the maximum size of the array, you can avoid dynamic memory allocation.
You can then provide an upper bound for the array and prevent dynamic memory
allocation in generated code. For more information, see “Minimize Dynamic Memory
Allocation” on page 23-18.

23 Generate Efficient and Reusable Code

23-18

Minimize Dynamic Memory Allocation

When possible, minimize dynamic memory allocation because it leads to slower execution
of generated code. Dynamic memory allocation occurs when the code generation software
cannot find upper bounds for variable-size arrays.

If you know the maximum size of a variable-size array, you can avoid dynamic memory
allocation. Follow these steps:

1 “Provide Maximum Size for Variable-Size Arrays” on page 23-19.
2 Depending on your requirements, do one of the following:

• “Disable Dynamic Memory Allocation During Code Generation” on page
23-25.

• “Set Dynamic Memory Allocation Threshold”

Caution If a variable-size array in the MATLAB code does not have a maximum size,
disabling dynamic memory allocation leads to a code generation error. Before disabling
dynamic memory allocation, you must provide a maximum size for variable-size arrays in
your MATLAB code.

More About
• “Dynamic Memory Allocation and Performance”

 Provide Maximum Size for Variable-Size Arrays

23-19

Provide Maximum Size for Variable-Size Arrays

To constrain array size for variable-size arrays, do one of the following:

• Constrain Array Size Using assert Statements

If the variable specifying array size is not a compile-time constant, use an assert
statement with relational operators to constrain the variable. Doing so helps the code
generation software to determine a maximum size for the array.

The following examples constrain array size using assert statements:

• When Array Size Is Specified by Input Variables

Define a function array_init which initializes an array y with input variable N:

function y = array_init (N)

 assert(N <= 25); % Generates exception if N > 25

 y = zeros(1,N);

The assert statement constrains input N to a maximum size of 25. In the absence
of the assert statement, y is assigned a pointer to an array in the generated code,
thus allowing dynamic memory allocation.

• When Array Size Is Obtained from Computation Using Input Variables

Define a function, array_init_from_prod, which takes two input variables, M
and N, and uses their product to specify the maximum size of an array, y.

function y = array_init_from_prod (M,N)

 size=M*N;

 assert(size <= 25); % Generates exception if size > 25

 y=zeros(1,size);

The assert statement constrains the product of M and N to a maximum of 25.

Alternatively, if you restrict M and N individually, it leads to dynamic memory
allocation:

function y = array_init_from_prod (M,N)

 assert(M <= 5);

 assert(N <= 5);

 size=M*N;

 y=zeros(1,size);

23 Generate Efficient and Reusable Code

23-20

This code causes dynamic memory allocation because M and N can both have
unbounded negative values. Therefore, their product can be unbounded and
positive even though, individually, their positive values are bounded.

Tip Place the assert statement on a variable immediately before it is used to
specify array size.

Tip You can use assert statements to restrict array sizes in most cases. When
expanding an array inside a loop, this strategy does not work if the number of loop
runs is known only at run time.

• Restrict Concatenations in a Loop Using coder.varsize with Upper Bounds

You can expand arrays beyond their initial size by concatenation. When you
concatenate additional elements inside a loop, there are two syntax rules for
expanding arrays.

1 Array size during initialization is not a compile-time constant

If the size of an array during initialization is not a compile-time constant, you can
expand it by concatenating additional elements:

function out=ExpandArray(in) % Expand an array by five elements

 out = zeros(1,in);

 for i=1:5

 out = [out 0];

 end

2 Array size during initialization is a compile-time constant

Before concatenating elements, you have to declare the array as variable-size
using coder.varsize:

function out=ExpandArray() % Expand an array by five elements

 out = zeros(1,5);

 coder.varsize('out');

 for i=1:5

 out = [out 0];

 end

 Provide Maximum Size for Variable-Size Arrays

23-21

Either case leads to dynamic memory allocation. To prevent dynamic memory
allocation in such cases, use coder.varsize with explicit upper bounds. This
example shows how to use coder.varsize with explicit upper bounds:

Restrict Concatenations Using coder.varsize with Upper Bounds

1 Define a function, RunningAverage, that calculates the running average of an N-
element subset of an array:

 function avg=RunningAverage(N)

% Array whose elements are to be averaged

 NumArray=[1 6 8 2 5 3];

% Initialize average:

% These will also be the first two elements of the function output

 avg=[0 0];

% Place a bound on the argument

 coder.varsize('avg',[1 8]);

% Loop to calculate running average

 for i=1:N

 s=0;

 s=s+sum(NumArray(1:i));

 avg=[avg s/i];

 % Increase the size of avg as required by concatenation

 end

The output, avg, is an array that you can expand as required to accommodate
the running averages. As a new running average is calculated, it is added to the
array avg through concatenation, thereby expanding the array.

Because the maximum number of running averages is equal to the number of
elements in NumArray, you can supply an explicit upper bound for avg in the
coder.varsize statement. In this example, the upper bound is 8 (the two initial
elements plus the six elements of NumArray).

2 Generate code for RunningAverage with input argument of type double:

codegen -config:lib -report RunningAverage -args 2

23 Generate Efficient and Reusable Code

23-22

In the generated code, avg is assigned an array of size 8 (static memory
allocation). The function definition for RunningAverage appears as follows
(using built-in C types):

void RunningAverage (double N, double avg_data[8], int avg_size[2])

3 By contrast, if you remove the explicit upper bound, the generated code
dynamically allocates avg.

Replace the statement

coder.varsize('avg',[1 8]);

with:

coder.varsize('avg');

4 Generate code for RunningAverage with input argument of type double:

codegen -config:lib -report RunningAverage -args 2

In the generated code, avg is assigned a pointer to an array, thereby allowing
dynamic memory allocation. The function definition for RunningAverage
appears as follows (using built-in C types):

void Test(double N, emxArray_real_T *avg)

Note: Dynamic memory allocation also occurs if you precede
coder.varsize('avg') with the following assert statement:

assert(N < 6);

The assert statement does not restrict the number of concatenations within the
loop.

• Constrain Array Size When Rearranging a Matrix

The statement out = reshape(in,m,n,...) takes an array, in, as an argument
and returns array, out, having the same elements as in, but reshaped as an m-by-n-
by-... matrix. If one of the size variables m,n,.... is not a compile-time constant,
then dynamic memory allocation of out takes place.

 Provide Maximum Size for Variable-Size Arrays

23-23

To avoid dynamic memory allocation, use an assert statement before the reshape
statement to restrict the size variables m,n,... to numel(in). This example shows
how to use an assert statement before a reshape statement:

Rearrange a Matrix into Given Number of Rows

1 Define a function, ReshapeMatrix, which takes an input variable, N, and
reshapes a matrix, mat, to have N rows:

 function [out1,out2] = ReshapeMatrix(N)

 mat = [1 2 3 4 5; 4 5 6 7 8]

% Since mat has 10 elements, N must be a factor of 10

% to pass as argument to reshape

 out1 = reshape(mat,N,[]);

% N is not restricted

 assert(N < numel(mat));

% N is restricted to number of elements in mat

 out2 = reshape(mat,N,[]);

2 Generate code for ReshapeArray using the codegen command (the input
argument does not have to be a factor of 10):

codegen -config:lib -report ReshapeArray -args 3

While out1 is dynamically allocated, out2 is assigned an array with size 100
(=10 X 10) in the generated code.

Tip If your system has limited memory, do not use the assert statement in this
way. For an n-element matrix, the assert statement creates an n-by-n matrix,
which might be large.

Related Examples
• “Minimize Dynamic Memory Allocation”
• “Disable Dynamic Memory Allocation During Code Generation”
• “Set Dynamic Memory Allocation Threshold”

23 Generate Efficient and Reusable Code

23-24

More About
• “Dynamic Memory Allocation and Performance”

 Disable Dynamic Memory Allocation During Code Generation

23-25

Disable Dynamic Memory Allocation During Code Generation

To disable dynamic memory allocation using the MATLAB Coder app:

1 To open the Generate dialog box, on the Generate Code page, click the Generate

arrow .
2 Click More Settings.
3 On the Memory tab, under Variable Sizing Support, set Dynamic memory

allocation to Never.

To disable dynamic memory allocation at the command line:

1 In the MATLAB workspace, define the configuration object:

cfg=coder.config('lib');

2 Set the DynamicMemoryAllocation property of the configuration object to Off:

cfg.DynamicMemoryAllocation = 'Off';

If a variable-size array in the MATLAB code does not have a maximum upper bound,
disabling dynamic memory allocation leads to a code generation error. Therefore, you can
identify variable-size arrays in your MATLAB code that do not have a maximum upper
bound. These arrays are the arrays that are dynamically allocated in the generated code.

Related Examples
• “Minimize Dynamic Memory Allocation”
• “Provide Maximum Size for Variable-Size Arrays”
• “Set Dynamic Memory Allocation Threshold”

More About
• “Dynamic Memory Allocation and Performance”

23 Generate Efficient and Reusable Code

23-26

Set Dynamic Memory Allocation Threshold

This example shows how to specify a dynamic memory allocation threshold for variable-
size arrays. Dynamic memory allocation optimizes storage requirements for variable-
size arrays, but causes slower execution of generated code. Instead of disabling dynamic
memory allocation for all variable-size arrays, you can disable dynamic memory
allocation for arrays less than a certain size.

Specify this threshold when you want to:

• Disable dynamic memory allocation for smaller arrays. For smaller arrays, static
memory allocation can speed up generated code. Static memory allocation can lead to
unused storage space. However, you can decide that the unused storage space is not a
significant consideration for smaller arrays.

• Enable dynamic memory allocation for larger arrays. For larger arrays, when you use
dynamic memory allocation, you can significantly reduce storage requirements.

Set Dynamic Memory Allocation Threshold Using the MATLAB Coder App

1 To open the Generate dialog box, on the Generate Code page, click the Generate

arrow .
2 Click More Settings.
3 On the Memory tab, select the Enable variable-sizing check box.
4 Set Dynamic memory allocation to For arrays with max size at or

above threshold.
5 Set Dynamic memory allocation threshold to the value that you want.

 Set Dynamic Memory Allocation Threshold

23-27

The Dynamic memory allocation threshold value is measured in bytes. Based
on information from the target hardware settings, the software estimates the size
of the array that a certain value of DynamicMemoryAllocationThreshold can
accomodate. This estimate excludes possible C compiler optimizations such as
putting variables in registers.

Set Dynamic Memory Allocation Threshold at the Command Line

1 Create a configuration object for code generation. Use coder.config with
arguments 'lib','dll', or 'exe' (depending on your requirements). For example:

cfg = coder.config('lib');

2 Set DynamicMemoryAllocation to 'Threshold'.

cfg.DynamicMemoryAllocation='Threshold';

3 Set the property, DynamicMemoryAllocationThreshold, to the value that you
want.

cfg.DynamicMemoryAllocationThreshold = 40000;

The value stored in DynamicMemoryAllocationThreshold is measured in bytes.
Based on information from the target hardware settings, the software estimates the
size of the array that a certain value of DynamicMemoryAllocationThreshold
can accomodate. This estimate excludes possible C compiler optimizations such as
putting variables in registers.

Related Examples
• “Minimize Dynamic Memory Allocation”
• “Provide Maximum Size for Variable-Size Arrays”
• “Disable Dynamic Memory Allocation During Code Generation”

More About
• “Dynamic Memory Allocation and Performance”

23 Generate Efficient and Reusable Code

23-28

Excluding Unused Paths from Generated Code

In certain situations, you do not need some branches of an: if, elseif, else
statement, or a switch, case, otherwise statement in your generated code. For
instance:

• You have a MATLAB function that performs mutiple tasks determined by a control-
flow variable. You might not need some of the tasks in the code generated from this
function.

• You have an if/elseif/if statement in a MATLAB function performing different
tasks based on the nature (type/value) of the input. In some cases, you know the
nature of the input beforehand. If so, you do not need some branches of the if
statement.

You can prevent code generation for the unused branches of an if/elseif/else
statement or a switch/case/otherwise statement. Declare the control-flow variable
as a constant. The code generation software generates code only for the branch that the
control-flow variable chooses.

Related Examples
• “Prevent Code Generation for Unused Execution Paths”

 Prevent Code Generation for Unused Execution Paths

23-29

Prevent Code Generation for Unused Execution Paths

In this section...

“Prevent Code Generation When Local Variable Controls Flow” on page 23-29
“Prevent Code Generation When Input Variable Controls Flow” on page 23-30

If a variable controls the flow of an: if, elseif, else statement, or a switch,
case, otherwise statement, declare it as constant so that code generation takes place
for one branch of the statement only.

Depending on the nature of the control-flow variable, you can declare it as constant in
two ways:

• If the variable is local to the MATLAB function, assign it to a constant value in the
MATLAB code. For an example, see “Prevent Code Generation When Local Variable
Controls Flow” on page 23-29.

• If the variable is an input to the MATLAB function, you can declare it as constant
using coder.Constant. For an example, see “Prevent Code Generation When Input
Variable Controls Flow” on page 23-30.

Prevent Code Generation When Local Variable Controls Flow

1 Define a function SquareOrCube which takes an input variable, in, and squares or
cubes its elements based on whether the choice variable, ch, is set to s or c:

function out = SquareOrCube(ch,in) %#codegen

 if ch=='s'

 out = in.^2;

 elseif ch=='c'

 out = in.^3;

 else

 out = 0;

 end

2 Generate code for SquareOrCube using the codegen command:

codegen -config:lib SquareOrCube -args {'s',zeros(2,2)}

The generated C code squares or cubes the elements of a 2-by-2 matrix based on the
input for ch.

23 Generate Efficient and Reusable Code

23-30

3 Add the following line to the definition of SquareOrCube:

ch = 's';

The generated C code squares the elements of a 2-by-2 matrix. The choice variable,
ch, and the other branches of the if/elseif/if statement do not appear in the
generated code.

Prevent Code Generation When Input Variable Controls Flow

1 Define a function MathFunc, which performs different mathematical operations on
an input, in, depending on the value of the input, flag:

function out = MathFunc(flag,in) %#codegen

 %# codegen

 switch flag

 case 1

 out=sin(in);

 case 2

 out=cos(in);

 otherwise

 out=sqrt(in);

 end

2 Generate code for MathFunc using the codegen command:

codegen -config:lib MathFunc -args {1,zeros(2,2)}

The generated C code performs different math operations on the elements of a 2-by-2
matrix based on the input for flag.

3 Generate code for MathFunc, declaring the argument, flag, as a constant using
coder.Constant:

codegen -config:lib MathFunc -args {coder.Constant(1),zeros(2,2)}

The generated C code finds the sine of the elements of a 2-by-2 matrix. The variable,
flag, and the switch/case/otherwise statement do not appear in the generated
code.

More About
• “Excluding Unused Paths from Generated Code”

 Generate Code with Parallel for-Loops (parfor)

23-31

Generate Code with Parallel for-Loops (parfor)

This example shows how to generate C code for a MATLAB algorithm that contains a
parfor-loop.

1 Write a MATLAB function that contains a parfor-loop. For example:

function a = test_parfor %#codegen

a=ones(10,256);

r=rand(10,256);

parfor i=1:10

 a(i,:)=real(fft(r(i,:)));

end

2 Generate C code for test_parfor. At the MATLAB command line, enter:

codegen -config:lib test_parfor

Because you did not specify the maximum number of threads to use, the generated C
code executes the loop iterations in parallel on the available number of cores.

3 To specify a maximum number of threads, rewrite the function test_parfor as
follows:

function a = test_parfor(u) %#codegen

a=ones(10,256);

r=rand(10,256);

parfor (i=1:10,u)

 a(i,:)=real(fft(r(i,:)));

end

4 Generate C code for test_parfor. Use -args 0 to specify that the input, u, is a
scalar double. At the MATLAB command line, enter:

codegen -config:lib test_parfor -args 0

In the generated code, the iterations of the parfor-loop run on at most the number
of cores specified by the input, u. If less than u cores are available, the iterations run
on the cores available at the time of the call.

More About
• “Algorithm Acceleration Using Parallel for-Loops (parfor)”
• “Classification of Variables in parfor-Loops”

23 Generate Efficient and Reusable Code

23-32

• “Reduction Assignments in parfor-Loops”

 Minimize Redundant Operations in Loops

23-33

Minimize Redundant Operations in Loops

This example shows how to minimize redundant operations in loops. When a loop
operation does not depend on the loop index, performing it inside a loop is redundant.
This redundancy often goes unnoticed when you are performing multiple operations in a
single MATLAB statement inside a loop. For example, in the following code, the inverse
of the matrix B is being calculated 100 times inside the loop although it does not depend
on the loop index:

for i=1:100

 C=C + inv(B)*A^i*B;

 end

Performing such redundant loop operations can lead to unnecessary processing. To avoid
unnecessary processing, move operations outside loops as long as they do not depend on
the loop index.

1 Define a function, SeriesFunc(A,B,n), that calculates the sum of n terms in the
following power series expansion:

C B AB B A B= + + +
- -

1
1 1 2

...

 function C=SeriesFunc(A,B,n)

% Initialize C with a matrix having same dimensions as A

 C=zeros(size(A));

% Perform the series sum

 for i=1:n

 C=C+inv(B)*A^i*B;

 end

2 Generate code for SeriesFunc with 4-by-4 matrices passed as input arguments for A
and B:

X = coder.typeof(zeros(4));

codegen -config:lib -launchreport SeriesFunc -args {X,X,10}

In the generated code, the inversion of B is performed n times inside the loop. It is
more economical to perform the inversion operation once outside the loop because it
does not depend on the loop index.

3 Modify SeriesFunc as follows:

23 Generate Efficient and Reusable Code

23-34

 function C=SeriesFunc(A,B,n)

% Initialize C with a matrix having same dimensions as A

 C=zeros(size(A));

% Perform the inversion outside the loop

 inv_B=inv(B);

% Perform the series sum

 for i=1:n

 C=C+inv_B*A^i*B;

 end

This procedure performs the inversion of B only once, leading to faster execution of
the generated code.

 Unroll for-Loops

23-35

Unroll for-Loops

Unrolling for-loops eliminates the loop logic by creating a separate copy of the loop body
in the generated code for each iteration. Within each iteration, the loop index variable
becomes a constant.

You can also force loop unrolling for individual functions by wrapping the loop header in
a coder.unroll function. For more information, see coder.unroll.

Limit Copying the for-loop Body in Generated Code

To limit the number of times that you copy the body of a for-loop in generated code:

1 Write a MATLAB function getrand(n) that uses a for-loop to generate a vector
of length n and assign random numbers to specific elements. Add a test function
test_unroll. This function calls getrand(n) with n equal to values both less than
and greater than the threshold for copying the for-loop in generated code.

function [y1, y2] = test_unroll() %#codegen

% The directive %#codegen indicates that the function

% is intended for code generation

 % Calling getrand 8 times triggers unroll

 y1 = getrand(8);

 % Calling getrand 50 times does not trigger unroll

 y2 = getrand(50);

function y = getrand(n)

 % Turn off inlining to make

 % generated code easier to read

 coder.inline('never');

 % Set flag variable dounroll to repeat loop body

 % only for fewer than 10 iterations

 dounroll = n < 10;

 % Declare size, class, and complexity

 % of variable y by assignment

 y = zeros(n, 1);

 % Loop body begins

 for i = coder.unroll(1:2:n, dounroll)

 if (i > 2) && (i < n-2)

 y(i) = rand();

 end;

23 Generate Efficient and Reusable Code

23-36

 end;

 % Loop body ends

2 In the default output folder, codegen/lib/test_unroll, generate C static library
code for test_unroll:

codegen -config:lib test_unroll

In test_unroll.c, the generated C code for getrand(8) repeats the body of the
for-loop (unrolls the loop) because the number of iterations is less than 10:

static void getrand(double y[8])

{

 /* Turn off inlining to make */

 /* generated code easier to read */

 /* Set flag variable dounroll to repeat loop body */

 /* only for fewer than 10 iterations */

 /* Declare size, class, and complexity */

 /* of variable y by assignment */

 memset(&y[0], 0, sizeof(double) << 3);

 /* Loop body begins */

 y[2] = b_rand();

 y[4] = b_rand();

 /* Loop body ends */

}

The generated C code for getrand(50) does not unroll the for-loop because the
number of iterations is greater than 10:

static void b_getrand(double y[50])

{

 int i;

 int b_i;

 /* Turn off inlining to make */

 /* generated code easier to read */

 /* Set flag variable dounroll to repeat loop body */

 /* only for fewer than 10 iterations */

 /* Declare size, class, and complexity */

 /* of variable y by assignment */

 memset(&y[0], 0, 50U * sizeof(double));

 /* Loop body begins */

 Unroll for-Loops

23-37

 for (i = 0; i < 25; i++) {

 b_i = (i << 1) + 1;

 if ((b_i > 2) && (b_i < 48)) {

 y[b_i - 1] = b_rand();

 }

 }

23 Generate Efficient and Reusable Code

23-38

Support for Integer Overflow and Non-Finites

The code generation software generates supporting code for the following situations:

• The result of an integer operation falls outside the range that a data type can
represent. This situation is known as integer overflow.

• An operation generates non-finite values (inf and NaN). The supporting code is
contained in the files rt_nonfinite.c, rtGetInf.c, and rtGetNaN.c (with
corresponding header files).

If you know that these situations do not occur, you can suppress generation of the
supporting code. You therefore reduce the size of the generated code and increase its
speed. However, if one of these situations occurs, it is possible that the generated code
will not match the behavior of the original MATLAB code.

Disable Support for Integer Overflow

You can use the MATLAB Coder app or the command-line interface to disable support for
integer overflow. When you disable this support, the overflow behavior of your generated
code depends on your target C compiler. Most C compilers wrap on overflow.

• Using the app:

1 To open the Generate dialog box, on the Generate Code page, click the

Generate arrow .
2 Click More Settings.
3 To disable support for integer overflow, on the Speed tab, clear Saturate on

integer overflow.
• At the command line:

1 Create a configuration object for code generation. Use coder.config with
arguments 'lib', 'dll', or 'exe' (depending on your requirements). For
example:

cfg = coder.config('lib');

2 To disable support for integer overflow, set the SaturateOnIntegerOverflow
property to false.

cfg.SaturateOnIntegerOverflow = false;

 Support for Integer Overflow and Non-Finites

23-39

Disable Support for Non-Finite Numbers

You can use the MATLAB Coder app or the command-line interface to disable support for
non-finite numbers(inf and NaN).

• Using the app:

1 To open the Generate dialog box, on the Generate Code page, click the

Generate arrow .
2 Set Build type to Source Code, Static Library, Dynamic Library, or

Executable (depending on your requirements).
3 Click More Settings.
4 On the Speed tab, clear the Support non-finite numbers check box.

• At the command line:

1 Create a configuration object for code generation. Use coder.config with
arguments 'lib', 'dll', or 'exe' (depending on your requirements). For
example:

cfg = coder.config('lib');

2 To disable support for integer overflow, set the SupportNonFinite property to
false.

cfg.SupportNonFinite = false;

23 Generate Efficient and Reusable Code

23-40

Integrate Custom Code

This example shows how to integrate custom code to enhance performance of generated
code. Although MATLAB Coder generates optimized code for most applications, you
might have legacy code optimized for your specific requirements. For example:

• You have custom libraries optimized for your target environment.
• You have custom libraries for functions not supported by MATLAB Coder.
• You have custom libraries that meet standards set by your company.

In such cases, you can integrate your custom code with the code generated by MATLAB
Coder.

This example illustrates how to integrate the function cublasSgemm from the NVIDIA®

CUDA® Basic Linear Algebra Subroutines (CUBLAS) library in generated code. This
function performs matrix multiplication on a Graphics Processing Unit (GPU).

1 Define a class ExternalLib_API that derives from the class
coder.ExternalDependency. ExternalLib_API defines an interface to the
CUBLAS library through the following methods:

• getDescriptiveName: Returns a descriptive name for ExternalLib_API to be
used for error messages.

• isSupportedContext: Determines if the build context supports the CUBLAS
library.

• updateBuildInfo: Adds header file paths and link files to the build
information.

• GPU_MatrixMultiply: Defines the interface to the CUBLAS library function
cublasSgemm.

ExternalLib_API.m

classdef ExternalLib_API < coder.ExternalDependency

 %#codegen

 methods (Static)

 function bName = getDescriptiveName(~)

 bName = 'ExternalLib_API';

 end

 Integrate Custom Code

23-41

 function tf = isSupportedContext(ctx)

 if ctx.isMatlabHostTarget()

 tf = true;

 else

 error('CUBLAS library not available for this target');

 end

 end

 function updateBuildInfo(buildInfo, ctx)

 [~, linkLibExt, ~, ~] = ctx.getStdLibInfo();

 % Include header file path

 % Include header files later using coder.cinclude

 hdrFilePath = 'C:\My_Includes';

 buildInfo.addIncludePaths(hdrFilePath);

 % Include link files

 linkFiles = strcat('libcublas', linkLibExt);

 linkPath = 'C:\My_Libs';

 linkPriority = '';

 linkPrecompiled = true;

 linkLinkOnly = true;

 group = '';

 buildInfo.addLinkObjects(linkFiles, linkPath, ...

 linkPriority, linkPrecompiled, linkLinkOnly, group);

 linkFiles = strcat('libcudart', linkLibExt);

 buildInfo.addLinkObjects(linkFiles, linkPath, ...

 linkPriority, linkPrecompiled, linkLinkOnly, group);

 end

 %API for library function 'cuda_MatrixMultiply'

 function C = GPU_MatrixMultiply(A, B)

 assert(isa(A,'single'), 'A must be single.');

 assert(isa(B,'single'), 'B must be single.');

 if(coder.target('MATLAB'))

 C=A*B;

 else

 % Include header files

 % for external functions and typedefs

23 Generate Efficient and Reusable Code

23-42

 % Header path included earlier using updateBuildInfo

 coder.cinclude('"cuda_runtime.h"');

 coder.cinclude('"cublas_v2.h"');

 % Compute dimensions of input matrices

 m = int32(size(A, 1));

 k = int32(size(A, 2));

 n = int32(size(B, 2));

 % Declare pointers to matrices on destination GPU

 d_A = coder.opaque('float*');

 d_B = coder.opaque('float*');

 d_C = coder.opaque('float*');

 % Compute memory to be allocated for matrices

 % Single = 4 bytes

 size_A = m*k*4;

 size_B = k*n*4;

 size_C = m*n*4;

 % Define error variables

 error = coder.opaque('cudaError_t');

 cudaSuccessV = coder.opaque('cudaError_t', ...

 'cudaSuccess');

 % Assign memory on destination GPU

 error = coder.ceval('cudaMalloc', ...

 coder.wref(d_A), size_A);

 assert(error == cudaSuccessV, ...

 'cudaMalloc(A) failed');

 error = coder.ceval('cudaMalloc', ...

 coder.wref(d_B), size_B);

 assert(error == cudaSuccessV, ...

 'cudaMalloc(B) failed');

 error = coder.ceval('cudaMalloc', ...

 coder.wref(d_C), size_C);

 assert(error == cudaSuccessV, ...

 'cudaMalloc(C) failed');

 % Define direction of copying

 hostToDevice = coder.opaque('cudaMemcpyKind', ...

 'cudaMemcpyHostToDevice');

 % Copy matrices to destination GPU

 Integrate Custom Code

23-43

 error = coder.ceval('cudaMemcpy', ...

 d_A, coder.rref(A), size_A, hostToDevice);

 assert(error == cudaSuccessV, 'cudaMemcpy(A) failed');

 error = coder.ceval('cudaMemcpy', ...

 d_B, coder.rref(B), size_B, hostToDevice);

 assert(error == cudaSuccessV, 'cudaMemcpy(B) failed');

 % Define type and size for result

 C = zeros(m, n, 'single');

 error = coder.ceval('cudaMemcpy', ...

 d_C, coder.rref(C), size_C, hostToDevice);

 assert(error == cudaSuccessV, 'cudaMemcpy(C) failed');

 % Define handle variables for external library

 handle = coder.opaque('cublasHandle_t');

 blasSuccess = coder.opaque('cublasStatus_t', ...

 'CUBLAS_STATUS_SUCCESS');

 % Initialize external library

 ret = coder.opaque('cublasStatus_t');

 ret = coder.ceval('cublasCreate', coder.wref(handle));

 assert(ret == blasSuccess, 'cublasCreate failed');

 TRANSA = coder.opaque('cublasOperation_t', ...

 'CUBLAS_OP_N');

 alpha = single(1);

 beta = single(0);

 % Multiply matrices on GPU

 ret = coder.ceval('cublasSgemm', handle, ...

 TRANSA,TRANSA,m,n,k, ...

 coder.rref(alpha),d_A,m, ...

 d_B,k, ...

 coder.rref(beta),d_C,k);

 assert(ret == blasSuccess, 'cublasSgemm failed');

 % Copy result back to local host

 deviceToHost = coder.opaque('cudaMemcpyKind', ...

 'cudaMemcpyDeviceToHost');

 error = coder.ceval('cudaMemcpy', coder.wref(C), ...

23 Generate Efficient and Reusable Code

23-44

 d_C, size_C, deviceToHost);

 assert(error == cudaSuccessV, 'cudaMemcpy(C) failed');

 end

 end

 end

end

2 To perform the matrix multiplication using the interface defined in method
GPU_MatrixMultiply and the build information in ExternalLib_API, include the
following line in your MATLAB code:

C= ExternalLib_API.GPU_MatrixMultiply(A,B);

For instance, you can define a MATLAB function Matrix_Multiply that solely
performs this matrix multiplication.

function C = Matrix_Multiply(A, B) %#codegen

 C= ExternalLib_API.GPU_MatrixMultiply(A,B);

3 Define a MEX configuration object using coder.config. For using the CUBLAS
libraries, set the target language for code generation to C++.

cfg=coder.config('mex');

cfg.TargetLang='C++';

4 Generate code for Matrix_Multiply using cfg as the configuration object and two
2 X 2 matrices of type single as arguments. Since cublasSgemm supports matrix
multiplication for data type float, the corresponding MATLAB matrices must have
type single.

codegen -config cfg Matrix_Multiply ...

 -args {ones(2,'single'),ones(2,'single')}

5 Test the generated MEX function Matrix_Multiply_mex using two 2 X 2 identity
matrices of type single.

Matrix_Multiply_mex(eye(2,'single'),eye(2,'single'))

The output is also a 2 X 2 identity matrix.

See Also
coder.BuildConfig | assert | coder.ceval | coder.ExternalDependency |
coder.opaque | coder.rref | coder.wref

 Integrate Custom Code

23-45

Related Examples
• “Encapsulate Interface to an External C Library”

More About
• “Encapsulating the Interface to External Code”

23 Generate Efficient and Reusable Code

23-46

MATLAB Coder Optimizations in Generated Code

In this section...

“Constant Folding” on page 23-46
“Loop Fusion” on page 23-47
“Successive Matrix Operations Combined” on page 23-47
“Unreachable Code Elimination” on page 23-48

In order to improve the execution speed and memory usage of generated code, MATLAB
Coder introduces the following optimizations:

Constant Folding

When possible, the code generation software evaluates expressions in your MATLAB
code that involve compile-time constants only. In the generated code, it replaces these
expressions with the result of the evaluations. This behavior is known as constant
folding. Because of constant folding, the generated code does not have to evaluate the
constants during execution.

The following example shows MATLAB code that is constant-folded during code
generation. The function MultiplyConstant multiplies every element in a matrix by a
scalar constant. The function evaluates this constant using the product of three compile-
time constants, a, b, and c.

function out=MultiplyConstant(in) %#codegen

 a=pi^4;

 b=1/factorial(4);

 c=exp(-1);

 out=in.*(a*b*c);

end

The code generation software evaluates the expressions involving compile-time
constants, a,b, and c. It replaces these expressions with the result of the evaluation in
generated code.

Constant folding can occur when the expressions involve scalars only. To explicitly
enforce constant folding of expressions in other cases, use the coder.const function.
For more information, see “Fold Function Calls into Constants”.

 MATLAB Coder Optimizations in Generated Code

23-47

Control Constant Folding

You can control the maximum number of instructions that can be constant-folded from
the command line or the project settings dialog box.

• At the command line, create a configuration object for code generation. Set the
property ConstantFoldingTimeout to the value that you want.

cfg=coder.config('lib');

cfg.ConstantFoldingTimeout = 200;

• Using the app, in the project settings dialog box, on the All Settings tab, set the field
Constant folding timeout to the value that you want.

Loop Fusion

When possible, the code generation software fuses successive loops with the same
number of runs into a single loop in the generated code. This optimization reduces loop
overhead.

The following code contains successive loops, which are fused during code generation.
The function SumAndProduct evaluates the sum and product of the elements in an array
Arr. The function uses two separate loops to evaluate the sum y_f_sum and product
y_f_prod.

function [y_f_sum,y_f_prod] = SumAndProduct(Arr) %#codegen

 y_f_sum = 0;

 y_f_prod = 1;

 for i = 1:length(Arr)

 y_f_sum = y_f_sum+Arr(i);

 end

 for i = 1:length(Arr)

 y_f_prod = y_f_prod*Arr(i);

 end

The code generated from this MATLAB code evaluates the sum and product in a single
loop.

Successive Matrix Operations Combined

When possible, the code generation software converts successive matrix operations in
your MATLAB code into a single loop operation in generated code. This optimization

23 Generate Efficient and Reusable Code

23-48

reduces excess loop overhead involved in performing the matrix operations in separate
loops.

The following example contains code where successive matrix operations take place. The
function ManipulateMatrix multiplies every element of a matrix Mat with a factor.
To every element in the result, the function then adds a shift:

function Res=ManipulateMatrix(Mat,factor,shift)

 Res=Mat*factor;

 Res=Res+shift;

end

The generated code combines the multiplication and addition into a single loop operation.

Unreachable Code Elimination

When possible, the code generation software suppresses code generation from
unreachable procedures in your MATLAB code. For instance, if a branch of an if,
elseif, else statement is unreachable, then code is not generated for that branch.

The following example contains unreachable code, which is eliminated during code
generation. The function SaturateValue returns a value based on the range of its input
x.

function y_b = SaturateValue(x) %#codegen

 if x>0

 y_b = x;

 elseif x>10 %This is redundant

 y_b = 10;

 else

 y_b = -x;

 end

The second branch of the if, elseif, else statement is unreachable. If the variable
x is greater than 10, it is also greater than 0. Therefore, the first branch is executed in
preference to the second branch.

MATLAB Coder does not generate code for the unreachable second branch.

 Generate Reusable Code

23-49

Generate Reusable Code

With MATLAB, you can generate reusable code in the following ways:

• Write reusable functions using standard MATLAB function file names which you can
call from different locations, for example, in a Simulink model or MATLAB function
library.

• Compile external functions on the MATLAB path and integrate them into generated
C code for embedded targets.

See “Resolution of Function Calls for Code Generation”.

Common applications include:

• Overriding generated library function with a custom implementation.
• Implementing a reusable library on top of standard library functions that can be used

with Simulink.
• Swapping between different implementations of the same function.

24

Code Generation for MATLAB
Structures

• “Structure Definition for Code Generation” on page 24-2
• “Structure Operations Allowed for Code Generation” on page 24-3
• “Define Scalar Structures for Code Generation” on page 24-4
• “Define Arrays of Structures for Code Generation” on page 24-7
• “Make Structures Persistent” on page 24-9
• “Index Substructures and Fields” on page 24-10
• “Assign Values to Structures and Fields” on page 24-12
• “Pass Large Structures as Input Parameters” on page 24-14

24 Code Generation for MATLAB Structures

24-2

Structure Definition for Code Generation

To generate efficient standalone code for structures, you must define and use structures
differently than you normally would when running your code in the MATLAB
environment:

What's Different More Information

Use a restricted set of operations. “Structure Operations Allowed for Code
Generation” on page 24-3

Observe restrictions on properties and
values of scalar structures.

“Define Scalar Structures for Code
Generation” on page 24-4

Make structures uniform in arrays. “Define Arrays of Structures for Code
Generation” on page 24-7

Reference structure fields individually
during indexing.

“Index Substructures and Fields” on page
24-10

Avoid type mismatch when assigning
values to structures and fields.

“Assign Values to Structures and Fields” on
page 24-12

 Structure Operations Allowed for Code Generation

24-3

Structure Operations Allowed for Code Generation

To generate efficient standalone code for MATLAB structures, you are restricted to the
following operations:

• Define structures as local and persistent variables by assignment and using the
struct function

• Index structure fields using dot notation
• Define primary function inputs as structures
• Pass structures to local functions

24 Code Generation for MATLAB Structures

24-4

Define Scalar Structures for Code Generation

In this section...

“Restriction When Using struct” on page 24-4
“Restrictions When Defining Scalar Structures by Assignment” on page 24-4
“Adding Fields in Consistent Order on Each Control Flow Path” on page 24-4
“Restriction on Adding New Fields After First Use” on page 24-5

Restriction When Using struct

When you use the struct function to create scalar structures for code generation, you
cannot create structures of cell arrays.

Restrictions When Defining Scalar Structures by Assignment

When you define a scalar structure by assigning a variable to a preexisting structure,
you do not need to define the variable before the assignment. However, if you already
defined that variable, it must have the same class, size, and complexity as the structure
you assign to it. In the following example, p is defined as a structure that has the same
properties as the predefined structure S:

...

S = struct('a', 0, 'b', 1, 'c', 2);

p = S;

...

Adding Fields in Consistent Order on Each Control Flow Path

When you create a structure, you must add fields in the same order on each control flow
path. For example, the following code generates a compiler error because it adds the
fields of structure x in a different order in each if statement clause:

function y = fcn(u) %#codegen

if u > 0

 x.a = 10;

 x.b = 20;

else

 x.b = 30; % Generates an error (on variable x)

 Define Scalar Structures for Code Generation

24-5

 x.a = 40;

end

y = x.a + x.b;

In this example, the assignment to x.a comes before x.b in the first if statement
clause, but the assignments appear in reverse order in the else clause. Here is the
corrected code:

function y = fcn(u) %#codegen

if u > 0

 x.a = 10;

 x.b = 20;

else

 x.a = 40;

 x.b = 30;

end

y = x.a + x.b;

Restriction on Adding New Fields After First Use

You cannot add fields to a structure after you perform the following operations on the
structure:

• Reading from the structure
• Indexing into the structure array
• Passing the structure to a function

For example, consider this code:

...

x.c = 10; % Defines structure and creates field c

y = x; % Reads from structure

x.d = 20; % Generates an error

...

In this example, the attempt to add a new field d after reading from structure x
generates an error.

This restriction extends across the structure hierarchy. For example, you cannot add
a field to a structure after operating on one of its fields or nested structures, as in this
example:

function y = fcn(u) %#codegen

24 Code Generation for MATLAB Structures

24-6

x.c = 10;

y = x.c;

x.d = 20; % Generates an error

In this example, the attempt to add a new field d to structure x after reading from the
structure's field c generates an error.

 Define Arrays of Structures for Code Generation

24-7

Define Arrays of Structures for Code Generation

In this section...

“Ensuring Consistency of Fields” on page 24-7
“Using repmat to Define an Array of Structures with Consistent Field Properties” on
page 24-7
“Defining an Array of Structures Using Concatenation” on page 24-8

Ensuring Consistency of Fields

When you create an array of MATLAB structures with the intent of generating code,
you must be sure that each structure field in the array has the same size, type, and
complexity.

Once you have created the array of structures, you can make the structure fields
variable-size using coder.varsize. For more information, see “Declare a variable-size
structure field.”.

Using repmat to Define an Array of Structures with Consistent Field
Properties

You can create an array of structures from a scalar structure by using the MATLAB
repmat function, which replicates and tiles an existing scalar structure:

1 Create a scalar structure, as described in “Define Scalar Structures for Code
Generation” on page 24-4.

2 Call repmat, passing the scalar structure and the dimensions of the array.
3 Assign values to each structure using standard array indexing and structure dot

notation.

For example, the following code creates X, a 1-by-3 array of scalar structures. Each
element of the array is defined by the structure s, which has two fields, a and b:

...

s.a = 0;

s.b = 0;

X = repmat(s,1,3);

X(1).a = 1;

24 Code Generation for MATLAB Structures

24-8

X(2).a = 2;

X(3).a = 3;

X(1).b = 4;

X(2).b = 5;

X(3).b = 6;

...

Defining an Array of Structures Using Concatenation

To create a small array of structures, you can use the concatenation operator, square
brackets ([]), to join one or more structures into an array (see “Concatenating
Matrices”). For code generation, the structures that you concatenate must have the same
size, class, and complexity.

For example, the following code uses concatenation and a local function to create the
elements of a 1-by-3 structure array:

...

W = [sab(1,2) sab(2,3) sab(4,5)];

function s = sab(a,b)

 s.a = a;

 s.b = b;

...

 Make Structures Persistent

24-9

Make Structures Persistent

To make structures persist, you define them to be persistent variables and initialize
them with the isempty statement, as described in “Define and Initialize Persistent
Variables” on page 19-10.

For example, the following function defines structure X to be persistent and initializes its
fields a and b:

function f(u) %#codegen

persistent X

if isempty(X)

 X.a = 1;

 X.b = 2;

end

24 Code Generation for MATLAB Structures

24-10

Index Substructures and Fields

Use these guidelines when indexing substructures and fields for code generation:

Reference substructure field values individually using dot notation

For example, the following MATLAB code uses dot notation to index fields and
substructures:

...

substruct1.a1 = 15.2;

substruct1.a2 = int8([1 2;3 4]);

mystruct = struct('ele1',20.5,'ele2',single(100),

 'ele3',substruct1);

substruct2 = mystruct;

substruct2.ele3.a2 = 2*(substruct1.a2);

...

The generated code indexes elements of the structures in this example by resolving
symbols as follows:

Dot Notation Symbol Resolution

substruct1.a1 Field a1 of local structure substruct1
substruct2.ele3.a1 Value of field a1 of field ele3, a substructure of local structure

substruct2

substruct2.ele3.a2(1,1) Value in row 1, column 1 of field a2 of field ele3, a substructure
of local structure substruct2

Reference field values individually in structure arrays

To reference the value of a field in a structure array, you must index into the array to
the structure of interest and then reference that structure's field individually using dot
notation, as in this example:

...

y = X(1).a % Extracts the value of field a

 % of the first structure in array X

...

 Index Substructures and Fields

24-11

To reference all the values of a particular field for each structure in an array, use this
notation in a for loop, as in this example:

...

s.a = 0;

s.b = 0;

X = repmat(s,1,5);

for i = 1:5

 X(i).a = i;

 X(i).b = i+1;

end

This example uses the repmat function to define an array of structures, each with two
fields a and b as defined by s. See “Define Arrays of Structures for Code Generation” on
page 24-7 for more information.

Do not reference fields dynamically

You cannot reference fields in a structure by using dynamic names, which express the
field as a variable expression that MATLAB evaluates at run time (see “Generate Field
Names from Variables”).

24 Code Generation for MATLAB Structures

24-12

Assign Values to Structures and Fields

When assigning values to a structure, substructure, or field for code generation, use
these guidelines:

Field properties must be consistent across structure-to-structure assignments

If: Then:

Assigning one structure to another
structure.

Define each structure with the same
number, type, and size of fields.

Assigning one structure to a substructure
of a different structure and vice versa.

Define the structure with the same
number, type, and size of fields as the
substructure.

Assigning an element of one structure to an
element of another structure.

The elements must have the same type and
size.

For structures with constant fields, do not assign field values inside control flow constructs

In the following code, the code generation software recognizes that the structure fields
s.a and s.b are constants.

function y = mystruct()

s.a = 3;

s.b = 5;

y = zeros(s.a,s.b);

If a field of a structure is assigned inside a control flow construct, the code generation
software does not recognize that s.a and s.b are constant. Consider the following code:

function y = mystruct(x)

s.a = 3;

if x > 1

 s.b = 4;

else

 s.b = 5;

end

y = zeros(s.a,s.b);

If variable-sizing is enabled, y is treated as a variable-size array. If variable-sizing is
disabled, y, the code generation software reports an error.

 Assign Values to Structures and Fields

24-13

Do not assign mxArrays to structures

You cannot assign mxArrays to structure elements; convert mxArrays to known types
before code generation (see “Working with mxArrays” on page 15-17).

24 Code Generation for MATLAB Structures

24-14

Pass Large Structures as Input Parameters

If you generate a MEX function for a MATLAB function that takes a large structure as
an input parameter, for example, a structure containing fields that are matrices, the
MEX function might fail to load. This load failure occurs because, when you generate a
MEX function from a MATLAB function that has input parameters, the code generation
software allocates memory for these input parameters on the stack. To avoid this issue,
pass the structure by reference to the MATLAB function. For example, if the original
function signature is:

y = foo(a, S)

where S is the structure input, rewrite the function to:

[y, S] = foo(a, S)

25

Functions, Classes, and System
Objects Supported for Code
Generation

• “Functions and Objects Supported for C and C++ Code Generation — Alphabetical
List” on page 25-2

• “Functions and Objects Supported for C and C++ Code Generation — Category List”
on page 25-147

25 Functions, Classes, and System Objects Supported for Code Generation

25-2

Functions and Objects Supported for C and C++ Code Generation
— Alphabetical List

You can generate efficient C and C++ code for a subset of MATLAB built-in functions and
toolbox functions, classes, and System objects that you call from MATLAB code. These
function, classes, and System objects appear in alphabetical order in the following table.

To find supported functions, classes, and System objects by MATLAB category or toolbox,
see “Functions and Objects Supported for C and C++ Code Generation — Category List”.

Note: For more information on code generation for fixed-point algorithms, refer to “Code
Acceleration and Code Generation from MATLAB”.

Name Product Remarks and Limitations

abs MATLAB —
abs Fixed-Point

Designer
—

accumneg Fixed-Point
Designer

—

accumpos Fixed-Point
Designer

—

acos MATLAB • Generates an error during simulation and
returns NaN in generated code when the
input value x is real, but the output should
be complex. To get the complex result,
make the input value complex by passing in
complex(x).

acosd MATLAB —
acosh MATLAB • Generates an error during simulation and

returns NaN in generated code when the
input value x is real, but the output should
be complex. To get the complex result,
make the input value complex by passing in
complex(x).

 Functions and Objects Supported for C and C++ Code Generation — Alphabetical List

25-3

Name Product Remarks and Limitations

acot MATLAB —
acotd MATLAB —
acoth MATLAB —
acsc MATLAB —
acscd MATLAB —
acsch MATLAB —
add Fixed-Point

Designer
Code generation in MATLAB does not support
the syntax F.add(a,b). You must use the
syntax add(F,a,b).

affine2d Image Processing
Toolbox

When generating code, you can only specify
single objects—arrays of objects are not
supported.

aictest Phased Array
System Toolbox

Does not support variable-size inputs.

albersheim Phased Array
System Toolbox

Does not support variable-size inputs.

all MATLAB “Variable-Sizing Restrictions for Code
Generation of Toolbox Functions”

all Fixed-Point
Designer

—

ambgfun Phased Array
System Toolbox

Does not support variable-size inputs.

and MATLAB —
any MATLAB “Variable-Sizing Restrictions for Code

Generation of Toolbox Functions”
any Fixed-Point

Designer
—

aperture2gain Phased Array
System Toolbox

Does not support variable-size inputs.

asec MATLAB —
asecd MATLAB —

25 Functions, Classes, and System Objects Supported for Code Generation

25-4

Name Product Remarks and Limitations

asech MATLAB —
asin MATLAB • Generates an error during simulation and

returns NaN in generated code when the
input value x is real, but the output should
be complex. To get the complex result,
make the input value complex by passing in
complex(x).

asind MATLAB —
asinh MATLAB —
assert MATLAB • Generates specified error messages at

compile time only if all input arguments are
constants or depend on constants. Otherwise,
generates specified error messages at run
time.

• For standalone code generation, excluded
from the generated code.

• See “Rules for Using assert Function”.
assignDetections-

ToTracks

Computer Vision
System Toolbox

Compile-time constant input: No restriction.
Supports MATLAB Function block: Yes

atan MATLAB —
atan2 MATLAB —
atan2 Fixed-Point

Designer
—

atan2d MATLAB —
atand MATLAB —
atanh MATLAB • Generates an error during simulation and

returns NaN in generated code when the
input value x is real, but the output should
be complex. To get the complex result,
make the input value complex by passing in
complex(x).

az2broadside Phased Array
System Toolbox

Does not support variable-size inputs.

 Functions and Objects Supported for C and C++ Code Generation — Alphabetical List

25-5

Name Product Remarks and Limitations

azel2phitheta Phased Array
System Toolbox

Does not support variable-size inputs.

azel2phithetapat Phased Array
System Toolbox

Does not support variable-size inputs.

azel2uv Phased Array
System Toolbox

Does not support variable-size inputs.

azel2uvpat Phased Array
System Toolbox

Does not support variable-size inputs.

azelaxes Phased Array
System Toolbox

Does not support variable-size inputs.

bandwidth MATLAB —
barthannwin Signal Processing

Toolbox
Window length must be a constant. Expressions
or variables are allowed if their values do not
change.

Specifying constants

To specify a constant input for fiaccel, use
coder.Constant. For more information, see
“Specify Constant Inputs at the Command Line”.

bartlett Signal Processing
Toolbox

Window length must be a constant. Expressions
or variables are allowed if their values do not
change.

Specifying constants

To specify a constant input for fiaccel, use
coder.Constant. For more information, see
“Specify Constant Inputs at the Command Line”.

bboxOverlapRatio Computer Vision
System Toolbox

Compile-time constant input: No restriction
Supports MATLAB Function block: No

beat2range Phased Array
System Toolbox

Does not support variable-size inputs.

25 Functions, Classes, and System Objects Supported for Code Generation

25-6

Name Product Remarks and Limitations

besselap Signal Processing
Toolbox

Filter order must be a constant. Expressions
or variables are allowed if their values do not
change.

Specifying constants

To specify a constant input for fiaccel, use
coder.Constant. For more information, see
“Specify Constant Inputs at the Command Line”.

beta MATLAB —
betacdf Statistics

and Machine
Learning Toolbox

—

betafit Statistics
and Machine
Learning Toolbox

—

betainc MATLAB Always returns a complex result.
betaincinv MATLAB Always returns a complex result.
betainv Statistics

and Machine
Learning Toolbox

—

betalike Statistics
and Machine
Learning Toolbox

—

betaln MATLAB —
betapdf Statistics

and Machine
Learning Toolbox

—

betarnd Statistics
and Machine
Learning Toolbox

Can return a different sequence of numbers than
MATLAB if either of the following is true:

• The output is nonscalar.
• An input parameter is invalid for the

distribution.

 Functions and Objects Supported for C and C++ Code Generation — Alphabetical List

25-7

Name Product Remarks and Limitations

betastat Statistics
and Machine
Learning Toolbox

—

bi2de Communications
System Toolbox

—

billingsleyicm Phased Array
System Toolbox

Does not support variable-size inputs.

bin2dec MATLAB • Does not match MATLAB when the input is
empty.

binaryFeatures Computer Vision
System Toolbox

—

binocdf Statistics
and Machine
Learning Toolbox

—

binoinv Statistics
and Machine
Learning Toolbox

—

binopdf Statistics
and Machine
Learning Toolbox

—

binornd Statistics
and Machine
Learning Toolbox

Can return a different sequence of numbers than
MATLAB if either of the following is true:

• The output is nonscalar.
• An input parameter is invalid for the

distribution.
binostat Statistics

and Machine
Learning Toolbox

—

bitand MATLAB —
bitand Fixed-Point

Designer
• Not supported for slope-bias scaled fi

objects.

25 Functions, Classes, and System Objects Supported for Code Generation

25-8

Name Product Remarks and Limitations

bitandreduce Fixed-Point
Designer

—

bitcmp MATLAB —
bitcmp Fixed-Point

Designer
—

bitconcat Fixed-Point
Designer

—

bitget MATLAB —
bitget Fixed-Point

Designer
—

bitor MATLAB —
bitor Fixed-Point

Designer
• Not supported for slope-bias scaled fi

objects.
bitorreduce Fixed-Point

Designer
—

bitreplicate Fixed-Point
Designer

—

bitrevorder Signal Processing
Toolbox

—

bitrol Fixed-Point
Designer

—

bitror Fixed-Point
Designer

—

bitset MATLAB —
bitset Fixed-Point

Designer
—

bitshift MATLAB —
bitshift Fixed-Point

Designer
—

bitsliceget Fixed-Point
Designer

—

 Functions and Objects Supported for C and C++ Code Generation — Alphabetical List

25-9

Name Product Remarks and Limitations

bitsll Fixed-Point
Designer

• Generated code may not handle out of range
shifting.

bitsra Fixed-Point
Designer

• Generated code may not handle out of range
shifting.

bitsrl Fixed-Point
Designer

• Generated code may not handle out of range
shifting.

bitxor MATLAB —
bitxor Fixed-Point

Designer
• Not supported for slope-bias scaled fi

objects.
bitxorreduce Fixed-Point

Designer
—

blackman Signal Processing
Toolbox

Window length must be a constant. Expressions
or variables are allowed if their values do not
change.

Specifying constants

To specify a constant input for fiaccel, use
coder.Constant. For more information, see
“Specify Constant Inputs at the Command Line”.

blackmanharris Signal Processing
Toolbox

Window length must be a constant. Expressions
or variables are allowed if their values do not
change.

Specifying constants

To specify a constant input for fiaccel, use
coder.Constant. For more information, see
“Specify Constant Inputs at the Command Line”.

blanks MATLAB —
blkdiag MATLAB —

25 Functions, Classes, and System Objects Supported for Code Generation

25-10

Name Product Remarks and Limitations

bohmanwin Signal Processing
Toolbox

Window length must be a constant. Expressions
or variables are allowed if their values do not
change.

Specifying constants

To specify a constant input for fiaccel, use
coder.Constant. For more information, see
“Specify Constant Inputs at the Command Line”.

break MATLAB —
BRISKPoints Computer Vision

System Toolbox
Compile-time constant inputs: No restriction
Supports MATLAB Function block: No
To index locations with this object, use
the syntax: points.Location(idx,:),
for points object. See
visionRecovertformCodeGeneration_kernel.m,
which is used in the “Introduction to Code
Generation with Feature Matching and
Registration” example.

broadside2az Phased Array
System Toolbox

Does not support variable-size inputs.

bsxfun MATLAB “Variable-Sizing Restrictions for Code
Generation of Toolbox Functions”

buttap Signal Processing
Toolbox

Filter order must be a constant. Expressions
or variables are allowed if their values do not
change.

Specifying constants

To specify a constant input for fiaccel, use
coder.Constant. For more information, see
“Specify Constant Inputs at the Command Line”.

 Functions and Objects Supported for C and C++ Code Generation — Alphabetical List

25-11

Name Product Remarks and Limitations

butter Signal Processing
Toolbox

Filter coefficients must be constants.
Expressions or variables are allowed if their
values do not change.

Specifying constants

To specify a constant input for fiaccel, use
coder.Constant. For more information, see
“Specify Constant Inputs at the Command Line”.

buttord Signal Processing
Toolbox

All inputs must be constants. Expressions or
variables are allowed if their values do not
change.

Specifying constants

To specify a constant input for fiaccel, use
coder.Constant. For more information, see
“Specify Constant Inputs at the Command Line”.

bwdist Image Processing
Toolbox

The method argument must be a compile-time
constant. Input images must have fewer than 232

pixels.

Generated code for this function uses a
precompiled, platform-specific shared library.

bweuler Image Processing
Toolbox

If you choose the generic MATLAB Host
Computer target platform, generated code uses
a precompiled, platform-specific shared library

bwlabel Image Processing
Toolbox

When generating code, the parameter n must be
a compile-time constant.

bwlookup Image Processing
Toolbox

For best results, specify an input image of class
logical.

If you choose the generic MATLAB Host
Computer target platform, generated code uses
a precompiled, platform-specific shared library.

25 Functions, Classes, and System Objects Supported for Code Generation

25-12

Name Product Remarks and Limitations

bwmorph Image Processing
Toolbox

The text string specifying the operation must be
a constant and, for best results, specify an input
image of class logical.

If you choose the generic MATLAB Host
Computer target platform, generated code uses
a precompiled, platform-specific shared library.

bwpack Image Processing
Toolbox

Generated code for this function uses a
precompiled platform-specific shared library.

bwperim Image Processing
Toolbox

Supports only 2-D images. Does not support any
no-output-argument syntaxes. The connectivity
matrix input argument, conn, must be a
compile-time constant.

If you choose the generic MATLAB Host
Computer target platform, generated code uses
a precompiled, platform-specific shared library.

bwselect Image Processing
Toolbox

Supports only the 3 and 4 input argument
syntaxes: BW2 = bwselect(BW,c,r) and
BW2 = bwselect(BW,c,r,n). The optional
fourth input argument, n, must be a compile-
time constant. In addition, with code generation,
bwselect only supports only the 1 and 2 output
argument syntaxes: BW2 = bwselect(___) or
[BW2, idx] = bwselect(___).

If you choose the generic MATLAB Host
Computer target platform, generated code uses
a precompiled, platform-specific shared library.

bwtraceboundary Image Processing
Toolbox

The dir, fstep, and conn arguments must be
compile-time constants.

bwunpack Image Processing
Toolbox

Generated code for this function uses a
precompiled platform-specific shared library.

ca2tf DSP System
Toolbox

All inputs must be constant. Expressions or
variables are allowed if their values do not
change.

 Functions and Objects Supported for C and C++ Code Generation — Alphabetical List

25-13

Name Product Remarks and Limitations

cameraMatrix Computer Vision
System Toolbox

Supports MATLAB Function block: No

cameraParameters Computer Vision
System Toolbox

Supports MATLAB Function block: No

cart2pol MATLAB —
cart2sph MATLAB —
cart2sphvec Phased Array

System Toolbox
Does not support variable-size inputs.

cast MATLAB —
cat MATLAB • If supplied, dim must be a constant.

• “Variable-Sizing Restrictions for Code
Generation of Toolbox Functions”

cbfweights Phased Array
System Toolbox

Does not support variable-size inputs.

cdf Statistics
and Machine
Learning Toolbox

—

ceil MATLAB —
ceil Fixed-Point

Designer
—

cfirpm Signal Processing
Toolbox

All inputs must be constants. Expressions or
variables are allowed if their values do not
change.

Specifying constants

To specify a constant input for fiaccel, use
coder.Constant. For more information, see
“Specify Constant Inputs at the Command Line”.

char MATLAB —

25 Functions, Classes, and System Objects Supported for Code Generation

25-14

Name Product Remarks and Limitations

cheb1ap Signal Processing
Toolbox

All inputs must be constants. Expressions or
variables are allowed if their values do not
change.

Specifying constants

To specify a constant input for fiaccel, use
coder.Constant. For more information, see
“Specify Constant Inputs at the Command Line”.

cheb1ord Signal Processing
Toolbox

All inputs must be constants. Expressions or
variables are allowed if their values do not
change.

Specifying constants

To specify a constant input for fiaccel, use
coder.Constant. For more information, see
“Specify Constant Inputs at the Command Line”.

cheb2ap Signal Processing
Toolbox

All inputs must be constants. Expressions or
variables are allowed if their values do not
change.

Specifying constants

To specify a constant input for fiaccel, use
coder.Constant. For more information, see
“Specify Constant Inputs at the Command Line”.

cheb2ord Signal Processing
Toolbox

All inputs must be constants. Expressions or
variables are allowed if their values do not
change.

Specifying constants

To specify a constant input for fiaccel, use
coder.Constant. For more information, see
“Specify Constant Inputs at the Command Line”.

 Functions and Objects Supported for C and C++ Code Generation — Alphabetical List

25-15

Name Product Remarks and Limitations

chebwin Signal Processing
Toolbox

All inputs must be constants. Expressions or
variables are allowed if their values do not
change.

Specifying constants

To specify a constant input for fiaccel, use
coder.Constant. For more information, see
“Specify Constant Inputs at the Command Line”.

cheby1 Signal Processing
Toolbox

All inputs must be constants. Expressions or
variables are allowed if their values do not
change.

Specifying constants

To specify a constant input for fiaccel, use
coder.Constant. For more information, see
“Specify Constant Inputs at the Command Line”.

cheby2 Signal Processing
Toolbox

All inputs must be constants. Expressions or
variables are allowed if their values do not
change.

Specifying constants

To specify a constant input for fiaccel, use
coder.Constant. For more information, see
“Specify Constant Inputs at the Command Line”.

chi2cdf Statistics
and Machine
Learning Toolbox

—

chi2inv Statistics
and Machine
Learning Toolbox

—

chi2pdf Statistics
and Machine
Learning Toolbox

—

25 Functions, Classes, and System Objects Supported for Code Generation

25-16

Name Product Remarks and Limitations

chi2rnd Statistics
and Machine
Learning Toolbox

Can return a different sequence of numbers than
MATLAB if either of the following is true:

• The output is nonscalar.
• An input parameter is invalid for the

distribution.
chi2stat Statistics

and Machine
Learning Toolbox

—

chol MATLAB —
circpol2pol Phased Array

System Toolbox
Does not support variable-size inputs.

circshift MATLAB —
cl2tf DSP System

Toolbox
All inputs must be constant. Expressions or
variables are allowed if their values do not
change.

class MATLAB —
colon MATLAB • Does not accept complex inputs.

• The input i cannot have a logical value.
• Does not accept vector inputs.
• Inputs must be constants.
• Uses single-precision arithmetic to produce

single-precision results.
comm.ACPR Communications

System Toolbox
“System Objects in MATLAB Code Generation”

comm.AGC Communications
System Toolbox

“System Objects in MATLAB Code Generation”

comm.Algebraic-

Deinterleaver

Communications
System Toolbox

“System Objects in MATLAB Code Generation”

comm.APPDecoder Communications
System Toolbox

“System Objects in MATLAB Code Generation”

 Functions and Objects Supported for C and C++ Code Generation — Alphabetical List

25-17

Name Product Remarks and Limitations

comm.AWGNChannel Communications
System Toolbox

“System Objects in MATLAB Code Generation”

comm.BarkerCode Communications
System Toolbox

“System Objects in MATLAB Code Generation”

comm.BCHDecoder Communications
System Toolbox

“System Objects in MATLAB Code Generation”

comm.BCHEncoder Communications
System Toolbox

“System Objects in MATLAB Code Generation”

comm.Binary-

SymmetricChannel

Communications
System Toolbox

“System Objects in MATLAB Code Generation”

comm.BlockDeinterleaver Communications
System Toolbox

“System Objects in MATLAB Code Generation”

comm.BlockInterleaver Communications
System Toolbox

“System Objects in MATLAB Code Generation”

comm.BPSKDemodulator Communications
System Toolbox

“System Objects in MATLAB Code Generation”

comm.BPSKModulator Communications
System Toolbox

“System Objects in MATLAB Code Generation”

comm.Carrier-

Synchronizer

Communications
System Toolbox

“System Objects in MATLAB Code Generation”

comm.CCDF Communications
System Toolbox

“System Objects in MATLAB Code Generation”

comm.Constellation-

Diagram

Communications
System Toolbox

“System Objects in MATLAB Code Generation”

comm.Convolutional-

Deinterleaver

Communications
System Toolbox

“System Objects in MATLAB Code Generation”

comm.Convolutional-

Encoder

Communications
System Toolbox

“System Objects in MATLAB Code Generation”

comm.Convolutional-

Interleaver

Communications
System Toolbox

“System Objects in MATLAB Code Generation”

comm.CPFSKDemodulator Communications
System Toolbox

“System Objects in MATLAB Code Generation”

25 Functions, Classes, and System Objects Supported for Code Generation

25-18

Name Product Remarks and Limitations

comm.CPFSKModulator Communications
System Toolbox

“System Objects in MATLAB Code Generation”

comm.CPMCarrier-

PhaseSynchronizer

Communications
System Toolbox

“System Objects in MATLAB Code Generation”

comm.CPMDemodulator Communications
System Toolbox

“System Objects in MATLAB Code Generation”

comm.CPMModulator Communications
System Toolbox

“System Objects in MATLAB Code Generation”

comm.CRCDetector Communications
System Toolbox

“System Objects in MATLAB Code Generation”

comm.CRCGenerator Communications
System Toolbox

“System Objects in MATLAB Code Generation”

comm.DBPSKDemodulator Communications
System Toolbox

“System Objects in MATLAB Code Generation”

comm.DBPSKModulator Communications
System Toolbox

“System Objects in MATLAB Code Generation”

comm.Descrambler Communications
System Toolbox

“System Objects in MATLAB Code Generation”

comm.Differential-

Decoder

Communications
System Toolbox

“System Objects in MATLAB Code Generation”

comm.Differential-

Encoder

Communications
System Toolbox

“System Objects in MATLAB Code Generation”

comm.DiscreteTimeVCO Communications
System Toolbox

“System Objects in MATLAB Code Generation”

comm.DPSKDemodulator Communications
System Toolbox

“System Objects in MATLAB Code Generation”

comm.DPSKModulator Communications
System Toolbox

“System Objects in MATLAB Code Generation”

comm.DQPSKDemodulator Communications
System Toolbox

“System Objects in MATLAB Code Generation”

comm.DQPSKModulator Communications
System Toolbox

“System Objects in MATLAB Code Generation”

 Functions and Objects Supported for C and C++ Code Generation — Alphabetical List

25-19

Name Product Remarks and Limitations

comm.ErrorRate Communications
System Toolbox

“System Objects in MATLAB Code Generation”

comm.EVM Communications
System Toolbox

“System Objects in MATLAB Code Generation”

comm.FMBroadcast-

Demodulator

Communications
System Toolbox

“System Objects in MATLAB Code Generation”

comm.FMBroadcast-

Modulator

Communications
System Toolbox

“System Objects in MATLAB Code Generation”

comm.FMDemodulator Communications
System Toolbox

“System Objects in MATLAB Code Generation”

comm.FMModulator Communications
System Toolbox

“System Objects in MATLAB Code Generation”

comm.FSKDemodulator Communications
System Toolbox

“System Objects in MATLAB Code Generation”

comm.FSKModulator Communications
System Toolbox

“System Objects in MATLAB Code Generation”

comm.GeneralQAM-

Demodulator

Communications
System Toolbox

“System Objects in MATLAB Code Generation”

comm.GeneralQAM-

Modulator

Communications
System Toolbox

“System Objects in MATLAB Code Generation”

comm.GeneralQAMTCM-

Demodulator

Communications
System Toolbox

“System Objects in MATLAB Code Generation”

comm.GeneralQAMTCM-

Modulator

Communications
System Toolbox

“System Objects in MATLAB Code Generation”

comm.GMSKDemodulator Communications
System Toolbox

“System Objects in MATLAB Code Generation”

comm.GMSKModulator Communications
System Toolbox

“System Objects in MATLAB Code Generation”

comm.GMSKTiming-

Synchronizer

Communications
System Toolbox

“System Objects in MATLAB Code Generation”

comm.GoldSequence Communications
System Toolbox

“System Objects in MATLAB Code Generation”

25 Functions, Classes, and System Objects Supported for Code Generation

25-20

Name Product Remarks and Limitations

comm.HadamardCode Communications
System Toolbox

“System Objects in MATLAB Code Generation”

comm.HDLCRCDetector Communications
System Toolbox

“System Objects in MATLAB Code Generation”

comm.HDLCRCGenerator Communications
System Toolbox

“System Objects in MATLAB Code Generation”

comm.HDLRSDecoder Communications
System Toolbox

“System Objects in MATLAB Code Generation”

comm.HDLRSEncoder Communications
System Toolbox

“System Objects in MATLAB Code Generation”

comm.Helical-

Deinterleaver

Communications
System Toolbox

“System Objects in MATLAB Code Generation”

comm.HelicalInterleaver Communications
System Toolbox

“System Objects in MATLAB Code Generation”

comm.IntegrateAnd-

DumpFilter

Communications
System Toolbox

“System Objects in MATLAB Code Generation”

comm.IQImbalance-

Compensator

Communications
System Toolbox

“System Objects in MATLAB Code Generation”

comm.KasamiSequence Communications
System Toolbox

“System Objects in MATLAB Code Generation”

comm.LDPCDecoder Communications
System Toolbox

“System Objects in MATLAB Code Generation”

comm.LDPCEncoder Communications
System Toolbox

“System Objects in MATLAB Code Generation”

comm.LTEMIMOChannel Communications
System Toolbox

“System Objects in MATLAB Code Generation”

comm.Matrix-

Deinterleaver

Communications
System Toolbox

“System Objects in MATLAB Code Generation”

comm.MatrixHelical-

ScanDeinterleaver

Communications
System Toolbox

“System Objects in MATLAB Code Generation”

comm.MatrixHelical-

ScanInterLeaver

Communications
System Toolbox

“System Objects in MATLAB Code Generation”

 Functions and Objects Supported for C and C++ Code Generation — Alphabetical List

25-21

Name Product Remarks and Limitations

comm.MatrixInterleaver Communications
System Toolbox

“System Objects in MATLAB Code Generation”

comm.Memoryless-

Nonlinearity

Communications
System Toolbox

“System Objects in MATLAB Code Generation”

comm.MER Communications
System Toolbox

“System Objects in MATLAB Code Generation”

comm.MIMOChannel Communications
System Toolbox

“System Objects in MATLAB Code Generation”

comm.MLSEEqualizer Communications
System Toolbox

“System Objects in MATLAB Code Generation”

comm.MSKDemodulator Communications
System Toolbox

“System Objects in MATLAB Code Generation”

comm.MSKModulator Communications
System Toolbox

“System Objects in MATLAB Code Generation”

comm.MSKTiming-

Synchronizer

Communications
System Toolbox

“System Objects in MATLAB Code Generation”

comm.Multiplexed-

Deinterleaver

Communications
System Toolbox

“System Objects in MATLAB Code Generation”

comm.Multiplexed-

Interleaver

Communications
System Toolbox

“System Objects in MATLAB Code Generation”

comm.OFDMDemodulator Communications
System Toolbox

“System Objects in MATLAB Code Generation”

comm.OFDMModulator Communications
System Toolbox

“System Objects in MATLAB Code Generation”

comm.OSTBCCombiner Communications
System Toolbox

“System Objects in MATLAB Code Generation”

comm.OSTBCEncoder Communications
System Toolbox

“System Objects in MATLAB Code Generation”

comm.OQPSKDemodulator Communications
System Toolbox

“System Objects in MATLAB Code Generation”

comm.OQPSKModulator Communications
System Toolbox

“System Objects in MATLAB Code Generation”

25 Functions, Classes, and System Objects Supported for Code Generation

25-22

Name Product Remarks and Limitations

comm.PAMDemodulator Communications
System Toolbox

“System Objects in MATLAB Code Generation”

comm.PAMModulator Communications
System Toolbox

“System Objects in MATLAB Code Generation”

comm.PhaseRequency-

Offset

Communications
System Toolbox

“System Objects in MATLAB Code Generation”

comm.PhaseNoise Communications
System Toolbox

“System Objects in MATLAB Code Generation”

comm.PNSequence Communications
System Toolbox

“System Objects in MATLAB Code Generation”

comm.PSKCoarseFrequency-

Estimator

Communications
System Toolbox

“System Objects in MATLAB Code Generation”

comm.PSKCoarseFrequence-

Estimator

Communications
System Toolbox

“System Objects in MATLAB Code Generation”

comm.PSKDemodulator Communications
System Toolbox

“System Objects in MATLAB Code Generation”

comm.PSKModulator Communications
System Toolbox

“System Objects in MATLAB Code Generation”

comm.PSKTCMDemodulator Communications
System Toolbox

“System Objects in MATLAB Code Generation”

comm.PSKTCMModulator Communications
System Toolbox

“System Objects in MATLAB Code Generation”

comm.QAMCoarseFrequency-

Estimator

Communications
System Toolbox

“System Objects in MATLAB Code Generation”

comm.QPSKDemodulator Communications
System Toolbox

“System Objects in MATLAB Code Generation”

comm.QPSKModulator Communications
System Toolbox

“System Objects in MATLAB Code Generation”

comm.RaisedCosine-

ReceiveFilter

Communications
System Toolbox

“System Objects in MATLAB Code Generation”

comm.RaisedCosine-

TransmitFilter

Communications
System Toolbox

“System Objects in MATLAB Code Generation”

 Functions and Objects Supported for C and C++ Code Generation — Alphabetical List

25-23

Name Product Remarks and Limitations

comm.RayleighChannel Communications
System Toolbox

“System Objects in MATLAB Code Generation”

comm.RectangularQAM-

Demodulator

Communications
System Toolbox

“System Objects in MATLAB Code Generation”

comm.Rectangular-

Modulator

Communications
System Toolbox

“System Objects in MATLAB Code Generation”

comm.RectangularQAMTCM-

Demodulator

Communications
System Toolbox

“System Objects in MATLAB Code Generation”

comm.RectangularQAMTCM-

Modulator

Communications
System Toolbox

“System Objects in MATLAB Code Generation”

comm.RicianChannel Communications
System Toolbox

“System Objects in MATLAB Code Generation”

comm.RSDecoder Communications
System Toolbox

“System Objects in MATLAB Code Generation”

comm.RSEncoder Communications
System Toolbox

“System Objects in MATLAB Code Generation”

comm.Scrambler Communications
System Toolbox

“System Objects in MATLAB Code Generation”

comm.SphereDecoder Communications
System Toolbox

Communications System Toolbox

comm.SymbolSynchronizer Communications
System Toolbox

Communications System Toolbox

comm.ThermalNoise Communications
System Toolbox

“System Objects in MATLAB Code Generation”

comm.TurboDecoder Communications
System Toolbox

“System Objects in MATLAB Code Generation”

comm.TurboEncoder Communications
System Toolbox

“System Objects in MATLAB Code Generation”

comm.ViterbiDecoder Communications
System Toolbox

“System Objects in MATLAB Code Generation”

comm.WalshCode Communications
System Toolbox

“System Objects in MATLAB Code Generation”

25 Functions, Classes, and System Objects Supported for Code Generation

25-24

Name Product Remarks and Limitations

compan MATLAB —
complex MATLAB —
complex Fixed-Point

Designer
—

computer MATLAB • Information about the computer on which the
code generation software is running.

• Use only when the code generation target is
S-function (Simulation) or MEX-function.

cond MATLAB —
conj MATLAB —
conj Fixed-Point

Designer
—

conndef Image Processing
Toolbox

Input arguments must be compile-time
constants.

continue MATLAB —
conv MATLAB “Variable-Sizing Restrictions for Code

Generation of Toolbox Functions”

 Functions and Objects Supported for C and C++ Code Generation — Alphabetical List

25-25

Name Product Remarks and Limitations

conv Fixed-Point
Designer

• Variable-sized inputs are only supported
when the SumMode property of the governing
fimath is set to Specify precision or
Keep LSB.

• For variable-sized signals, you may see
different results between MATLAB and the
generated code.

• In generated code, the output for variable-
sized signals is computed using the
SumMode property of the governing
fimath.

• In MATLAB, the output for variable-
sized signals is computed using the
SumMode property of the governing
fimath when both inputs are nonscalar.
However, if either input is a scalar,
MATLAB computes the output using the
ProductMode of the governing fimath.

conv2 MATLAB —
convergent Fixed-Point

Designer
—

convn MATLAB —
cordicabs Fixed-Point

Designer
• Variable-size signals are not supported.

cordicangle Fixed-Point
Designer

• Variable-size signals are not supported.

cordicatan2 Fixed-Point
Designer

• Variable-size signals are not supported.

cordiccart2pol Fixed-Point
Designer

• Variable-size signals are not supported.

cordiccexp Fixed-Point
Designer

• Variable-size signals are not supported.

25 Functions, Classes, and System Objects Supported for Code Generation

25-26

Name Product Remarks and Limitations

cordiccos Fixed-Point
Designer

• Variable-size signals are not supported.

cordicpol2cart Fixed-Point
Designer

• Variable-size signals are not supported.

cordicrotate Fixed-Point
Designer

• Variable-size signals are not supported.

cordicsin Fixed-Point
Designer

• Variable-size signals are not supported.

cordicsincos Fixed-Point
Designer

• Variable-size signals are not supported.

cornerPoints Computer Vision
System Toolbox

Compile-time constant input: No restriction
Supports MATLAB Function block: No
To index locations with this object, use
the syntax: points.Location(idx,:),
for points object. See
visionRecovertformCodeGeneration_kernel.m,
which is used in the “Introduction to Code
Generation with Feature Matching and
Registration” example.

corrcoef MATLAB • Row-vector input is only supported when the
first two inputs are vectors and nonscalar.

cos MATLAB —
cos Fixed-Point

Designer
—

cosd MATLAB —
cosh MATLAB —
cot MATLAB —
cotd MATLAB • In some cases, returns -Inf when MATLAB

returns Inf.
• In some cases, returns Inf when MATLAB

returns -Inf.
coth MATLAB —

 Functions and Objects Supported for C and C++ Code Generation — Alphabetical List

25-27

Name Product Remarks and Limitations

cov MATLAB • “Variable-Sizing Restrictions for Code
Generation of Toolbox Functions”

• Does not support the nanflag argument.
cross MATLAB • If supplied, dim must be a constant.

• “Variable-Sizing Restrictions for Code
Generation of Toolbox Functions”

csc MATLAB —
cscd MATLAB • In some cases, returns -Inf when MATLAB

returns Inf.
• In some cases, returns Inf when MATLAB

returns -Inf.
csch MATLAB —
ctranspose MATLAB —
ctranspose Fixed-Point

Designer
—

cummin MATLAB —
cummax MATLAB —
cumprod MATLAB Does not support logical inputs. Cast input to

double first.
cumsum MATLAB Does not support logical inputs. Cast input to

double first.
cumtrapz MATLAB —
db2pow Signal Processing

Toolbox
—

25 Functions, Classes, and System Objects Supported for Code Generation

25-28

Name Product Remarks and Limitations

dct Signal Processing
Toolbox

• Code generation for this function requires the
DSP System Toolbox software.

• Length of transform dimension must
be a power of two. If specified, the pad
or truncation value must be constant.
Expressions or variables are allowed if their
values do not change.

Specifying constants

To specify a constant input for fiaccel, use
coder.Constant. For more information, see
“Specify Constant Inputs at the Command
Line”.

de2bi Communications
System Toolbox

—

deal MATLAB —
deblank MATLAB • Supports only inputs from the char class.

• Input values must be in the range 0-127.
dec2bin MATLAB • If input d is double, d must be less than

2^52.
• If input d is single, d must be less than

2^23.
• Unless you specify input n to be constant and

n is large enough that the output has a fixed
number of columns regardless of the input
values, this function requires variable-sizing
support. Without variable-sizing support,
n must be at least 52 for double, 23 for
single, 16 for char, 32 for int32, 16 for
int16, and so on.

 Functions and Objects Supported for C and C++ Code Generation — Alphabetical List

25-29

Name Product Remarks and Limitations

dec2hex MATLAB • If input d is double, d must be less than
2^52.

• If input d is single, d must be less than
2^23.

• Unless you specify input n to be constant
and n is large enough that the output has a
fixed number of columns regardless of the
input values, this function requires variable-
sizing support. Without variable-sizing
support, n must be at least 13 for double,
6 for single, 4 for char, 8 for int32, 4 for
int16, and so on.

dechirp Phased Array
System Toolbox

Does not support variable-size inputs.

deconv MATLAB “Variable-Sizing Restrictions for Code
Generation of Toolbox Functions”

del2 MATLAB —
delayseq Phased Array

System Toolbox
Does not support variable-size inputs.

depressionang Phased Array
System Toolbox

Does not support variable-size inputs.

det MATLAB —
detectBRISKFeatures Computer Vision

System Toolbox
Supports MATLAB Function block: No
Generated code for this function uses a
precompiled platform-specific shared library.

detectFASTFeatures Computer Vision
System Toolbox

Supports MATLAB Function block: No
Generated code for this function uses a
precompiled platform-specific shared library.

detectHarrisFeatures Computer Vision
System Toolbox

Compile-time constant input: FilterSize
Supports MATLAB Function block: No
Generated code for this function uses a
precompiled platform-specific shared library.

http://www.mathworks.com/support/sysreq/current_release/
http://www.mathworks.com/support/sysreq/current_release/
http://www.mathworks.com/support/sysreq/current_release/

25 Functions, Classes, and System Objects Supported for Code Generation

25-30

Name Product Remarks and Limitations

detectMinEigenFeatures Computer Vision
System Toolbox

Compile-time constant input: FilterSize
Supports MATLAB Function block: No
Generated code for this function uses a
precompiled platform-specific shared library.

detectMSERFeatures Computer Vision
System Toolbox

Compile-time constant input: No restriction
Supports MATLAB Function block: No
For code generation, the function outputs
regions.PixelList as an array. The region sizes
are defined in regions.Lengths.

detectSURFFeatures Computer Vision
System Toolbox

Compile-time constant input: No restrictions
Supports MATLAB Function block: No
Generated code for this function uses a
precompiled platform-specific shared library.

detrend MATLAB • If supplied and not empty, the input
argument bp must satisfy the following
requirements:

• Be real.
• Be sorted in ascending order.
• Restrict elements to integers in the

interval [1, n-2]. n is the number of
elements in a column of input argument X
, or the number of elements in X when X is
a row vector.

• Contain all unique values.
• “Variable-Sizing Restrictions for Code

Generation of Toolbox Functions”

http://www.mathworks.com/support/sysreq/current_release/
http://www.mathworks.com/support/sysreq/current_release/

 Functions and Objects Supported for C and C++ Code Generation — Alphabetical List

25-31

Name Product Remarks and Limitations

diag MATLAB • If supplied, the argument representing the
order of the diagonal matrix must be a real
and scalar integer value.

• For variable-size inputs that are variable-
length vectors (1-by-: or :-by-1), diag:

• Treats the input as a vector input.
• Returns a matrix with the given vector

along the specified diagonal.

• For variable-size inputs that are not variable-
length vectors, diag:

• Treats the input as a matrix.
• Does not support inputs that are vectors

at run time.
• Returns a variable-length vector.

If the input is variable-size (:m-by-:n) and
has shape 0-by-0 at run time, the output is
0-by-1 not 0-by-0. However, if the input is a
constant size 0-by-0, the output is [].

• For variable-size inputs that are not variable-
length vectors (1-by-: or :-by-1), diag treats
the input as a matrix from which to extract
a diagonal vector. This behavior occurs even
if the input array is a vector at run time. To
force diag to build a matrix from variable-
size inputs that are not 1-by-: or :-by-1, use:

• diag(x(:)) instead of diag(x)
• diag(x(:),k) instead of diag(x,k)

• “Variable-Sizing Restrictions for Code
Generation of Toolbox Functions”

diag Fixed-Point
Designer

• If supplied, the index, k, must be a real and
scalar integer value that is not a fi object.

25 Functions, Classes, and System Objects Supported for Code Generation

25-32

Name Product Remarks and Limitations

diff MATLAB • If supplied, the arguments representing
the number of times to apply diff and
the dimension along which to calculate the
difference must be constants.

• “Variable-Sizing Restrictions for Code
Generation of Toolbox Functions”

disparity Computer Vision
System Toolbox

Compile-time constant input: Method.
Supports MATLAB Function block: No
Generated code for this function uses a
precompiled platform-specific shared library.

divide Fixed-Point
Designer

• Any non-fi input must be constant. Its value
must be known at compile time so that it can
be cast to a fi object.

• Complex and imaginary divisors are not
supported.

• The syntax T.divide(a,b) is not
supported.

dop2speed Phased Array
System Toolbox

Does not support variable-size inputs.

dopsteeringvec Phased Array
System Toolbox

Does not support variable-size inputs.

dot MATLAB —
double MATLAB —
double Fixed-Point

Designer
—

downsample Signal Processing
Toolbox

—

http://www.mathworks.com/support/sysreq/current_release/

 Functions and Objects Supported for C and C++ Code Generation — Alphabetical List

25-33

Name Product Remarks and Limitations

dpss Signal Processing
Toolbox

All inputs must be constants. Expressions or
variables are allowed if their values do not
change.

Specifying constants

To specify a constant input for fiaccel, use
coder.Constant. For more information, see
“Specify Constant Inputs at the Command Line”.

dsp.AdaptiveLattice-

Filter

DSP System
Toolbox

“System Objects in MATLAB Code Generation”

dsp.AffineProjection-

Filter

DSP System
Toolbox

“System Objects in MATLAB Code Generation”

dsp.AllpoleFilter DSP System
Toolbox

• “System Objects in MATLAB Code
Generation”

• Only the Denominator property is tunable
for code generation.

dsp.AnalyticSignal DSP System
Toolbox

“System Objects in MATLAB Code Generation”

dsp.ArrayPlot DSP System
Toolbox

“System Objects in MATLAB Code Generation”

dsp.ArrayVectorAdder DSP System
Toolbox

“System Objects in MATLAB Code Generation”

dsp.ArrayVectorDivider DSP System
Toolbox

“System Objects in MATLAB Code Generation”

dsp.ArrayVector-

Multiplier

DSP System
Toolbox

“System Objects in MATLAB Code Generation”

dsp.ArrayVector-

Subtractor

DSP System
Toolbox

“System Objects in MATLAB Code Generation”

dsp.AudioFileReader DSP System
Toolbox

“System Objects in MATLAB Code Generation”

dsp.AudioRecorder DSP System
Toolbox

“System Objects in MATLAB Code Generation”

25 Functions, Classes, and System Objects Supported for Code Generation

25-34

Name Product Remarks and Limitations

dsp.AudioFileWriter DSP System
Toolbox

“System Objects in MATLAB Code Generation”

dsp.AudioPlayer DSP System
Toolbox

“System Objects in MATLAB Code Generation”

dsp.Autocorrelator DSP System
Toolbox

“System Objects in MATLAB Code Generation”

dsp.BiquadFilter DSP System
Toolbox

“System Objects in MATLAB Code Generation”

dsp.BurgAREstimator DSP System
Toolbox

“System Objects in MATLAB Code Generation”

dsp.BurgSpectrum-

Estimator

DSP System
Toolbox

“System Objects in MATLAB Code Generation”

dsp.CepstralToLPC DSP System
Toolbox

“System Objects in MATLAB Code Generation”

dsp.CICCompensation-

Decimator

DSP System
Toolbox

“System Objects in MATLAB Code Generation”

dsp.CICCompensation-

Interpolator

DSP System
Toolbox

“System Objects in MATLAB Code Generation”

dsp.CICDecimator DSP System
Toolbox

“System Objects in MATLAB Code Generation”

dsp.CICInterpolator DSP System
Toolbox

“System Objects in MATLAB Code Generation”

dsp.Convolver DSP System
Toolbox

“System Objects in MATLAB Code Generation”

dsp.Counter DSP System
Toolbox

“System Objects in MATLAB Code Generation”

dsp.Crosscorrelator DSP System
Toolbox

“System Objects in MATLAB Code Generation”

dsp.CrossSpectrum-

Estimator

DSP System
Toolbox

“System Objects in MATLAB Code Generation”

dsp.CumulativeProduct DSP System
Toolbox

“System Objects in MATLAB Code Generation”

 Functions and Objects Supported for C and C++ Code Generation — Alphabetical List

25-35

Name Product Remarks and Limitations

dsp.CumulativeSum DSP System
Toolbox

“System Objects in MATLAB Code Generation”

dsp.DCBlocker DSP System
Toolbox

“System Objects in MATLAB Code Generation”

dsp.DCT DSP System
Toolbox

“System Objects in MATLAB Code Generation”

dsp.Delay DSP System
Toolbox

“System Objects in MATLAB Code Generation”

dsp.DelayLine DSP System
Toolbox

“System Objects in MATLAB Code Generation”

dsp.DigitalDown-

Converter

DSP System
Toolbox

“System Objects in MATLAB Code Generation”

dsp.DigitalUpConverter DSP System
Toolbox

“System Objects in MATLAB Code Generation”

dsp.DigitalFilter DSP System
Toolbox

• “System Objects in MATLAB Code
Generation”

• The SOSMatrix and Scalevalues
properties are not supported for code
generation.

dsp.FarrowRateConverter DSP System
Toolbox

“System Objects in MATLAB Code Generation”

dsp.FastTransversal-

Filter

DSP System
Toolbox

“System Objects in MATLAB Code Generation”

dsp.FFT DSP System
Toolbox

“System Objects in MATLAB Code Generation”

dsp.FilterCascade DSP System
Toolbox

• You cannot generate code directly from
dsp.FilterCascade. You can use the
generateFilteringCode method to
generate a MATLAB function. You can
generate C/C++ code from this MATLAB
function.

“System Objects in MATLAB Code Generation”

25 Functions, Classes, and System Objects Supported for Code Generation

25-36

Name Product Remarks and Limitations

dsp.FilteredXLMSFilter DSP System
Toolbox

“System Objects in MATLAB Code Generation”

dsp.FIRDecimator DSP System
Toolbox

“System Objects in MATLAB Code Generation”

dsp.FIRFilter DSP System
Toolbox

• “System Objects in MATLAB Code
Generation”

• Only the Numerator property is tunable for
code generation.

dsp.FIRHalfband-

Decimator

DSP System
Toolbox

“System Objects in MATLAB Code Generation”

dsp.FIRHalfband-

Interpolator

DSP System
Toolbox

“System Objects in MATLAB Code Generation”

dsp.FIRInterpolator DSP System
Toolbox

“System Objects in MATLAB Code Generation”

dsp.FIRRateConverter DSP System
Toolbox

“System Objects in MATLAB Code Generation”

dsp.FrequencyDomain-

AdaptiveFilter

DSP System
Toolbox

“System Objects in MATLAB Code Generation”

dsp.HighpassFilter DSP System
Toolbox

“System Objects in MATLAB Code Generation”

dsp.Histogram DSP System
Toolbox

• This object has no tunable properties for code
generation.

• “System Objects in MATLAB Code
Generation”

dsp.IDCT DSP System
Toolbox

“System Objects in MATLAB Code Generation”

dsp.IFFT DSP System
Toolbox

“System Objects in MATLAB Code Generation”

dsp.IIRFilter DSP System
Toolbox

• Only the Numerator and Denominator
properties are tunable for code generation.

• “System Objects in MATLAB Code
Generation”

 Functions and Objects Supported for C and C++ Code Generation — Alphabetical List

25-37

Name Product Remarks and Limitations

dsp.Interpolator DSP System
Toolbox

“System Objects in MATLAB Code Generation”

dsp.KalmanFilter DSP System
Toolbox

“System Objects in MATLAB Code Generation”

dsp.LDLFactor DSP System
Toolbox

“System Objects in MATLAB Code Generation”

dsp.LevinsonSolver DSP System
Toolbox

“System Objects in MATLAB Code Generation”

dsp.LMSFilter DSP System
Toolbox

“System Objects in MATLAB Code Generation”

dsp.LowerTriangular-

Solver

DSP System
Toolbox

“System Objects in MATLAB Code Generation”

dsp.LowpassFilter DSP System
Toolbox

“System Objects in MATLAB Code Generation”

dsp.LPCToAuto-

correlation

DSP System
Toolbox

“System Objects in MATLAB Code Generation”

dsp.LPCToCepstral DSP System
Toolbox

“System Objects in MATLAB Code Generation”

dsp.LPCToLSF DSP System
Toolbox

“System Objects in MATLAB Code Generation”

dsp.LPCToLSP DSP System
Toolbox

“System Objects in MATLAB Code Generation”

dsp.LPCToRC DSP System
Toolbox

“System Objects in MATLAB Code Generation”

dsp.LSFToLPC DSP System
Toolbox

“System Objects in MATLAB Code Generation”

dsp.LSPToLPC DSP System
Toolbox

“System Objects in MATLAB Code Generation”

dsp.LUFactor DSP System
Toolbox

“System Objects in MATLAB Code Generation”

dsp.Maximum DSP System
Toolbox

“System Objects in MATLAB Code Generation”

25 Functions, Classes, and System Objects Supported for Code Generation

25-38

Name Product Remarks and Limitations

dsp.Mean DSP System
Toolbox

“System Objects in MATLAB Code Generation”

dsp.Median DSP System
Toolbox

“System Objects in MATLAB Code Generation”

dsp.Minimum DSP System
Toolbox

“System Objects in MATLAB Code Generation”

dsp.NCO DSP System
Toolbox

“System Objects in MATLAB Code Generation”

dsp.Normalizer DSP System
Toolbox

“System Objects in MATLAB Code Generation”

dsp.PeakFinder DSP System
Toolbox

“System Objects in MATLAB Code Generation”

dsp.PeakToPeak DSP System
Toolbox

“System Objects in MATLAB Code Generation”

dsp.PeakToRMS DSP System
Toolbox

“System Objects in MATLAB Code Generation”

dsp.PhaseExtractor DSP System
Toolbox

“System Objects in MATLAB Code Generation”

dsp.PhaseUnwrapper DSP System
Toolbox

“System Objects in MATLAB Code Generation”

dsp.RCToAutocorrelation DSP System
Toolbox

“System Objects in MATLAB Code Generation”

dsp.RCToLPC DSP System
Toolbox

“System Objects in MATLAB Code Generation”

dsp.RMS DSP System
Toolbox

“System Objects in MATLAB Code Generation”

dsp.RLSFilter DSP System
Toolbox

“System Objects in MATLAB Code Generation”

dsp.SampleRateConverter DSP System
Toolbox

“System Objects in MATLAB Code Generation”

dsp.ScalarQuantizer-

Decoder

DSP System
Toolbox

“System Objects in MATLAB Code Generation”

 Functions and Objects Supported for C and C++ Code Generation — Alphabetical List

25-39

Name Product Remarks and Limitations

dsp.ScalarQuantizer-

Encoder

DSP System
Toolbox

“System Objects in MATLAB Code Generation”

dsp.SignalSource DSP System
Toolbox

“System Objects in MATLAB Code Generation”

dsp.SineWave DSP System
Toolbox

• This object has no tunable properties for code
generation.

• “System Objects in MATLAB Code
Generation”

dsp.SpectrumAnalyzer DSP System
Toolbox

This System object does not generate code. It is
automatically declared as an extrinsic variable
using the coder.extrinsic function.

dsp.SpectrumEstimator DSP System
Toolbox

“System Objects in MATLAB Code Generation”

dsp.StandardDeviation DSP System
Toolbox

“System Objects in MATLAB Code Generation”

dsp.StateLevels DSP System
Toolbox

“System Objects in MATLAB Code Generation”

dsp.TimeScope DSP System
Toolbox

This System object does not generate code. It is
automatically declared as an extrinsic variable
using the coder.extrinsic function.

dsp.TransferFunction-

Estimator

DSP System
Toolbox

“System Objects in MATLAB Code Generation”

dsp.UDPReceiver DSP System
Toolbox

“System Objects in MATLAB Code Generation”

dsp.UDPSender DSP System
Toolbox

“System Objects in MATLAB Code Generation”

dsp.UpperTriangular-

Solver

DSP System
Toolbox

“System Objects in MATLAB Code Generation”

dsp.VariableFraction-

Delay

DSP System
Toolbox

“System Objects in MATLAB Code Generation”

dsp.VariableInteger-

Delay

DSP System
Toolbox

“System Objects in MATLAB Code Generation”

25 Functions, Classes, and System Objects Supported for Code Generation

25-40

Name Product Remarks and Limitations

dsp.Variance DSP System
Toolbox

“System Objects in MATLAB Code Generation”

dsp.VectorQuantizer-

Decoder

DSP System
Toolbox

“System Objects in MATLAB Code Generation”

dsp.VectorQuantizer-

Encoder

DSP System
Toolbox

“System Objects in MATLAB Code Generation”

dsp.Window DSP System
Toolbox

• This object has no tunable properties for code
generation.

• “System Objects in MATLAB Code
Generation”

dsp.ZeroCrossing-

Detector

DSP System
Toolbox

“System Objects in MATLAB Code Generation”

edge Image Processing
Toolbox

The method, direction, and sigma arguments
must be a compile-time constants. In addition,
nonprogrammatic syntaxes are not supported.
For example, the syntax edge(im), where edge
does not return a value but displays an image
instead, is not supported.

If you choose the generic MATLAB Host
Computer target platform, generated code uses
a precompiled, platform-specific shared library.

effearthradius Phased Array
System Toolbox

Does not support variable-size inputs.

 Functions and Objects Supported for C and C++ Code Generation — Alphabetical List

25-41

Name Product Remarks and Limitations

eig MATLAB • For code generation,QZ algorithm is
used in all cases. MATLAB can use
different algorithms for different inputs.
Consequently, V might represent a different
basis of eigenvectors. The eigenvalues in
D might not be in the same order as in
MATLAB.

• With one input, [V,D] = eig(A), the
results are similar to those obtained using
[V,D] = eig(A,eye(size(A)),'qz') in
MATLAB, except that for code generation,
the columns of V are normalized.

• Options 'balance', and 'nobalance' are
not supported for the standard eigenvalue
problem. 'chol' is not supported for the
symmetric generalized eigenvalue problem.

• Outputs are of complex type.
• Does not support the option to calculate left

eigenvectors.
ellip Signal Processing

Toolbox
Inputs must be constant. Expressions or
variables are allowed if their values do not
change.

Specifying constants

To specify a constant input for fiaccel, use
coder.Constant. For more information, see
“Specify Constant Inputs at the Command Line”.

25 Functions, Classes, and System Objects Supported for Code Generation

25-42

Name Product Remarks and Limitations

ellipap Signal Processing
Toolbox

All inputs must be constants. Expressions or
variables are allowed if their values do not
change.

Specifying constants

To specify a constant input for fiaccel, use
coder.Constant. For more information, see
“Specify Constant Inputs at the Command Line”.

ellipke MATLAB —
ellipord Signal Processing

Toolbox
All inputs must be constants. Expressions or
variables are allowed if their values do not
change.

Specifying constants

To specify a constant input for fiaccel, use
coder.Constant. For more information, see
“Specify Constant Inputs at the Command Line”.

end MATLAB —
end Fixed-Point

Designer
—

epipolarLine Computer Vision
System Toolbox

Compile-time constant input: No restrictions.
Supports MATLAB Function block: Yes

eps MATLAB —
eps Fixed-Point

Designer
• Supported for scalar fixed-point signals only.
• Supported for scalar, vector, and matrix, fi

single and fi double signals.
eq MATLAB —
eq Fixed-Point

Designer
Not supported for fixed-point signals with
different biases.

erf MATLAB —
erfc MATLAB —
erfcinv MATLAB —

 Functions and Objects Supported for C and C++ Code Generation — Alphabetical List

25-43

Name Product Remarks and Limitations

erfcx MATLAB —
erfinv MATLAB —
error MATLAB For standalone code generation, excluded from

the generated code.
espritdoa Phased Array

System Toolbox
Does not support variable-size inputs.

estimateFundamental-

Matrix

Computer Vision
System Toolbox

Compile-time constant input: Method,
OutputClass, DistanceType, and
ReportRuntimeError.
Supports MATLAB Function block: Yes

estimateGeometric-

Transform

Computer Vision
System Toolbox

Compile-time constant input: transformType
Supports MATLAB Function block: No

estimateUncalibrated-

Rectification

Computer Vision
System Toolbox

Supports MATLAB Function block: Yes
Only accepts input points as M-by-2 matrices for
C code generation

extractFeatures Computer Vision
System Toolbox

Generates platform-dependent library: Yes for
BRISK, FREAK, and SURF methods only.
Compile-time constant input: Method
Supports MATLAB Function block: Yes for Block
method only.
Generated code for this function uses a
precompiled platform-specific shared library.

extractHOGFeatures Computer Vision
System Toolbox

Compile-time constant input: No
Supports MATLAB Function block: No

extrinsics Computer Vision
System Toolbox

Supports MATLAB Function block: No

evcdf Statistics
and Machine
Learning Toolbox

—

evinv Statistics
and Machine
Learning Toolbox

—

http://www.mathworks.com/support/sysreq/current_release/

25 Functions, Classes, and System Objects Supported for Code Generation

25-44

Name Product Remarks and Limitations

evpdf Statistics
and Machine
Learning Toolbox

—

evrnd Statistics
and Machine
Learning Toolbox

Can return a different sequence of numbers than
MATLAB if either of the following is true:

• The output is nonscalar.
• An input parameter is invalid for the

distribution.
evstat Statistics

and Machine
Learning Toolbox

—

exp MATLAB —
expcdf Statistics

and Machine
Learning Toolbox

—

expint MATLAB —
expinv Statistics

and Machine
Learning Toolbox

—

expm MATLAB —
expm1 MATLAB —
exppdf Statistics

and Machine
Learning Toolbox

—

exprnd Statistics
and Machine
Learning Toolbox

Can return a different sequence of numbers than
MATLAB if either of the following is true:

• The output is nonscalar.
• An input parameter is invalid for the

distribution.
expstat Statistics

and Machine
Learning Toolbox

—

 Functions and Objects Supported for C and C++ Code Generation — Alphabetical List

25-45

Name Product Remarks and Limitations

extrinsics Computer Vision
System Toolbox

Supports MATLAB Function block: No

eye MATLAB classname must be a built-in MATLAB
numeric type. Does not invoke the static
eye method for other classes. For example,
eye(m, n, 'myclass’) does not invoke
myclass.eye(m,n).

factor MATLAB • The maximum double precision input is
2^33.

• The maximum single precision input is 2^25.
• The input n cannot have type int64 or

uint64.
factorial MATLAB —
false MATLAB • Dimensions must be real, nonnegative,

integers.
fcdf Statistics

and Machine
Learning Toolbox

—

fclose MATLAB —
feof MATLAB —
fft MATLAB • Length of input vector must be a power of 2.

• “Variable-Sizing Restrictions for Code
Generation of Toolbox Functions”

fft2 MATLAB • Length of input matrix dimensions must each
be a power of 2.

fftn MATLAB • Length of input matrix dimensions must each
be a power of 2.

fftshift MATLAB —

25 Functions, Classes, and System Objects Supported for Code Generation

25-46

Name Product Remarks and Limitations

fi Fixed-Point
Designer

• Use to create a fixed-point constant or
variable.

• The default constructor syntax without input
arguments is not supported.

• The rand
fi('PropertyName',PropertyValue...)

is not supported. To use property name/
property value pairs, you must first
specify the value v of the fi object as in
fi(v,'PropertyName',PropertyValue...).

• If the input value is not known at
compile time, you must provide complete
numerictype information.

• All properties related to data type must be
constant for code generation.

• numerictype object information must be
available for non-fixed-point Simulink inputs.

filter MATLAB • If supplied, dim must be a constant.
• “Variable-Sizing Restrictions for Code

Generation of Toolbox Functions”
filter Fixed-Point

Designer
• Variable-sized inputs are only supported

when the SumMode property of the governing
fimath is set to Specify precision or
Keep LSB.

filter2 MATLAB —
filtfilt Signal Processing

Toolbox
Filter coefficients must be constants.
Expressions or variables are allowed if their
values do not change.

Specifying constants

To specify a constant input for fiaccel, use
coder.Constant. For more information, see
“Specify Constant Inputs at the Command Line”.

 Functions and Objects Supported for C and C++ Code Generation — Alphabetical List

25-47

Name Product Remarks and Limitations

fimath Fixed-Point
Designer

• Fixed-point signals coming in to a MATLAB
Function block from Simulink are assigned
the fimath object defined in the MATLAB
Function dialog in the Model Explorer.

• Use to create fimath objects in generated
code.

• If the ProductMode property of the
fimath object is set to anything other than
FullPrecision, the ProductWordLength
and ProductFractionLength properties
must be constant.

• If the SumMode property of the fimath
object is set to anything other than
FullPrecision, the SumWordLength and
SumFractionLength properties must be
constant.

25 Functions, Classes, and System Objects Supported for Code Generation

25-48

Name Product Remarks and Limitations

find MATLAB • Issues an error if a variable-size input
becomes a row vector at run time.

Note: This limitation does not apply when
the input is scalar or a variable-length row
vector.

• For variable-size inputs, the shape of empty
outputs, 0-by-0, 0-by-1, or 1-by-0, depends on
the upper bounds of the size of the input. The
output might not match MATLAB when the
input array is a scalar or [] at run time. If the
input is a variable-length row vector, the size
of an empty output is 1-by-0, otherwise it is
0-by-1.

• Always returns a variable-length vector.
Even when you provide the output vector k,
the output cannot be fixed-size because the
output can contain fewer than k elements.
For example, find(x,1) returns a variable-
length vector with 1 or 0 elements.

findpeaks Signal Processing
Toolbox

—

finv Statistics
and Machine
Learning Toolbox

—

fir1 Signal Processing
Toolbox

All inputs must be constants. Expressions or
variables are allowed if their values do not
change.

Specifying constants

To specify a constant input for fiaccel, use
coder.Constant. For more information, see
“Specify Constant Inputs at the Command Line”.

 Functions and Objects Supported for C and C++ Code Generation — Alphabetical List

25-49

Name Product Remarks and Limitations

fir2 Signal Processing
Toolbox

All inputs must be constants. Expressions or
variables are allowed if their values do not
change.

Specifying constants

To specify a constant input for fiaccel, use
coder.Constant. For more information, see
“Specify Constant Inputs at the Command Line”.

firceqrip DSP System
Toolbox

All inputs must be constant. Expressions or
variables are allowed if their values do not
change.

fircls Signal Processing
Toolbox

All inputs must be constants. Expressions or
variables are allowed if their values do not
change.

Specifying constants

To specify a constant input for fiaccel, use
coder.Constant. For more information, see
“Specify Constant Inputs at the Command Line”.

fircls1 Signal Processing
Toolbox

All inputs must be constants. Expressions or
variables are allowed if their values do not
change.

Specifying constants

To specify a constant input for fiaccel, use
coder.Constant. For more information, see
“Specify Constant Inputs at the Command Line”.

fireqint DSP System
Toolbox

All inputs must be constant. Expressions or
variables are allowed if their values do not
change.

25 Functions, Classes, and System Objects Supported for Code Generation

25-50

Name Product Remarks and Limitations

firgr DSP System
Toolbox

• All inputs must be constant. Expressions or
variables are allowed if their values do not
change.

• Does not support syntaxes that have cell
array input.

firhalfband DSP System
Toolbox

All inputs must be constant. Expressions or
variables are allowed if their values do not
change.

firlpnorm DSP System
Toolbox

• All inputs must be constant. Expressions or
variables are allowed if their values do not
change.

• Does not support syntaxes that have cell
array input.

firls Signal Processing
Toolbox

All inputs must be constants. Expressions or
variables are allowed if their values do not
change.

Specifying constants

To specify a constant input for fiaccel, use
coder.Constant. For more information, see
“Specify Constant Inputs at the Command Line”.

firminphase DSP System
Toolbox

All inputs must be constant. Expressions or
variables are allowed if their values do not
change.

firnyquist DSP System
Toolbox

All inputs must be constant. Expressions or
variables are allowed if their values do not
change.

firpr2chfb DSP System
Toolbox

All inputs must be constant. Expressions or
variables are allowed if their values do not
change.

 Functions and Objects Supported for C and C++ Code Generation — Alphabetical List

25-51

Name Product Remarks and Limitations

firpm Signal Processing
Toolbox

All inputs must be constants. Expressions or
variables are allowed if their values do not
change.

Specifying constants

To specify a constant input for fiaccel, use
coder.Constant. For more information, see
“Specify Constant Inputs at the Command Line”.

firpmord Signal Processing
Toolbox

All inputs must be constants. Expressions or
variables are allowed if their values do not
change.

Specifying constants

To specify a constant input for fiaccel, use
coder.Constant. For more information, see
“Specify Constant Inputs at the Command Line”.

fitgeotrans Image Processing
Toolbox

The transformtype argument must be
a compile-time constant. The function
supports the following transformation
types: 'nonreflectivesimilarity',
'similarity', 'affine', or 'projective'.

fix MATLAB —
fix Fixed-Point

Designer
—

fixed.Quantizer Fixed-Point
Designer

—

flattopwin Signal Processing
Toolbox

All inputs must be constants. Expressions or
variables are allowed if their values do not
change.

Specifying constants

To specify a constant input for fiaccel, use
coder.Constant. For more information, see
“Specify Constant Inputs at the Command Line”.

25 Functions, Classes, and System Objects Supported for Code Generation

25-52

Name Product Remarks and Limitations

flintmax MATLAB —
flip MATLAB —
flip Fixed-Point

Designer
The dimensions argument must be a built-in
type; it cannot be a fi object.

flipdim MATLAB Note: flipdim will be removed in a future
release. Use flip instead.

fliplr MATLAB —
fliplr Fixed-Point

Designer
—

flipud MATLAB —
flipud Fixed-Point

Designer
—

floor MATLAB —
floor Fixed-Point

Designer
—

fminsearch MATLAB • Ignores the Display option. Does not print
status information during execution. Test the
exitflag output for the exit condition.

• The output structure does not include the
algorithm or message fields.

• Ignores the OutputFcn and PlotFcns
options.

 Functions and Objects Supported for C and C++ Code Generation — Alphabetical List

25-53

Name Product Remarks and Limitations

fopen MATLAB • Does not support:

• machineformat, encoding, or fileID
inputs

• message output
• fopen('all')

• If you disable extrinsic calls, you cannot
return fileIDs created with fopen to
MATLAB or extrinsic functions. You can use
such fileIDs only internally.

• When generating C/C++ executables, static
libraries, or dynamic libraries, you can open
up to 20 files.

• The generated code does not report errors
from invalid file identifiers. Write your own
file open error handling in your MATLAB
code. Test whether fopen returns -1,
which indicates that the file open failed. For
example:

...

fid = fopen(filename, 'r');

if fid == -1

 % fopen failed

else

% fopen successful, okay to call fread

A = fread(fid);

...

• The behavior of the generated code for fread
is compiler-dependent if you:

1 Open a file using fopen with a
permission of a+.

2 Read the file using fread before calling
an I/O function, such as fseek or

25 Functions, Classes, and System Objects Supported for Code Generation

25-54

Name Product Remarks and Limitations

frewind, that sets the file position
indicator.

for MATLAB —
for Fixed-Point

Designer
—

fpdf Statistics
and Machine
Learning Toolbox

—

 Functions and Objects Supported for C and C++ Code Generation — Alphabetical List

25-55

Name Product Remarks and Limitations

fprintf MATLAB • Does not support:

• b and t subtypes on %u, %o %x, and %X
formats.

• $ flag for reusing input arguments.
• printing arrays.

• There is no automatic casting. Input
arguments must match their format types for
predictable results.

• Escaped characters are limited to the decimal
range of 0–127.

• A call to fprintf with fileID equal to 1 or
2 becomes printf in the generated C/C++
code in the following cases:

• The fprintf call is inside a parfor loop.
• Extrinsic calls are disabled.

• When the MATLAB behavior differs from the
C compiler behavior, fprintf matches the C
compiler behavior in the following cases:

• The format specifier has a corresponding
C format specifier, for example, %e or %E.

• The fprintf call is inside a parfor loop.
• Extrinsic calls are disabled.

• When you call fprintf with the format
specifier %s, do not put a null character
in the middle of the input string. Use
fprintf(fid, '%c', char(0)) to write a
null character.

• When you call fprintf with an integer
format specifier, the type of the integer
argument must be a type that the target
hardware can represent as a native C type.
For example, if you call fprintf('%d',

25 Functions, Classes, and System Objects Supported for Code Generation

25-56

Name Product Remarks and Limitations

int64(n)), the target hardware must
have a native C type that supports a 64-bit
integer.

 Functions and Objects Supported for C and C++ Code Generation — Alphabetical List

25-57

Name Product Remarks and Limitations

fread MATLAB • precision must be a constant.
• The source and output that precision

specifies cannot have values long, ulong,
unsigned long, bitN, or ubitN.

• You cannot use the machineformat input.
• If the source or output that precision

specifies is a C type, for example, int, the
target and production sizes for that type
must:

• Match.
• Map directly to a MATLAB type.

• The source type that precision specifies
must map directly to a C type on the target
hardware.

• If the fread call reads the entire file, all
of the data must fit in the largest array
available for code generation.

• If sizeA is not constant or contains a
nonfinite element, then dynamic memory
allocation is required.

• Treats a char value for source or output
as a signed 8-bit integer. Use values between
0 and 127 only.

• The generated code does not report file
read errors. Write your own file read error
handling in your MATLAB code. Test that
the number of bytes read matches the
number of bytes that you requested. For
example:

...

N = 100;

[vals, numRead] = fread(fid, N, '*double');

if numRead ~= N

 % fewer elements read than expected

25 Functions, Classes, and System Objects Supported for Code Generation

25-58

Name Product Remarks and Limitations
end

...

freqspace MATLAB —
freqz Signal Processing

Toolbox
When called with no output arguments, and
without a semicolon at the end, freqz returns
the complex frequency response of the input
filter, evaluated at 512 points.

If the semicolon is added, the function produces
a plot of the magnitude and phase response of
the filter.

See “freqz With No Output Arguments”.
frewind MATLAB —
frnd Statistics

and Machine
Learning Toolbox

Can return a different sequence of numbers than
MATLAB if either of the following is true:

• The output is nonscalar.
• An input parameter is invalid for the

distribution.
fspecial Image Processing

Toolbox
Inputs must be compile-time constants.
Expressions or variables are allowed if their
values do not change.

fspl Phased Array
System Toolbox

Does not support variable-size inputs.

fstat Statistics
and Machine
Learning Toolbox

—

full MATLAB —

 Functions and Objects Supported for C and C++ Code Generation — Alphabetical List

25-59

Name Product Remarks and Limitations

fzero MATLAB • The first argument must be a function
handle. Does not support structure, inline
function, or string inputs for the first
argument.

• Supports up to three output arguments. Does
not support the fourth output argument (the
output structure).

gain2aperture Phased Array
System Toolbox

Does not support variable-size inputs.

gamcdf Statistics
and Machine
Learning Toolbox

—

gaminv Statistics
and Machine
Learning Toolbox

—

gamma MATLAB —
gammainc MATLAB Output is always complex.
gammaincinv MATLAB Output is always complex.
gammaln MATLAB —
gampdf Statistics

and Machine
Learning Toolbox

—

gamrnd Statistics
and Machine
Learning Toolbox

Can return a different sequence of numbers than
MATLAB if either of the following is true:

• The output is nonscalar.
• An input parameter is invalid for the

distribution.
gamstat Statistics

and Machine
Learning Toolbox

—

25 Functions, Classes, and System Objects Supported for Code Generation

25-60

Name Product Remarks and Limitations

gausswin Signal Processing
Toolbox

All inputs must be constant. Expressions or
variables are allowed if their values do not
change.

Specifying constants

To specify a constant input for fiaccel, use
coder.Constant. For more information, see
“Specify Constant Inputs at the Command Line”.

gcd MATLAB —
ge MATLAB —
ge Fixed-Point

Designer
• Not supported for fixed-point signals with

different biases.
geocdf Statistics

and Machine
Learning Toolbox

—

geoinv Statistics
and Machine
Learning Toolbox

—

geomean Statistics
and Machine
Learning Toolbox

—

geopdf Statistics
and Machine
Learning Toolbox

—

geornd Statistics
and Machine
Learning Toolbox

Can return a different sequence of numbers than
MATLAB if either of the following is true:

• The output is nonscalar.
• An input parameter is invalid for the

distribution.
geostat Statistics

and Machine
Learning Toolbox

—

 Functions and Objects Supported for C and C++ Code Generation — Alphabetical List

25-61

Name Product Remarks and Limitations

get Fixed-Point
Designer

• The syntax structure = get(o) is not
supported.

getlsb Fixed-Point
Designer

—

getmsb Fixed-Point
Designer

—

getrangefromclass Image Processing
Toolbox

—

gevcdf Statistics
and Machine
Learning Toolbox

—

gevinv Statistics
and Machine
Learning Toolbox

—

gevpdf Statistics
and Machine
Learning Toolbox

—

gevrnd Statistics
and Machine
Learning Toolbox

Can return a different sequence of numbers than
MATLAB if either of the following is true:

• The output is nonscalar.
• An input parameter is invalid for the

distribution.
gevstat Statistics

and Machine
Learning Toolbox

—

global2localcoord Phased Array
System Toolbox

Does not support variable-size inputs.

gpcdf Statistics
and Machine
Learning Toolbox

—

gpinv Statistics
and Machine
Learning Toolbox

—

25 Functions, Classes, and System Objects Supported for Code Generation

25-62

Name Product Remarks and Limitations

gppdf Statistics
and Machine
Learning Toolbox

—

gprnd Statistics
and Machine
Learning Toolbox

Can return a different sequence of numbers than
MATLAB if either of the following is true:

• The output is nonscalar.
• An input parameter is invalid for the

distribution.
gpstat Statistics

and Machine
Learning Toolbox

—

gradient MATLAB —
grazingang Phased Array

System Toolbox
Does not support variable-size inputs.

gt MATLAB —
gt Fixed-Point

Designer
• Not supported for fixed-point signals with

different biases.
hadamard MATLAB —
hamming Signal Processing

Toolbox
All inputs must be constant. Expressions or
variables are allowed if their values do not
change.

Specifying constants

To specify a constant input for fiaccel, use
coder.Constant. For more information, see
“Specify Constant Inputs at the Command Line”.

hankel MATLAB —

 Functions and Objects Supported for C and C++ Code Generation — Alphabetical List

25-63

Name Product Remarks and Limitations

hann Signal Processing
Toolbox

All inputs must be constant. Expressions or
variables are allowed if their values do not
change.

Specifying constants

To specify a constant input for fiaccel, use
coder.Constant. For more information, see
“Specify Constant Inputs at the Command Line”.

harmmean Statistics
and Machine
Learning Toolbox

—

hdl.RAM MATLAB —
hex2dec MATLAB —
hex2num MATLAB • For n = hex2num(S), size(S,2) <=

length(num2hex(0))

hilb MATLAB —

25 Functions, Classes, and System Objects Supported for Code Generation

25-64

Name Product Remarks and Limitations

hist MATLAB • Histogram bar plotting not supported. Call
with at least one output argument.

• If supplied, the second argument x must be a
scalar constant.

• Inputs must be real.

For the syntax [nout, xout] = hist(y,x):

• When y is a fixed-size vector or variable-
length vector:

• nout is always a row vector.
• If x is a vector, xout is a vector with the

same orientation as x.
• If x is a scalar (fixed-size), xout is a row

vector.
• nout and xout are column vectors when the

following conditions are true:

• y is a matrix
• size(y,1) and size(y,2) do not have

fixed length 1
• One of size(y,1) and size(y,2) has

length 1 at run time
• A variable-size x is interpreted as a vector

input even if it is a scalar at run time.
• If at least one of the inputs is empty, vector

orientations in the output can differ from
MATLAB.

histc MATLAB • The output of a variable-size array that
becomes a column vector at run time is a
column-vector, not a row-vector.

• If supplied, dim must be a constant.
• “Variable-Sizing Restrictions for Code

Generation of Toolbox Functions”

 Functions and Objects Supported for C and C++ Code Generation — Alphabetical List

25-65

Name Product Remarks and Limitations

histeq Image Processing
Toolbox

All the syntaxes that include indexed images are
not supported. This includes all syntaxes that
accept map as input and return newmap.

Generated code for this function uses a
precompiled platform-specific shared library.

horizonrange Phased Array
System Toolbox

Does not support variable-size inputs.

horzcat Fixed-Point
Designer

—

hygecdf Statistics
and Machine
Learning Toolbox

—

hygeinv Statistics
and Machine
Learning Toolbox

—

hygepdf Statistics
and Machine
Learning Toolbox

—

hygernd Statistics
and Machine
Learning Toolbox

Can return a different sequence of numbers than
MATLAB if either of the following is true:

• The output is nonscalar.
• An input parameter is invalid for the

distribution.
hygestat Statistics

and Machine
Learning Toolbox

—

hypot MATLAB —
icdf Statistics

and Machine
Learning Toolbox

—

25 Functions, Classes, and System Objects Supported for Code Generation

25-66

Name Product Remarks and Limitations

idct Signal Processing
Toolbox

• Code generation for this function requires the
DSP System Toolbox software.

• Length of transform dimension must
be a power of two. If specified, the pad
or truncation value must be constant.
Expressions or variables are allowed if their
values do not change.

Specifying constants

To specify a constant input for fiaccel, use
coder.Constant. For more information, see
“Specify Constant Inputs at the Command
Line”.

if, elseif, else MATLAB —
idivide MATLAB • For efficient generated code, MATLAB rules

for divide by zero are supported only for the
'round' option.

ifft MATLAB • Length of input vector must be a power of 2.
• Output of ifft block is complex.
• Does not support the 'symmetric' option.
• “Variable-Sizing Restrictions for Code

Generation of Toolbox Functions”
ifft2 MATLAB • Length of input matrix dimensions must each

be a power of 2.
• Does not support the 'symmetric' option.

ifftn MATLAB • Length of input matrix dimensions must each
be a power of 2.

• Does not support the 'symmetric' option.
ifftshift MATLAB —
ifir DSP System

Toolbox
All inputs must be constant. Expressions or
variables are allowed if their values do not
change.

 Functions and Objects Supported for C and C++ Code Generation — Alphabetical List

25-67

Name Product Remarks and Limitations

iircomb DSP System
Toolbox

All inputs must be constant. Expressions or
variables are allowed if their values do not
change.

iirgrpdelay DSP System
Toolbox

• All inputs must be constant. Expressions or
variables are allowed if their values do not
change.

• Does not support syntaxes that have cell
array input.

iirlpnorm DSP System
Toolbox

• All inputs must be constant. Expressions or
variables are allowed if their values do not
change.

• Does not support syntaxes that have cell
array input.

iirlpnormc DSP System
Toolbox

• All inputs must be constant. Expressions or
variables are allowed if their values do not
change.

• Does not support syntaxes that have cell
array input.

iirnotch DSP System
Toolbox

All inputs must be constant. Expressions or
variables are allowed if their values do not
change.

iirparameq DSP System
Toolbox

—

iirpeak DSP System
Toolbox

All inputs must be constant. Expressions or
variables are allowed if their values do not
change.

im2double MATLAB —
im2int16 Image Processing

Toolbox
Generated code for this function uses a
precompiled platform-specific shared library.

im2single Image Processing
Toolbox

—

25 Functions, Classes, and System Objects Supported for Code Generation

25-68

Name Product Remarks and Limitations

im2uint8 Image Processing
Toolbox

If you choose the generic MATLAB Host
Computer target platform, generated code uses
a precompiled, platform-specific shared library.

im2uint16 Image Processing
Toolbox

Generated code for this function uses a
precompiled platform-specific shared library.

imadjust Image Processing
Toolbox

Does not support syntaxes that include indexed
images. This includes all syntaxes that accept
map as input and return newmap.

Generated code for this function uses a
precompiled platform-specific shared library.

imag MATLAB —
imag Fixed-Point

Designer
—

imaq.VideoDevice Image
Acquisition
Toolbox™

“Code Generation with VideoDevice System
Object”

imbothat Image Processing
Toolbox

The input image IM must be either 2-D or 3-D
image. The structuring element input argument
SE must be a compile-time constant.

If you choose the generic MATLAB Host
Computer target platform, generated code uses
a precompiled, platform-specific shared library.

imclearborder Image Processing
Toolbox

The optional second input argument, conn, must
be a compile-time constant. Supports only up to
3-D inputs.

If you choose the generic MATLAB Host
Computer target platform, generated code uses
a precompiled, platform-specific shared library.

 Functions and Objects Supported for C and C++ Code Generation — Alphabetical List

25-69

Name Product Remarks and Limitations

imclose Image Processing
Toolbox

The input image IM must be either 2-D or 3-D
image. The structuring element input argument
SE must be a compile-time constant.

If you choose the generic MATLAB Host
Computer target platform, generated code uses
a precompiled, platform-specific shared library.

imcomplement Image Processing
Toolbox

Does not support int64 and uint64 data types.

imdilate Image Processing
Toolbox

The input image IM must be either 2-D or 3-
D image. The SE, PACKOPT, and SHAPE input
arguments must be a compile-time constant.
The structuring element argument SE must be a
single element—arrays of structuring elements
are not supported. To obtain the same result
as that obtained using an array of structuring
elements, call the function sequentially.

If you choose the generic MATLAB Host
Computer target platform, generated code uses
a precompiled, platform-specific shared library.

imerode Image Processing
Toolbox

The input image IM must be either 2-D or 3-
D image. The SE, PACKOPT, and SHAPE input
arguments must be a compile-time constant.
The structuring element argument SE must be a
single element—arrays of structuring elements
are not supported. To obtain the same result
as that obtained using an array of structuring
elements, call the function sequentially.

If you choose the generic MATLAB Host
Computer target platform, generated code uses
a precompiled, platform-specific shared library.

25 Functions, Classes, and System Objects Supported for Code Generation

25-70

Name Product Remarks and Limitations

imextendedmax Image Processing
Toolbox

The optional third input argument, conn, must
be a compile-time constant.

If you choose the generic MATLAB Host
Computer target platform, generated code uses
a precompiled, platform-specific shared library.

imextendedmin Image Processing
Toolbox

The optional third input argument, conn, must
be a compile-time constant.

If you choose the generic MATLAB Host
Computer target platform, generated code uses
a precompiled, platform-specific shared library.

imfill Image Processing
Toolbox

The optional input connectivity, conn and the
string 'holes' must be compile-time constants.

Supports only up to 3-D inputs.

The interactive mode to select points,
imfill(BW,0,CONN) is not supported in code
generation.

locations can be a P-by-1 vector, in which
case it contains the linear indices of the
starting locations. locations can also be a P-
by-ndims(I) matrix, in which case each row
contains the array indices of one of the starting
locations. Once you select a format at compile-
time, you cannot change it at run time. However,
the number of points in locations can be varied
at run time.

If you choose the generic MATLAB Host
Computer target platform, generated code uses
a precompiled, platform-specific shared library.

 Functions and Objects Supported for C and C++ Code Generation — Alphabetical List

25-71

Name Product Remarks and Limitations

imfilter Image Processing
Toolbox

The input image can be either 2-D or 3-D. The
value of the input argument, options, must be
a compile-time constant.

If you choose the generic MATLAB Host
Computer target platform, generated code uses
a precompiled, platform-specific shared library.

imhist Image Processing
Toolbox

The optional second input argument, n, must
be a compile-time constant. In addition,
nonprogrammatic syntaxes are not supported.
For example, the syntaxes where imhist
displays the histogram are not supported.

If you choose the generic MATLAB Host
Computer target platform, generated code uses
a precompiled, platform-specific shared library.

imhmax Image Processing
Toolbox

The optional third input argument, conn, must
be a compile-time constant

If you choose the generic MATLAB Host
Computer target platform, generated code uses
a precompiled, platform-specific shared library.

imhmin Image Processing
Toolbox

The optional third input argument, conn, must
be a compile-time constant

If you choose the generic MATLAB Host
Computer target platform, generated code uses
a precompiled, platform-specific shared library.

imlincomb Image Processing
Toolbox

The output_class argument must be a
compile-time constant.

Generated code for this function uses a
precompiled platform-specific shared library.

25 Functions, Classes, and System Objects Supported for Code Generation

25-72

Name Product Remarks and Limitations

imopen Image Processing
Toolbox

The input image IM must be either 2-D or 3-D
image. The structuring element input argument
SE must be a compile-time constant.

If you choose the generic MATLAB Host
Computer target platform, generated code uses
a precompiled, platform-specific shared library.

imquantize Image Processing
Toolbox

—

imreconstruct Image Processing
Toolbox

The optional third input argument, conn, must
be a compile-time constant.

If you choose the generic MATLAB Host
Computer target platform, generated code uses
a precompiled, platform-specific shared library.

imref2d Image Processing
Toolbox

The XWorldLimits, YWorldLimits and
ImageSize properties can be set only during
object construction. When generating code, you
can only specify single objects—arrays of objects
are not supported.

imref3d Image Processing
Toolbox

The XWorldLimits, YWorldLimits,
ZWorldLimits and ImageSize properties can
be set only during object construction. When
generating code, you can only specify single
objects—arrays of objects are not supported.

imregionalmax Image Processing
Toolbox

The optional second input argument, conn, must
be a compile-time constant.

If you choose the generic MATLAB Host
Computer target platform, generated code uses
a precompiled, platform-specific shared library.

 Functions and Objects Supported for C and C++ Code Generation — Alphabetical List

25-73

Name Product Remarks and Limitations

imregionalmin Image Processing
Toolbox

The optional second input argument, conn, must
be a compile-time constant.

If you choose the generic MATLAB Host
Computer target platform, generated code uses
a precompiled, platform-specific shared library.

imtophat Image Processing
Toolbox

The input image IM must be either 2-D or 3-D
image. The structuring element input argument
SE must be a compile-time constant.

If you choose the generic MATLAB Host
Computer target platform, generated code uses
a precompiled, platform-specific shared library.

imwarp Image Processing
Toolbox

The geometric transformation object
input, tform, must be either affine2d or
projective2d. Additionally, the interpolation
method and optional parameter names must be
string constants.

If you choose the generic MATLAB Host
Computer target platform, generated code uses
a precompiled, platform-specific shared library.

ind2sub MATLAB • The first argument should be a valid size
vector. Size vectors for arrays with more than
intmax elements are not supported.

• “Variable-Sizing Restrictions for Code
Generation of Toolbox Functions”

inf MATLAB • Dimensions must be real, nonnegative,
integers.

insertMarker Computer Vision
System Toolbox

Compile-time constant input: marker
Supports MATLAB Function block: Yes

insertShape Computer Vision
System Toolbox

Compile-time constant input: shape and
SmoothEdges
Supports MATLAB Function block: Yes

25 Functions, Classes, and System Objects Supported for Code Generation

25-74

Name Product Remarks and Limitations

int8, int16, int32, int64 MATLAB No integer overflow detection for int64 in
MEX or MATLAB Function block simulation on
Windows 32-bit platforms.

int8, int16, int32, int64 Fixed-Point
Designer

—

integralImage Computer Vision
System Toolbox

Supports MATLAB Function block: Yes

interp1 MATLAB “Variable-Sizing Restrictions for Code
Generation of Toolbox Functions”

interp1q MATLAB Might not match MATLAB when some Y values
are Inf or NaN.

interp2 MATLAB • Xq and Yq must be the same size. Use
meshgrid to evaluate on a grid.

• For best results, provide X and Y as vectors.
• For the 'cubic' method, reports an error if

the grid does not have uniform spacing. In
this case, use the 'spline' method.

• For best results when you use the 'spline'
method:

• Use meshgrid to create the inputs Xq
and Yq.

• Use a small number of interpolation
points relative to the dimensions of V.
Interpolating over a large set of scattered
points can be inefficient.

 Functions and Objects Supported for C and C++ Code Generation — Alphabetical List

25-75

Name Product Remarks and Limitations

interp3 MATLAB • Xq, Yq, and Zq must be the same size. Use
meshgrid to evaluate on a grid.

• For best results, provide X, Y, and Z as
vectors.

• For the 'cubic' method, reports an error if
the grid does not have uniform spacing. In
this case, use the 'spline' method.

• For best results when you use the 'spline'
method:

• Use meshgrid to create the inputs Xq,
Yq, and Zq.

• Use a small number of interpolation
points relative to the dimensions of V.
Interpolating over a large set of scattered
points can be inefficient.

25 Functions, Classes, and System Objects Supported for Code Generation

25-76

Name Product Remarks and Limitations

intersect MATLAB • When you do not specify the 'rows' option:

• Inputs A and B must be vectors. If you
specify the 'legacy' option, inputs A and
B must be row vectors.

• The first dimension of a variable-size
row vector must have fixed length 1.
The second dimension of a variable-size
column vector must have fixed length 1.

• The input [] is not supported. Use a
1-by-0 or 0-by-1 input, for example,
zeros(1,0), to represent the empty set.

• If you specify the 'legacy' option, empty
outputs are row vectors, 1-by-0, never 0-
by-0.

• When you specify both the 'legacy' option
and the 'rows' option, the outputs ia and
ib are column vectors. If these outputs are
empty, they are 0-by-1, never 0-by-0, even if
the output C is 0-by-0.

• When the setOrder is 'sorted' or when
you specify the 'legacy' option, the inputs
must already be sorted in ascending order.
The first output, C, is sorted in ascending
order.

• Complex inputs must be single or double.
• When one input is complex and the other

input is real, do one of the following:

• Set setOrder to 'stable'.
• Sort the real input in complex

ascending order (by absolute
value). Suppose the real input
is x. Use sort(complex(x))or
sortrows(complex(x)).

 Functions and Objects Supported for C and C++ Code Generation — Alphabetical List

25-77

Name Product Remarks and Limitations

• “Code Generation for Complex Data with
Zero-Valued Imaginary Parts”.

intfilt Signal Processing
Toolbox

All inputs must be constant. Expressions or
variables are allowed if their values do not
change.

Specifying constants

To specify a constant input for fiaccel, use
coder.Constant. For more information, see
“Specify Constant Inputs at the Command Line”.

intlut Image Processing
Toolbox

Generated code for this function uses a
precompiled platform-specific shared library.

intmax MATLAB —
intmin MATLAB —
inv MATLAB Singular matrix inputs can produce nonfinite

values that differ from MATLAB results.
invhilb MATLAB —
ipermute MATLAB “Variable-Sizing Restrictions for Code

Generation of Toolbox Functions”
ipermute Fixed-Point

Designer
—

iptcheckconn Image Processing
Toolbox

Input arguments must be compile-time
constants.

iptcheckmap Image Processing
Toolbox

—

iqcoef2imbal Communications
System Toolbox

—

iqimbal2coef Communications
System Toolbox

—

iqr Statistics
and Machine
Learning Toolbox

—

25 Functions, Classes, and System Objects Supported for Code Generation

25-78

Name Product Remarks and Limitations

isa MATLAB —
isbanded MATLAB —
iscell MATLAB —
ischar MATLAB —
iscolumn MATLAB —
iscolumn Fixed-Point

Designer
—

isdeployed MATLAB
Compiler

• Returns true and false as appropriate for
MEX and SIM targets

• Returns false for other targets
isdiag MATLAB —
isempty MATLAB —
isempty Fixed-Point

Designer
—

isEpipoleInImage Computer Vision
System Toolbox

Compile-time constant input: No restrictions.
Supports MATLAB Function block: Yes

isequal MATLAB —
isequal Fixed-Point

Designer
—

isequaln MATLAB —
isfi Fixed-Point

Designer
—

isfield MATLAB • Does not support cell input for second
argument

isfimath Fixed-Point
Designer

—

isfimathlocal Fixed-Point
Designer

—

isfinite MATLAB —

 Functions and Objects Supported for C and C++ Code Generation — Alphabetical List

25-79

Name Product Remarks and Limitations

isfinite Fixed-Point
Designer

—

isfloat MATLAB —
ishermitian MATLAB —
isinf MATLAB —
isinf Fixed-Point

Designer
—

isinteger MATLAB —
isletter MATLAB • Input values from the char class must be in

the range 0-127
islogical MATLAB —
ismac MATLAB • Returns true or false based on the MATLAB

version used for code generation.
• Use only when the code generation target is

S-function (Simulation) or MEX-function.
ismatrix MATLAB —
ismcc MATLAB

Compiler
• Returns true and false as appropriate for

MEX and SIM targets.
• Returns false for other targets.

ismember MATLAB • The second input, B, must be sorted in
ascending order.

• Complex inputs must be single or double.
• “Code Generation for Complex Data with

Zero-Valued Imaginary Parts”.
isnan MATLAB —
isnan Fixed-Point

Designer
—

isnumeric MATLAB —
isnumeric Fixed-Point

Designer
—

25 Functions, Classes, and System Objects Supported for Code Generation

25-80

Name Product Remarks and Limitations

isnumerictype Fixed-Point
Designer

—

isobject MATLAB —
ispc MATLAB • Returns true or false based on the MATLAB

version you use for code generation.
• Use only when the code generation target is

S-function (Simulation) or MEX-function.
isprime MATLAB • The maximum double precision input is

2^33.
• The maximum single precision input is 2^25.
• The input X cannot have type int64 or

uint64.
isreal MATLAB —
isreal Fixed-Point

Designer
—

isrow MATLAB —
isrow Fixed-Point

Designer
—

isscalar MATLAB —
isscalar Fixed-Point

Designer
—

issigned Fixed-Point
Designer

—

issorted MATLAB • “Variable-Sizing Restrictions for Code
Generation of Toolbox Functions”.

• “Code Generation for Complex Data with
Zero-Valued Imaginary Parts”.

isspace MATLAB • Input values from the char class must be in
the range 0–127.

issparse MATLAB —

 Functions and Objects Supported for C and C++ Code Generation — Alphabetical List

25-81

Name Product Remarks and Limitations

isstrprop MATLAB • Supports only inputs from char and
integer classes.

• Input values must be in the range 0-127.
isstruct MATLAB —
issymmetric MATLAB —
istrellis Communications

System Toolbox
—

istril MATLAB —
istriu MATLAB —
isunix MATLAB • Returns true or false based on the MATLAB

version used for code generation.
• Use only when the code generation target is

S-function (Simulation) or MEX-function.
isvector MATLAB —
isvector Fixed-Point

Designer
—

kaiser Signal Processing
Toolbox

All inputs must be constant. Expressions or
variables are allowed if their values do not
change.

Specifying constants

To specify a constant input for fiaccel, use
coder.Constant. For more information, see
“Specify Constant Inputs at the Command Line”.

kaiserord Signal Processing
Toolbox

—

kron MATLAB —
kurtosis Statistics

and Machine
Learning Toolbox

—

25 Functions, Classes, and System Objects Supported for Code Generation

25-82

Name Product Remarks and Limitations

label2rgb Image Processing
Toolbox

Referring to the standard syntax:

RGB = label2rgb(L, map, zerocolor, order)

• Submit at least two input arguments: the
label matrix, L, and the colormap matrix,
map.

• map must be an n-by-3, double, colormap
matrix. You cannot use a string containing
the name of a MATLAB colormap function or
a function handle of a colormap function.

• If you set the boundary color zerocolor
to the same color as one of the regions,
label2rgb will not issue a warning.

• If you supply a value for order, it must be
'noshuffle'.

lcm MATLAB —
lcmvweights Phased Array

System Toolbox
Does not support variable-size inputs.

ldivide MATLAB —
le MATLAB —
le Fixed-Point

Designer
• Not supported for fixed-point signals with

different biases.
length MATLAB —
length Fixed-Point

Designer
—

 Functions and Objects Supported for C and C++ Code Generation — Alphabetical List

25-83

Name Product Remarks and Limitations

levinson Signal Processing
Toolbox

• Code generation for this function requires the
DSP System Toolbox software.

• If specified, the order of recursion must be
a constant. Expressions or variables are
allowed if their values do not change.

Specifying constants

To specify a constant input for fiaccel, use
coder.Constant. For more information, see
“Specify Constant Inputs at the Command
Line”.

lineToBorderPoints Computer Vision
System Toolbox

Compile-time constant input: No restrictions.
Supports MATLAB Function block: Yes

linsolve MATLAB • The option structure must be a constant.
• Supports only a scalar option structure

input. It does not support arrays of option
structures.

• Only optimizes these cases:

• UT

• LT

• UHESS = true (the TRANSA can be either
true or false)

• SYM = true and POSDEF = true

Other options are equivalent to using
mldivide.

linspace MATLAB —

25 Functions, Classes, and System Objects Supported for Code Generation

25-84

Name Product Remarks and Limitations

load MATLAB • Use only when generating MEX or code for
Simulink simulation. To load compile-time
constants, use coder.load.

• Does not support use of the function without
assignment to a structure or array. For
example, use S = load(filename), not
load(filename).

• The output S must be the name of a structure
or array without any subscripting. For
example, S[i] = load('myFile.mat') is
not allowed.

• Arguments to load must be compile-time
constant strings.

• Does not support loading objects.
• If the MAT-file contains

unsupported constructs, use
load(filename,variables) to load only
the supported constructs.

• You cannot use save in a function intended
for code generation. The code generation
software does not support the save
function. Furthermore, you cannot use
coder.extrinsic with save. Prior to
generating code, you can use save to save
the workspace data to a MAT-file.

You must use coder.varsize to explicitly
declare variable-size data loaded using the
load function.

local2globalcoord Phased Array
System Toolbox

Does not support variable-size inputs.

 Functions and Objects Supported for C and C++ Code Generation — Alphabetical List

25-85

Name Product Remarks and Limitations

log MATLAB • Generates an error during simulation and
returns NaN in generated code when the
input value x is real, but the output should
be complex. To get the complex result,
make the input value complex by passing in
complex(x).

log2 MATLAB —
log10 MATLAB —
log1p MATLAB —
logical MATLAB —
logical Fixed-Point

Designer
—

logncdf Statistics
and Machine
Learning Toolbox

—

logninv Statistics
and Machine
Learning Toolbox

—

lognpdf Statistics
and Machine
Learning Toolbox

—

lognrnd Statistics
and Machine
Learning Toolbox

Can return a different sequence of numbers than
MATLAB if either of the following is true:

• The output is nonscalar.
• An input parameter is invalid for the

distribution.
lognstat Statistics

and Machine
Learning Toolbox

—

logspace MATLAB —
lower MATLAB • Supports only char inputs.

• Input values must be in the range 0-127.

25 Functions, Classes, and System Objects Supported for Code Generation

25-86

Name Product Remarks and Limitations

lowerbound Fixed-Point
Designer

—

lsb Fixed-Point
Designer

• Supported for scalar fixed-point signals only.
• Supported for scalar, vector, and matrix, fi

single and double signals.
lsqnonneg MATLAB • You must enable support for variable-size

arrays.
• The message string in the output structure

output (the fifth output) is not translated.
lt MATLAB —
lteZadoffChuSeq Communications

System Toolbox
—

lt Fixed-Point
Designer

• Not supported for fixed-point signals with
different biases.

lu MATLAB —
mad Statistics

and Machine
Learning Toolbox

Input dim cannot be empty.

magic MATLAB “Variable-Sizing Restrictions for Code
Generation of Toolbox Functions”

matchFeatures Computer Vision
System Toolbox

Generates platform-dependent library: Yes for
MATLAB host. The function generates portable
C code for non-host target.
Compile-time constant input: Method and
Metric.
Supports MATLAB Function block: Yes
Generated code for this function uses a
precompiled platform-specific shared library.

http://www.mathworks.com/support/sysreq/current_release/

 Functions and Objects Supported for C and C++ Code Generation — Alphabetical List

25-87

Name Product Remarks and Limitations

max MATLAB • If supplied, dim must be a constant.
• “Variable-Sizing Restrictions for Code

Generation of Toolbox Functions”
• Does not support the nanflag argument.
• “Code Generation for Complex Data with

Zero-Valued Imaginary Parts”..
max Fixed-Point

Designer
—

maxflat Signal Processing
Toolbox

Inputs must be constant. Expressions or
variables are allowed if their values do not
change.

Specifying constants

To specify a constant input for fiaccel, use
coder.Constant. For more information, see
“Specify Constant Inputs at the Command Line”.

mdltest Phased Array
System Toolbox

Does not support variable-size inputs.

mean MATLAB • Does not support the 'native' output class
option for integer types.

• If supplied, dim must be a constant.
• “Variable-Sizing Restrictions for Code

Generation of Toolbox Functions”
• Does not support the nanflag argument.

mean Fixed-Point
Designer

N/A

mean2 Image Processing
Toolbox

—

25 Functions, Classes, and System Objects Supported for Code Generation

25-88

Name Product Remarks and Limitations

medfilt2 Image Processing
Toolbox

The padopt argument must be a compile-time
constant.

If you choose the generic MATLAB Host
Computer target platform, generated code uses
a precompiled, platform-specific shared library.

median MATLAB • If supplied, dim must be a constant.
• “Variable-Sizing Restrictions for Code

Generation of Toolbox Functions”
• Does not support the nanflag argument.
• “Code Generation for Complex Data with

Zero-Valued Imaginary Parts”.
median Fixed-Point

Designer
—

meshgrid MATLAB —
mfilename MATLAB —
min MATLAB • If supplied, dim must be a constant.

• “Variable-Sizing Restrictions for Code
Generation of Toolbox Functions”

• Does not support the nanflag argument.
• “Code Generation for Complex Data with

Zero-Valued Imaginary Parts”.
min Fixed-Point

Designer
—

minus MATLAB —
minus Fixed-Point

Designer
• Any non-fi input must be constant. Its value

must be known at compile time so that it can
be cast to a fi object.

 Functions and Objects Supported for C and C++ Code Generation — Alphabetical List

25-89

Name Product Remarks and Limitations

mkpp MATLAB • The output structure pp differs from the pp
structure in MATLAB. In MATLAB, ppval
cannot use the pp structure from the code
generation software. For code generation,
ppval cannot use a pp structure created by
MATLAB. unmkpp can use a MATLAB pp
structure for code generation.

To create a MATLAB pp structure from a
pp structure created by the code generation
software:

• In code generation, use unmkpp to return
the piecewise polynomial details to
MATLAB.

• In MATLAB, use mkpp to create the pp
structure.

• If you do not provide d, then coefs must be
two-dimensional and have a fixed number of
columns. In this case, the number of columns
is the order.

• To define a piecewise constant polynomial,
coefs must be a column vector or d must
have at least two elements.

• If you provide d and d is 1, d must be a
constant. Otherwise, if the input to ppval is
nonscalar, the shape of the output of ppval
can differ from ppval in MATLAB.

• If you provide d, it must have a fixed length.
One of the following sets of statements must
be true:

1 Suppose that m = length(d) and
npieces = length(breaks) - 1.

size(coefs,j) = d(j)

size(coefs,m+1) = npieces

25 Functions, Classes, and System Objects Supported for Code Generation

25-90

Name Product Remarks and Limitations
size(coefs,m+2) = order

j = 1,2,...,m. The dimension m+2 must be
fixed length.

2 Suppose that m = length(d) and
npieces = length(breaks) - 1.

size(coefs,1) = prod(d)*npieces

size(coefs,2) = order

The second dimension must be fixed
length.

• If you do not provide d, the following
statements must be true:

Suppose that m = length(d) and npieces
= length(breaks) - 1.

size(coefs,1) = prod(d)*npieces

size(coefs,2) = order

The second dimension must be fixed length.
mldivide MATLAB —
mnpdf Statistics

and Machine
Learning Toolbox

—

mod MATLAB • Performs the arithmetic using the output
class. Results might not match MATLAB due
to differences in rounding errors.

If one of the inputs has type int64 or
uint64, then both inputs must have the
same type.

mode MATLAB • Does not support third output argument C
(cell array).

• If supplied, dim must be a constant.
• “Variable-Sizing Restrictions for Code

Generation of Toolbox Functions”

 Functions and Objects Supported for C and C++ Code Generation — Alphabetical List

25-91

Name Product Remarks and Limitations

moment Statistics
and Machine
Learning Toolbox

If order is nonintegral and X is real, use
moment(complex(X), order).

mpower MATLAB If A is a 2-by-2 or larger matrix and B is Inf or -
Inf, mpower(A,B) returns a matrix of NaNs.

mpower Fixed-Point
Designer

• The exponent input, k, must be constant;
that is, its value must be known at compile
time.

• Variable-size inputs are supported only
when the SumMode property of the governing
fimath is set to Specify precision or
Keep LSB.

• For variable-size signals, you can see
different results between MATLAB and the
generated code.

• In generated code, the output for variable-
size signals is computed using the
SumMode property of the governing
fimath.

• In MATLAB, the output for variable-
sized signals is computed using the
SumMode property of the governing
fimath when both inputs are nonscalar.
However, if either input is a scalar,
MATLAB computes the output using the
ProductMode of the governing fimath.

25 Functions, Classes, and System Objects Supported for Code Generation

25-92

Name Product Remarks and Limitations

mpy Fixed-Point
Designer

• Code generation in MATLAB does not
support the syntax F.mpy(a,b). You must
use the syntax mpy(F,a,b).

• When you provide complex inputs to the
mpy function inside a MATLAB Function
block, you must declare the input as complex
before running the simulation. To do so, go
to the Ports and data manager and set
the Complexity parameter for all known
complex inputs to On.

mrdivide MATLAB —
mrdivide Fixed-Point

Designer
—

MSERRegions Computer Vision
System Toolbox

Compile-time constant input: No restrictions.
Supports MATLAB Function block: Yes
For code generation, you must specify both
the pixellist cell array and the length of each
array, as the second input. The object outputs,
regions.PixelList as an array. The region sizes
are defined in regions.Lengths.
Generated code for this function uses a
precompiled platform-specific shared library.

mtimes MATLAB • Multiplication of pure imaginary numbers
by non-finite numbers might not match
MATLAB. The code generation software
does not specialize multiplication by pure
imaginary numbers—it does not eliminate
calculations with the zero real part. For
example, (Inf + 1i)*1i = (Inf*0 –
1*1) + (Inf*1 + 1*0)i = NaN + Infi.

• “Variable-Sizing Restrictions for Code
Generation of Toolbox Functions”

http://www.mathworks.com/support/sysreq/current_release/

 Functions and Objects Supported for C and C++ Code Generation — Alphabetical List

25-93

Name Product Remarks and Limitations

mtimes Fixed-Point
Designer

• Any non-fi input must be constant; that is,
its value must be known at compile time so
that it can be cast to a fi object.

• Variable-sized inputs are only supported
when the SumMode property of the governing
fimath is set to Specify precision or
Keep LSB.

• For variable-sized signals, you may see
different results between MATLAB and the
generated code.

• In generated code, the output for variable-
sized signals is computed using the
SumMode property of the governing
fimath.

• In MATLAB, the output for variable-
sized signals is computed using the
SumMode property of the governing
fimath when both inputs are nonscalar.
However, if either input is a scalar,
MATLAB computes the output using the
ProductMode of the governing fimath.

multithresh Image Processing
Toolbox

If you choose the generic MATLAB Host
Computer target platform, generated code uses
a precompiled, platform-specific shared library.

mvdrweights Phased Array
System Toolbox

Does not support variable-size inputs.

NaN or nan MATLAB • Dimensions must be real, nonnegative,
integers.

nancov Statistics
and Machine
Learning Toolbox

If the input is variable-size and is [] at run
time, returns [] not NaN.

nanmax Statistics
and Machine
Learning Toolbox

—

25 Functions, Classes, and System Objects Supported for Code Generation

25-94

Name Product Remarks and Limitations

nanmean Statistics
and Machine
Learning Toolbox

—

nanmedian Statistics
and Machine
Learning Toolbox

—

nanmin Statistics
and Machine
Learning Toolbox

—

nanstd Statistics
and Machine
Learning Toolbox

—

nansum Statistics
and Machine
Learning Toolbox

—

nanvar Statistics
and Machine
Learning Toolbox

—

nargchk MATLAB • Output structure does not include stack
information.

Note: nargchk will be removed in a future
release.

nargin MATLAB —
narginchk MATLAB —
nargout MATLAB • For a function with no output arguments,

returns 1 if called without a terminating
semicolon.

Note: This behavior also affects extrinsic calls
with no terminating semicolon. nargout is 1 for
the called function in MATLAB.

 Functions and Objects Supported for C and C++ Code Generation — Alphabetical List

25-95

Name Product Remarks and Limitations

nargoutchk MATLAB —
nbincdf Statistics

and Machine
Learning Toolbox

—

nbininv Statistics
and Machine
Learning Toolbox

—

nbinpdf Statistics
and Machine
Learning Toolbox

—

nbinrnd Statistics
and Machine
Learning Toolbox

Can return a different sequence of numbers than
MATLAB if either of the following is true:

• The output is nonscalar.
• An input parameter is invalid for the

distribution.
nbinstat Statistics

and Machine
Learning Toolbox

—

ncfcdf Statistics
and Machine
Learning Toolbox

—

ncfinv Statistics
and Machine
Learning Toolbox

—

ncfpdf Statistics
and Machine
Learning Toolbox

—

ncfrnd Statistics
and Machine
Learning Toolbox

Can return a different sequence of numbers than
MATLAB if either of the following is true:

• The output is nonscalar.
• An input parameter is invalid for the

distribution.

25 Functions, Classes, and System Objects Supported for Code Generation

25-96

Name Product Remarks and Limitations

ncfstat Statistics
and Machine
Learning Toolbox

—

nchoosek MATLAB • When the first input, x, is a scalar,
nchoosek returns a binomial coefficient. In
this case, x must be a nonnegative integer. It
cannot have type int64 or uint64.

• When the first input, x, is a vector,
nchoosek treats it as a set. In this case, x
can have type int64 or uint64.

• The second input, k, cannot have type int64
or uint64.

• “Variable-Sizing Restrictions for Code
Generation of Toolbox Functions”

nctcdf Statistics
and Machine
Learning Toolbox

—

nctinv Statistics
and Machine
Learning Toolbox

—

nctpdf Statistics
and Machine
Learning Toolbox

—

nctrnd Statistics
and Machine
Learning Toolbox

Can return a different sequence of numbers than
MATLAB if either of the following is true:

• The output is nonscalar.
• An input parameter is invalid for the

distribution.
nctstat Statistics

and Machine
Learning Toolbox

—

 Functions and Objects Supported for C and C++ Code Generation — Alphabetical List

25-97

Name Product Remarks and Limitations

ncx2cdf Statistics
and Machine
Learning Toolbox

—

ncx2rnd Statistics
and Machine
Learning Toolbox

Can return a different sequence of numbers than
MATLAB if either of the following is true:

• The output is nonscalar.
• An input parameter is invalid for the

distribution.
ncx2stat Statistics

and Machine
Learning Toolbox

—

ndgrid MATLAB —
ndims MATLAB —
ndims Fixed-Point

Designer
—

ne MATLAB —
ne Fixed-Point

Designer
• Not supported for fixed-point signals with

different biases.
nearest Fixed-Point

Designer
—

nextpow2 MATLAB —
nnz MATLAB —
noisepow Phased Array

System Toolbox
Does not support variable-size inputs.

nonzeros MATLAB —
norm MATLAB —
normcdf Statistics

and Machine
Learning Toolbox

—

normest MATLAB —

25 Functions, Classes, and System Objects Supported for Code Generation

25-98

Name Product Remarks and Limitations

norminv Statistics
and Machine
Learning Toolbox

—

normpdf Statistics
and Machine
Learning Toolbox

—

normrnd Statistics
and Machine
Learning Toolbox

Can return a different sequence of numbers than
MATLAB if either of the following is true:

• The output is nonscalar.
• An input parameter is invalid for the

distribution.
normstat Statistics

and Machine
Learning Toolbox

—

not MATLAB —
npwgnthresh Phased Array

System Toolbox
Does not support variable-size inputs.

nthroot MATLAB —
null MATLAB • Might return a different basis than MATLAB

• Does not support rational basis option
(second input)

num2hex MATLAB —
numberofelements Fixed-Point

Designer
numberofelements will be removed in a future
release. Use numel instead.

numel MATLAB —
numel Fixed-Point

Designer
—

 Functions and Objects Supported for C and C++ Code Generation — Alphabetical List

25-99

Name Product Remarks and Limitations

numerictype Fixed-Point
Designer

• Fixed-point signals coming into a MATLAB
Function block from Simulink are assigned
a numerictype object that is populated
with the signal's data type and scaling
information.

• Returns the data type when the input is a
nonfixed-point signal.

• Use to create numerictype objects in the
generated code.

• All numerictype object properties related to
the data type must be constant.

nuttallwin Signal Processing
Toolbox

Inputs must be constant. Expressions or
variables are allowed if their values do not
change.

Specifying constants

To specify a constant input for fiaccel, use
coder.Constant. For more information, see
“Specify Constant Inputs at the Command Line”.

ocr Computer Vision
System Toolbox

Compile-time constant input: TextLayout,
Language, and CharacterSet.
Supports MATLAB Function block: No
Generated code for this function uses a
precompiled platform-specific shared library.

ocrText Computer Vision
System Toolbox

Compile-time constant input: No restrictions.
Supports MATLAB Function block: No

http://www.mathworks.com/support/sysreq/current_release/

25 Functions, Classes, and System Objects Supported for Code Generation

25-100

Name Product Remarks and Limitations

ode23 MATLAB • All odeset option arguments must be
constant.

• Does not support a constant mass matrix in
the options structure. Provide a mass matrix
as a function .

• You must provide at least the two output
arguments T and Y.

• Input types must be homogeneous—all
double or all single.

• Variable-sizing support must be enabled.
Requires dynamic memory allocation when
tspan has two elements or you use event
functions.

ode45 MATLAB • All odeset option arguments must be
constant.

• Does not support a constant mass matrix in
the options structure. Provide a mass matrix
as a function .

• You must provide at least the two output
arguments T and Y.

• Input types must be homogeneous—all
double or all single.

• Variable-sizing support must be enabled.
Requires dynamic memory allocation when
tspan has two elements or you use event
functions.

odeget MATLAB The name argument must be constant.
odeset MATLAB All inputs must be constant.
ones MATLAB • Dimensions must be real, nonnegative

integers.
• The input optimfun must be a function

supported for code generation.

 Functions and Objects Supported for C and C++ Code Generation — Alphabetical List

25-101

Name Product Remarks and Limitations

opticalFlow Computer Vision
System Toolbox

Supports MATLAB Function block: Yes

opticalFlowHS Computer Vision
System Toolbox

Supports MATLAB Function block: No
Generated code for this function uses a
precompiled platform-specific shared library.

opticalFlowLK Computer Vision
System Toolbox

Supports MATLAB Function block: No
Generated code for this function uses a
precompiled platform-specific shared library.

opticalFlowLKDoG Computer Vision
System Toolbox

Supports MATLAB Function block: No
Generated code for this function uses a
precompiled platform-specific shared library.

optimget MATLAB Input parameter names must be constant.
optimset MATLAB • Does not support the syntax that has no

input or output arguments:

optimset

• Functions specified in the options must be
supported for code generation.

• The fields of the options structure oldopts
must be fixed-size fields.

• For code generation, optimization functions
ignore the Display option.

• Does not support the additional options in an
options structure created by the Optimization
Toolbox™ optimset function. If an input
options structure includes the additional
Optimization Toolbox options, the output
structure does not include them.

ordfilt2 Image Processing
Toolbox

The padopt argument must be a compile-time
constant.

If you choose the generic MATLAB Host
Computer target platform, generated code uses
a precompiled, platform-specific shared library.

http://www.mathworks.com/support/sysreq/current_release/
http://www.mathworks.com/support/sysreq/current_release/
http://www.mathworks.com/support/sysreq/current_release/

25 Functions, Classes, and System Objects Supported for Code Generation

25-102

Name Product Remarks and Limitations

or MATLAB —
orth MATLAB • Can return a different basis than MATLAB
padarray Image Processing

Toolbox
• Support only up to 3-D inputs.
• Input arguments, padval and direction

are expected to be compile-time constants.
parfor MATLAB Treated as a for-loop when used with fiaccel.
parzenwin Signal Processing

Toolbox
Inputs must be constant. Expressions or
variables are allowed if their values do not
change.

Specifying constants

To specify a constant input for fiaccel, use
coder.Constant. For more information, see
“Specify Constant Inputs at the Command Line”.

pascal MATLAB —
pca Statistics

and Machine
Learning Toolbox

• Ignores the 'Display' value for 'Options'
when 'Algorithm' is 'als'.

• If supplied, 'Weights' and
'VariableWeights' must be real.

• Always returns the fifth output explained
as a column vector.

• Always returns the sixth output mu as a row
vector.

• If mu is empty, pca returns mu as a 1-by-0
array. pca does not convert mu to a 0-by-0
empty array.

• Does not treat an input matrix X that has all
NaN values as a special case. The outputs
have the sizes that they have when some of
the inputs are finite.

 Functions and Objects Supported for C and C++ Code Generation — Alphabetical List

25-103

Name Product Remarks and Limitations

pchip MATLAB • Input x must be strictly increasing.
• Does not remove y entries with NaN values.
• If you generate code for the pp =

pchip(x,y) syntax, you cannot input pp to
the ppval function in MATLAB. To create a
MATLAB pp structure from a pp structure
created by the code generation software:

• In code generation, use unmkpp to return
the piecewise polynomial details to
MATLAB.

• In MATLAB, use mkpp to create the pp
structure.

pdf Statistics
and Machine
Learning Toolbox

—

pearsrnd Statistics
and Machine
Learning Toolbox

Matches MATLAB only when generated output
r is scalar.

permute MATLAB “Variable-Sizing Restrictions for Code
Generation of Toolbox Functions”

permute Fixed-Point
Designer

The dimensions argument must be a built-in
type; it cannot be a fi object.

phased.ADPCACanceller Phased Array
System Toolbox

“System Objects in MATLAB Code Generation”

phased.AngleDoppler-

Response

Phased Array
System Toolbox

“System Objects in MATLAB Code Generation”

phased.ArrayGain Phased Array
System Toolbox

• Does not support arrays containing
polarized antenna elements, that is, the
phased.ShortDipoleAntennaElement or
phased.CrossedDipoleAntennaElement

antennas.
• “System Objects in MATLAB Code

Generation”

25 Functions, Classes, and System Objects Supported for Code Generation

25-104

Name Product Remarks and Limitations

phased.ArrayResponse Phased Array
System Toolbox

“System Objects in MATLAB Code Generation”

phased.BarrageJammer Phased Array
System Toolbox

“System Objects in MATLAB Code Generation”

phased.Beamscan-

Estimator

Phased Array
System Toolbox

“System Objects in MATLAB Code Generation”

phased.Beamscan-

Estimator2D

Phased Array
System Toolbox

“System Objects in MATLAB Code Generation”

phased.Beamspace-

ESPRITEstimator

Phased Array
System Toolbox

“System Objects in MATLAB Code Generation”

phased.CFARDetector Phased Array
System Toolbox

“System Objects in MATLAB Code Generation”

phased.Collector Phased Array
System Toolbox

“System Objects in MATLAB Code Generation”

phased.ConformalArray Phased Array
System Toolbox

• pattern, patternAzimuth,
patternElevation, plotResponse, and
viewArray methods are not supported.

• See “System Objects in MATLAB Code
Generation”.

phased.Constant-

GammaClutter

Phased Array
System Toolbox

“System Objects in MATLAB Code Generation”

phased.Cosine-

AntennaElement

Phased Array
System Toolbox

• pattern, patternAzimuth,
patternElevation, and plotResponse
methods are not supported.

• See “System Objects in MATLAB Code
Generation”.

phased.Crossed-

DipoleAntennaElement

Phased Array
System Toolbox

• pattern, patternAzimuth,
patternElevation, and plotResponse
methods are not supported.

• See “System Objects in MATLAB Code
Generation”.

 Functions and Objects Supported for C and C++ Code Generation — Alphabetical List

25-105

Name Product Remarks and Limitations

phased.Custom-

AntennaElement

Phased Array
System Toolbox

• pattern, patternAzimuth,
patternElevation, and plotResponse
methods are not supported.

• See “System Objects in MATLAB Code
Generation”.

phased.Custom-

MicrophoneElement

Phased Array
System Toolbox

• pattern, patternAzimuth,
patternElevation, and plotResponse
methods are not supported.

• See “System Objects in MATLAB Code
Generation”.

phased.DPCACanceller Phased Array
System Toolbox

“System Objects in MATLAB Code Generation”

phased.ElementDelay Phased Array
System Toolbox

“System Objects in MATLAB Code Generation”

phased.ESPRITEstimator Phased Array
System Toolbox

“System Objects in MATLAB Code Generation”

phased.FMCWWaveform Phased Array
System Toolbox

• plot method is not supported.
• See “System Objects in MATLAB Code

Generation”.
phased.FreeSpace Phased Array

System Toolbox
• Requires dynamic memory allocation. See

“Limitations for System Objects that Require
Dynamic Memory Allocation”.

• “System Objects in MATLAB Code
Generation”

phased.FrostBeamformer Phased Array
System Toolbox

• Requires dynamic memory allocation. See
“Limitations for System Objects that Require
Dynamic Memory Allocation”.

• “System Objects in MATLAB Code
Generation”

25 Functions, Classes, and System Objects Supported for Code Generation

25-106

Name Product Remarks and Limitations

phased.Isotropic-

AntennaElement

Phased Array
System Toolbox

• pattern, patternAzimuth,
patternElevation, and plotResponse
methods are not supported.

• See “System Objects in MATLAB Code
Generation”.

phased.LCMVBeamformer Phased Array
System Toolbox

“System Objects in MATLAB Code Generation”

phased.LinearFMWaveform Phased Array
System Toolbox

• plot method is not supported.
• See “System Objects in MATLAB Code

Generation”.
phased.MatchedFilter Phased Array

System Toolbox
• The CustomSpectrumWindow property is

not supported.
• “System Objects in MATLAB Code

Generation”
phased.MFSKWaveform Phased Array

System Toolbox
• plot method is not supported.
• See “System Objects in MATLAB Code

Generation”.
phased.MVDRBeamformer Phased Array

System Toolbox
“System Objects in MATLAB Code Generation”

phased.MVDREstimator Phased Array
System Toolbox

“System Objects in MATLAB Code Generation”

phased.MVDREstimator2D Phased Array
System Toolbox

“System Objects in MATLAB Code Generation”

phased.Omnidirectional-

MicrophoneElement

Phased Array
System Toolbox

• pattern, patternAzimuth,
patternElevation, and plotResponse
methods are not supported.

• See “System Objects in MATLAB Code
Generation”.

 Functions and Objects Supported for C and C++ Code Generation — Alphabetical List

25-107

Name Product Remarks and Limitations

phased.PartitionedArray Phased Array
System Toolbox

• pattern, patternAzimuth,
patternElevation, plotResponse, and
viewArray methods are not supported.

• See “System Objects in MATLAB Code
Generation”.

phased.PhaseCoded-

Waveform

Phased Array
System Toolbox

• plot method is not supported.
• See “System Objects in MATLAB Code

Generation”.
phased.PhaseShift-

Beamformer

Phased Array
System Toolbox

“System Objects in MATLAB Code Generation”

phased.Platform Phased Array
System Toolbox

“System Objects in MATLAB Code Generation”

phased.RadarTarget Phased Array
System Toolbox

“System Objects in MATLAB Code Generation”

phased.Radiator Phased Array
System Toolbox

“System Objects in MATLAB Code Generation”

phased.Range-

DopplerResponse

Phased Array
System Toolbox

• The CustomRangeWindow and the
CustomDopplerWindow properties are not
supported.

• “System Objects in MATLAB Code
Generation”

phased.Rectangular-

Waveform

Phased Array
System Toolbox

• plot method is not supported.
• See “System Objects in MATLAB Code

Generation”.
phased.ReceiverPreamp Phased Array

System Toolbox
“System Objects in MATLAB Code Generation”

phased.Replicated-

Subarray

Phased Array
System Toolbox

• pattern, patternAzimuth,
patternElevation, plotResponse, and
viewArray methods are not supported.

• See “System Objects in MATLAB Code
Generation”.

25 Functions, Classes, and System Objects Supported for Code Generation

25-108

Name Product Remarks and Limitations

phased.RootMUSIC-

Estimator

Phased Array
System Toolbox

“System Objects in MATLAB Code Generation”

phased.RootWSFEstimator Phased Array
System Toolbox

“System Objects in MATLAB Code Generation”

phased.ShortDipole-

AntennaElement

Phased Array
System Toolbox

• pattern, patternAzimuth,
patternElevation, and plotResponse
methods are not supported.

• See “System Objects in MATLAB Code
Generation”.

phased.STAPSMI-

Beamformer

Phased Array
System Toolbox

“System Objects in MATLAB Code Generation”

phased.StretchProcessor Phased Array
System Toolbox

“System Objects in MATLAB Code Generation”

phased.SubbandPhase-

ShiftBeamformer

Phased Array
System Toolbox

“System Objects in MATLAB Code Generation”

phased.SteeringVector Phased Array
System Toolbox

“System Objects in MATLAB Code Generation”

phased.Stepped-

FMWaveform

Phased Array
System Toolbox

• plot method is not supported.
• See “System Objects in MATLAB Code

Generation”.
phased.SumDifference-

MonopulseTracker

Phased Array
System Toolbox

“System Objects in MATLAB Code Generation”

phased.SumDifference-

MonopulseTracker2D

Phased Array
System Toolbox

“System Objects in MATLAB Code Generation”

phased.TimeDelay-

Beamformer

Phased Array
System Toolbox

• Requires dynamic memory allocation. See
“Limitations for System Objects that Require
Dynamic Memory Allocation”.

• “System Objects in MATLAB Code
Generation”

 Functions and Objects Supported for C and C++ Code Generation — Alphabetical List

25-109

Name Product Remarks and Limitations

phased.TimeDelayLCMV-

Beamformer

Phased Array
System Toolbox

• Requires dynamic memory allocation. See
“Limitations for System Objects that Require
Dynamic Memory Allocation”.

• “System Objects in MATLAB Code
Generation”

phased.TimeVaryingGain Phased Array
System Toolbox

“System Objects in MATLAB Code Generation”

phased.Transmitter Phased Array
System Toolbox

“System Objects in MATLAB Code Generation”

phased.UCA Phased Array
System Toolbox

• pattern, patternAzimuth,
patternElevation, plotResponse, and
viewArray methods are not supported.

• See “System Objects in MATLAB Code
Generation”.

phased.ULA Phased Array
System Toolbox

• pattern, patternAzimuth,
patternElevation, plotResponse, and
viewArray methods are not supported.

• See “System Objects in MATLAB Code
Generation”.

phased.URA Phased Array
System Toolbox

• pattern, patternAzimuth,
patternElevation, plotResponse, and
viewArray methods are not supported.

• See “System Objects in MATLAB Code
Generation”.

phased.Wideband-

Collector

Phased Array
System Toolbox

• Requires dynamic memory allocation. See
“Limitations for System Objects that Require
Dynamic Memory Allocation”.

• “System Objects in MATLAB Code
Generation”

phitheta2azel Phased Array
System Toolbox

Does not support variable-size inputs.

phitheta2azelpat Phased Array
System Toolbox

Does not support variable-size inputs.

25 Functions, Classes, and System Objects Supported for Code Generation

25-110

Name Product Remarks and Limitations

phitheta2uv Phased Array
System Toolbox

Does not support variable-size inputs.

phitheta2uvpat Phased Array
System Toolbox

Does not support variable-size inputs.

physconst Phased Array
System Toolbox

Does not support variable-size inputs.

pi MATLAB —
pilotcalib Phased Array

System Toolbox
Does not support variable-size inputs.

pinv MATLAB —
planerot MATLAB “Variable-Sizing Restrictions for Code

Generation of Toolbox Functions”
plus MATLAB —
plus Fixed-Point

Designer
• Any non-fi input must be constant; that is,

its value must be known at compile time so
that it can be cast to a fi object.

poisscdf Statistics
and Machine
Learning Toolbox

—

poissinv Statistics
and Machine
Learning Toolbox

—

poisspdf Statistics
and Machine
Learning Toolbox

—

poissrnd Statistics
and Machine
Learning Toolbox

Can return a different sequence of numbers than
MATLAB if either of the following is true:

• The output is nonscalar.
• An input parameter is invalid for the

distribution.

 Functions and Objects Supported for C and C++ Code Generation — Alphabetical List

25-111

Name Product Remarks and Limitations

poisstat Statistics
and Machine
Learning Toolbox

—

pol2cart MATLAB —
pol2circpol Phased Array

System Toolbox
Does not support variable-size inputs.

polellip Phased Array
System Toolbox

Does not support variable-size inputs.

polloss Phased Array
System Toolbox

Does not support variable-size inputs.

polratio Phased Array
System Toolbox

Does not support variable-size inputs.

polsignature Phased Array
System Toolbox

• Does not support variable-size inputs.
• Supported only when output arguments are

specified.
poly MATLAB • Does not discard nonfinite input values

• Complex input produces complex output
• “Variable-Sizing Restrictions for Code

Generation of Toolbox Functions”
polyarea MATLAB —
poly2trellis Communications

System Toolbox
—

polyder MATLAB The output can contain fewer NaNs than the
MATLAB output. However, if the input contains
a NaN, the output contains at least one NaN.

polyfit MATLAB “Variable-Sizing Restrictions for Code
Generation of Toolbox Functions”

polyint MATLAB —
polyval MATLAB —
polyvalm MATLAB —

25 Functions, Classes, and System Objects Supported for Code Generation

25-112

Name Product Remarks and Limitations

pow2 Fixed-Point
Designer

—

pow2db
Signal Processing
Toolbox

—

power MATLAB • Generates an error during simulation. When
both X and Y are real, but power(X,Y) is
complex, returns NaN in the generated code.
To get the complex result, make the input
value X complex by passing in complex(X).
For example, power(complex(X),Y).

• Generates an error during simulation. When
both X and Y are real, but X .^ Y is complex,
returns NaN in generated code. To get the
complex result, make the input value X
complex by using complex(X). For example,
complex(X).^Y.

power Fixed-Point
Designer

• The exponent input, k, must be constant. Its
value must be known at compile time.

 Functions and Objects Supported for C and C++ Code Generation — Alphabetical List

25-113

Name Product Remarks and Limitations

ppval MATLAB The size of output v does not match MATLAB
when both of the following statements are true:

• The input x is a variable-size array that is
not a variable-length vector.

• x becomes a row vector at run time.

The code generation software does not remove
the singleton dimensions. However, MATLAB
might remove singleton dimensions.

For example, suppose that x is a :4-by-:5 array
(the first dimension is variable size with an
upper bound of 4 and the second dimension is
variable size with an upper bound of 5). Suppose
that ppval(pp,0) returns a 2-by-3 fixed-size
array. v has size 2-by-3-by-:4-by-:5. At run time,
suppose that, size(x,1) =1 and size (x,2) = 5. In
the generated code, the size(v) is [2,3,1,5]. In
MATLAB, the size is [2,3,5].

prctile Statistics
and Machine
Learning Toolbox

• “Automatic dimension restriction”
• If the output Y is a vector, the orientation

of Y differs from MATLAB when all of the
following are true:

• You do not supply the dim input.
• X is a variable-size array.
• X is not a variable-length vector.
• X is a vector at run time.
• The orientation of the vector X does not

match the orientation of the vector p.

In this case, the output Y matches the
orientation of X not the orientation of p.

25 Functions, Classes, and System Objects Supported for Code Generation

25-114

Name Product Remarks and Limitations

primes MATLAB • The maximum double precision input is
2^32.

• The maximum single precision input is 2^24.
• The input n cannot have type int64 or

uint64.
prod MATLAB • If supplied, dim must be a constant.

• “Variable-Sizing Restrictions for Code
Generation of Toolbox Functions”

projective2d Image Processing
Toolbox

When generating code, you can only specify
single objects—arrays of objects are not
supported.

psi MATLAB —
pulsint Phased Array

System Toolbox
Does not support variable-size inputs.

qr MATLAB —
quad2d MATLAB • Generates a warning if the size of the

internal storage arrays is not large enough.
If a warning occurs, a possible workaround is
to divide the region of integration into pieces
and sum the integrals over each piece.

quadgk MATLAB —
quantile Statistics

and Machine
Learning Toolbox

—

quantize Fixed-Point
Designer

—

quatconj Aerospace
Toolbox

Code generation for this function requires the
Aerospace Blockset™ software.

quatdivide Aerospace
Toolbox

Code generation for this function requires the
Aerospace Blockset software.

quatinv Aerospace
Toolbox

Code generation for this function requires the
Aerospace Blockset software.

 Functions and Objects Supported for C and C++ Code Generation — Alphabetical List

25-115

Name Product Remarks and Limitations

quatmod Aerospace
Toolbox

Code generation for this function requires the
Aerospace Blockset software.

quatmultiply Aerospace
Toolbox

Code generation for this function requires the
Aerospace Blockset software.

quatnorm Aerospace
Toolbox

Code generation for this function requires the
Aerospace Blockset software.

quatnormalize Aerospace
Toolbox

Code generation for this function requires the
Aerospace Blockset software.

radareqpow Phased Array
System Toolbox

Does not support variable-size inputs.

radareqrng Phased Array
System Toolbox

Does not support variable-size inputs.

radareqsnr Phased Array
System Toolbox

Does not support variable-size inputs.

radarvcd Phased Array
System Toolbox

Does not support variable-size inputs.

radialspeed Phased Array
System Toolbox

Does not support variable-size inputs.

rand MATLAB • classname must be a built-in MATLAB
numeric type. Does not invoke the static
rand method for other classes. For example,
rand(sz,'myclass’) does not invoke
myclass.rand(sz).

• “Variable-Sizing Restrictions for Code
Generation of Toolbox Functions”

randg Statistics
and Machine
Learning Toolbox

—

25 Functions, Classes, and System Objects Supported for Code Generation

25-116

Name Product Remarks and Limitations

randi MATLAB • classname must be a built-in MATLAB
numeric type. Does not invoke the static
randi method for other classes. For example,
randi(imax,sz,'myclass’) does not
invoke myclass.randi(imax,sz).

• “Variable-Sizing Restrictions for Code
Generation of Toolbox Functions”

randn MATLAB • classname must be a built-in MATLAB
numeric type. Does not invoke the static
randn method for other classes. For example,
randn(sz,'myclass’) does not invoke
myclass.randn(sz).

• “Variable-Sizing Restrictions for Code
Generation of Toolbox Functions”

random Statistics
and Machine
Learning Toolbox

—

randperm MATLAB —
range Fixed-Point

Designer
—

range2beat Phased Array
System Toolbox

Does not support variable-size inputs.

range2bw Phased Array
System Toolbox

Does not support variable-size inputs.

range2time Phased Array
System Toolbox

Does not support variable-size inputs.

rangeangle Phased Array
System Toolbox

Does not support variable-size inputs.

rank MATLAB —
raylcdf Statistics

and Machine
Learning Toolbox

—

 Functions and Objects Supported for C and C++ Code Generation — Alphabetical List

25-117

Name Product Remarks and Limitations

raylinv Statistics
and Machine
Learning Toolbox

—

raylpdf Statistics
and Machine
Learning Toolbox

—

raylrnd Statistics
and Machine
Learning Toolbox

Can return a different sequence of numbers than
MATLAB if either of the following is true:

• The output is nonscalar.
• An input parameter is invalid for the

distribution.
raylstat Statistics

and Machine
Learning Toolbox

—

rcond MATLAB —
rcosdesign Signal Processing

Toolbox
All inputs must be constant. Expressions or
variables are allowed if their values do not
change.

Specifying constants

To specify a constant input for fiaccel, use
coder.Constant. For more information, see
“Specify Constant Inputs at the Command Line”.

rdcoupling Phased Array
System Toolbox

Does not support variable-size inputs.

rdivide MATLAB —
rdivide Fixed-Point

Designer
—

real MATLAB —
real Fixed-Point

Designer
—

reallog MATLAB —

25 Functions, Classes, and System Objects Supported for Code Generation

25-118

Name Product Remarks and Limitations

realmax MATLAB —
realmax Fixed-Point

Designer
—

realmin MATLAB —
realmin Fixed-Point

Designer
—

realpow MATLAB —
realsqrt MATLAB —
reconstructScene Computer Vision

System Toolbox
Supports MATLAB Function block: No

rectifyStereoImages Computer Vision
System Toolbox

Compile-time constant input restriction: 'interp'
and 'OutputView'
Supports MATLAB Function block: No

rectint MATLAB —
rectwin Signal Processing

Toolbox
All inputs must be constant. Expressions or
variables are allowed if their values do not
change.

Specifying constants

To specify a constant input for fiaccel, use
coder.Constant. For more information, see
“Specify Constant Inputs at the Command Line”.

 Functions and Objects Supported for C and C++ Code Generation — Alphabetical List

25-119

Name Product Remarks and Limitations

regionprops Image Processing
Toolbox

Supports only 2-D images. Does not accept the
connected component structure (CC) returned
by bwconncomp. Use bwlabel to create a label
matrix, or pass the image to regionprops
directly. Does not support the table output type.
Does not accept cell arrays as input—use a
comma-separated list instead. Does not support
the properties ConvexArea, ConvexHull,
ConvexImage, Solidity, and SubarrayIdx.

If you choose the generic MATLAB Host
Computer target platform, generated code uses
a precompiled, platform-specific shared library.

reinterpretcast Fixed-Point
Designer

—

rem MATLAB • Performs the arithmetic using the output
class. Results might not match MATLAB due
to differences in rounding errors.

• If one of the inputs has type int64 or
uint64, then both inputs must have the
same type.

removefimath Fixed-Point
Designer

—

repmat MATLAB —
repmat Fixed-Point

Designer
The dimensions argument must be a built-in
type; it cannot be a fi object.

resample Signal Processing
Toolbox

All inputs must be constant. Expressions or
variables are allowed if their values do not
change.

Specifying constants

To specify a constant input for fiaccel, use
coder.Constant. For more information, see
“Specify Constant Inputs at the Command Line”.

25 Functions, Classes, and System Objects Supported for Code Generation

25-120

Name Product Remarks and Limitations

rescale Fixed-Point
Designer

—

reshape MATLAB • “Variable-Sizing Restrictions for Code
Generation of Toolbox Functions”

reshape Fixed-Point
Designer

—

return MATLAB —
rgb2gray MATLAB —
rgb2ycbcr Image Processing

Toolbox
—

rng MATLAB • For library code generation targets,
executable code generation targets, and MEX
targets with extrinsic calls disabled:

• Does not support the 'shuffle' input.
• For the generator input, supports

'twister', 'v4', and 'v5normal'.

For these targets, the output of s=rng in the
generated code differs from the MATLAB
output. You cannot return the output of
s=rng from the generated code and pass it to
rng in MATLAB.

• For MEX targets, if extrinsic calls are
enabled, you cannot access the data in the
structure returned by rng.

rocpfa Phased Array
System Toolbox

• Does not support variable-size inputs.
• The NonfluctuatingNoncoherent signal

type is not supported.
rocsnr Phased Array

System Toolbox
• Does not support variable-size inputs.
• Does not support the

NonfluctuatingNoncoherent signal type.
rootmusicdoa Phased Array

System Toolbox
Does not support variable-size inputs.

 Functions and Objects Supported for C and C++ Code Generation — Alphabetical List

25-121

Name Product Remarks and Limitations

roots MATLAB • Output is variable size.
• Output is complex.
• Roots are not always in the same order as

MATLAB.
• Roots of poorly conditioned polynomials do

not always match MATLAB.
• “Variable-Sizing Restrictions for Code

Generation of Toolbox Functions”
rosser MATLAB —
rot90 MATLAB —
rot90 Fixed-Point

Designer
In the syntax rot90(A,k), the argument k
must be a built-in type; it cannot be a fi object.

rotx Phased Array
System Toolbox

Does not support variable-size inputs.

roty Phased Array
System Toolbox

Does not support variable-size inputs.

rotz Phased Array
System Toolbox

Does not support variable-size inputs.

round MATLAB Supports only the syntax Y = round(X).
round Fixed-Point

Designer
—

rsf2csf MATLAB —
schur MATLAB Can return a different Schur decomposition in

generated code than in MATLAB.
sec MATLAB —
secd MATLAB • In some cases, returns -Inf when MATLAB

returns Inf.
• In some cases, returns Inf when MATLAB

returns -Inf.
sech MATLAB —

25 Functions, Classes, and System Objects Supported for Code Generation

25-122

Name Product Remarks and Limitations

selectStrongestBbox Computer Vision
System Toolbox

Compile-time constant input: No restriction
Supports MATLAB Function block: No

sensorcov Phased Array
System Toolbox

Does not support variable-size inputs.

sensorsig Phased Array
System Toolbox

Does not support variable-size inputs.

 Functions and Objects Supported for C and C++ Code Generation — Alphabetical List

25-123

Name Product Remarks and Limitations

setdiff MATLAB • When you do not specify the 'rows' option:

• Inputs A and B must be vectors. If you
specify the 'legacy' option, inputs A and
B must be row vectors.

• The first dimension of a variable-size
row vector must have fixed length 1.
The second dimension of a variable-size
column vector must have fixed length 1.

• Do not use [] to represent the empty set.
Use a 1-by-0 or 0-by-1 input, for example,
zeros(1,0), to represent the empty set.

• If you specify the 'legacy' option, empty
outputs are row vectors, 1-by-0, never 0-
by-0.

• When you specify both the 'legacy' and
'rows' options, the output ia is a column
vector. If ia is empty, it is 0-by-1, never 0-
by-0, even if the output C is 0-by-0.

• When the setOrder is 'sorted' or when
you specify the 'legacy' option, the inputs
must already be sorted in ascending order.
The first output, C, is sorted in ascending
order.

• Complex inputs must be single or double.
• When one input is complex and the other

input is real, do one of the following:

• Set setOrder to 'stable'.
• Sort the real input in complex

ascending order (by absolute
value). Suppose the real input
is x. Use sort(complex(x))or
sortrows(complex(x)).

25 Functions, Classes, and System Objects Supported for Code Generation

25-124

Name Product Remarks and Limitations

• “Code Generation for Complex Data with
Zero-Valued Imaginary Parts”.

setfimath Fixed-Point
Designer

—

 Functions and Objects Supported for C and C++ Code Generation — Alphabetical List

25-125

Name Product Remarks and Limitations

setxor MATLAB • When you do not specify the 'rows' option:

• Inputs A and B must be vectors with
the same orientation. If you specify the
'legacy' option, inputs A and B must be
row vectors.

• The first dimension of a variable-size
row vector must have fixed length 1.
The second dimension of a variable-size
column vector must have fixed length 1.

• The input [] is not supported. Use a
1-by-0 or 0-by-1 input, for example ,
zeros(1,0), to represent the empty set.

• If you specify the 'legacy' option, empty
outputs are row vectors, 1-by-0, never 0-
by-0.

• When you specify both the 'legacy' option
and the 'rows' option, the outputs ia and
ib are column vectors. If these outputs are
empty, they are 0-by-1, never 0-by-0, even if
the output C is 0-by-0.

• When the setOrder is 'sorted' or when
you specify the 'legacy' flag, the inputs
must already be sorted in ascending order.
The first output, C, is sorted in ascending
order.

• Complex inputs must be single or double.
• When one input is complex and the other

input is real, do one of the following:

• Set setOrder to 'stable'.
• Sort the real input in complex

ascending order (by absolute
value). Suppose the real input
is x. Use sort(complex(x))or
sortrows(complex(x)).

25 Functions, Classes, and System Objects Supported for Code Generation

25-126

Name Product Remarks and Limitations

• “Code Generation for Complex Data with
Zero-Valued Imaginary Parts”.

sfi Fixed-Point
Designer

• All properties related to data type must be
constant for code generation.

sgolay Signal Processing
Toolbox

All inputs must be constant. Expressions or
variables are allowed if their values do not
change.

Specifying constants

To specify a constant input for fiaccel, use
coder.Constant. For more information, see
“Specify Constant Inputs at the Command Line”.

shiftdim MATLAB • Second argument must be a constant.
• “Variable-Sizing Restrictions for Code

Generation of Toolbox Functions”
shiftdim Fixed-Point

Designer
The dimensions argument must be a built-in
type; it cannot be a fi object.

shnidman Phased Array
System Toolbox

Does not support variable-size inputs.

sign MATLAB —
sign Fixed-Point

Designer
—

sin MATLAB —
sin Fixed-Point

Designer
—

sind MATLAB —
single MATLAB —
single Fixed-Point

Designer
—

sinh MATLAB —
size MATLAB —

 Functions and Objects Supported for C and C++ Code Generation — Alphabetical List

25-127

Name Product Remarks and Limitations

size Fixed-Point
Designer

—

skewness Statistics
and Machine
Learning Toolbox

—

sort MATLAB If the input is a complex type, sort orders the
output according to absolute value. When x is a
complex type that has all zero imaginary parts,
use sort(real(x)) to compute the sort order
for real types. See “Code Generation for Complex
Data with Zero-Valued Imaginary Parts”.

sort Fixed-Point
Designer

The dimensions argument must be a built-in
type; it cannot be a fi object.

sortrows MATLAB If the input is a complex type, sortrows orders
the output according to absolute value. When
x is a complex type that has all zero imaginary
parts, use sortrows(real(x)) to compute the
sort order for real types. See “Code Generation
for Complex Data with Zero-Valued Imaginary
Parts”.

sosfilt Signal Processing
Toolbox

—

speed2dop Phased Array
System Toolbox

Does not support variable-size inputs.

sph2cart MATLAB —
sph2cartvec Phased Array

System Toolbox
Does not support variable-size inputs.

25 Functions, Classes, and System Objects Supported for Code Generation

25-128

Name Product Remarks and Limitations

spline MATLAB • Input x must be strictly increasing.
• Does not remove Y entries with NaN values.
• Does not report an error for infinite

endslopes in Y.
• If you generate code for the pp =

spline(x,Y) syntax, you cannot input pp
to the ppval function in MATLAB. To create
a MATLAB pp structure from a pp structure
created by the code generation software:

• In code generation, use unmkpp to return
the piecewise polynomial details to
MATLAB.

• In MATLAB, use mkpp to create the pp
structure.

spsmooth Phased Array
System Toolbox

Does not support variable-size inputs.

squeeze MATLAB —
squeeze Fixed-Point

Designer
—

sqrt MATLAB • Generates an error during simulation and
returns NaN in generated code when the
input value x is real, but the output should
be complex. To get the complex result,
make the input value complex by passing in
complex(x).

sqrt Fixed-Point
Designer

• Complex and [Slope Bias] inputs error out.
• Negative inputs yield a 0 result.

sqrtm MATLAB —
std MATLAB • “Variable-Sizing Restrictions for Code

Generation of Toolbox Functions”
• Does not support the nanflag argument.

 Functions and Objects Supported for C and C++ Code Generation — Alphabetical List

25-129

Name Product Remarks and Limitations

steervec Phased Array
System Toolbox

Does not support variable-size inputs.

stereoParameters Computer Vision
System Toolbox

Supports MATLAB Function block: No

stokes Phased Array
System Toolbox

• Does not support variable-size inputs.
• Supported only when output arguments are

specified.
storedInteger Fixed-Point

Designer
—

storedIntegerToDouble Fixed-Point
Designer

—

str2double MATLAB • Does not support cell arrays.
• Always returns a complex result.

str2func MATLAB String must be constant/known at compile time.
strcmp MATLAB —
strcmpi MATLAB • Input values from the char class must be in

the range 0-127.
strel Image Processing

Toolbox
Input arguments must be compile-time
constants. The following methods are not
supported for code generation: getsequence,
reflect, translate, disp, display,
loadobj. When generating code, you can only
specify single objects—arrays of objects are not
supported.

stretchfreq2rng Phased Array
System Toolbox

Does not support variable-size inputs.

stretchlim Image Processing
Toolbox

If you choose the generic MATLAB Host
Computer target platform, generated code uses
a precompiled, platform-specific shared library.

strfind MATLAB • Does not support cell arrays.
• If pattern does not exist in str, returns

zeros(1,0) not []. To check for an empty
return, use isempty.

25 Functions, Classes, and System Objects Supported for Code Generation

25-130

Name Product Remarks and Limitations

• Inputs must be character row vectors.
strjust MATLAB —
strncmp MATLAB —
strncmpi MATLAB • Input values from the char class must be in

the range 0-127.
strrep MATLAB • Does not support cell arrays.

• If oldSubstr does not exist in origStr,
returns blanks(0). To check for an empty
return, use isempty.

• Inputs must be character row vectors.
strtok MATLAB —
strtrim MATLAB • Supports only inputs from the char class.

• Input values must be in the range 0-127.
struct MATLAB —
structfun MATLAB • Does not support the ErrorHandler option.

• The number of outputs must be less than or
equal to three.

sub Fixed-Point
Designer

Code generation in MATLAB does not support
the syntax F.sub(a,b). You must use the
syntax sub(F,a,b).

sub2ind MATLAB • The first argument must be a valid size
vector. Size vectors for arrays with more than
intmax elements are not supported.

• “Variable-Sizing Restrictions for Code
Generation of Toolbox Functions”

subsasgn Fixed-Point
Designer

—

subspace MATLAB —
subsref Fixed-Point

Designer
—

 Functions and Objects Supported for C and C++ Code Generation — Alphabetical List

25-131

Name Product Remarks and Limitations

sum MATLAB • Specify dim as a constant.
• “Variable-Sizing Restrictions for Code

Generation of Toolbox Functions”
• Does not support the nanflag argument.

sum Fixed-Point
Designer

• Variable-sized inputs are only supported
when the SumMode property of the governing
fimath is set to Specify precision or
Keep LSB.

surfacegamma Phased Array
System Toolbox

Does not support variable-size inputs.

surfclutterrcs Phased Array
System Toolbox

Does not support variable-size inputs.

SURFPoints Computer Vision
System Toolbox

Compile-time constant input: No restrictions.
Supports MATLAB Function block: No
To index locations with this object, use
the syntax: points.Location(idx,:),
for points object. See
visionRecovertformCodeGeneration_kernel.m,
which is used in the “Introduction to Code
Generation with Feature Matching and
Registration” example.

svd MATLAB Uses a different SVD implementation than
MATLAB. Because the singular value
decomposition is not unique, left and right
singular vectors might differ from those
computed by MATLAB.

swapbytes MATLAB Inheritance of the class of the input to
swapbytes in a MATLAB Function block is
supported only when the class of the input is
double. For non-double inputs, the input port
data types must be specified, not inherited.

25 Functions, Classes, and System Objects Supported for Code Generation

25-132

Name Product Remarks and Limitations

switch, case, otherwise MATLAB • If all case expressions are scalar integer
values, generates a C switch statement.
At run time, if the switch value is not an
integer, generates an error.

• When the case expressions contain
noninteger or nonscalar values, the code
generation software generates C if
statements in place of a C switch statement.

systemp Phased Array
System Toolbox

Does not support variable-size inputs.

tan MATLAB —
tand MATLAB • In some cases, returns -Inf when MATLAB

returns Inf.
• In some cases, returns Inf when MATLAB

returns -Inf.
tanh MATLAB —
taylorwin Signal Processing

Toolbox
Inputs must be constant

Specifying constants

To specify a constant input for fiaccel, use
coder.Constant. For more information, see
“Specify Constant Inputs at the Command Line”.

tcdf Statistics
and Machine
Learning Toolbox

—

tf2ca DSP System
Toolbox

All inputs must be constant. Expressions or
variables are allowed if their values do not
change.

tf2cl DSP System
Toolbox

All inputs must be constant. Expressions or
variables are allowed if their values do not
change.

time2range Phased Array
System Toolbox

Does not support variable-size inputs.

 Functions and Objects Supported for C and C++ Code Generation — Alphabetical List

25-133

Name Product Remarks and Limitations

times MATLAB Multiplication of pure imaginary numbers by
non-finite numbers might not match MATLAB.
The code generation software does not specialize
multiplication by pure imaginary numbers—
it does not eliminate calculations with the zero
real part. For example, (Inf + 1i)*1i =
(Inf*0 – 1*1) + (Inf*1 + 1*0)i = NaN

+ Infi.
times Fixed-Point

Designer
• Any non-fi input must be constant; that is,

its value must be known at compile time so
that it can be cast to a fi object.

• When you provide complex inputs to the
times function inside a MATLAB Function
block, you must declare the input as complex
before running the simulation. To do so, go
to the Ports and data manager and set
the Complexity parameter for all known
complex inputs to On.

tinv Statistics
and Machine
Learning Toolbox

—

toeplitz MATLAB —
tpdf Statistics

and Machine
Learning Toolbox

—

trace MATLAB —
transpose MATLAB —
transpose Fixed-Point

Designer
—

trapz MATLAB • If supplied, dim must be a constant.
• “Variable-Sizing Restrictions for Code

Generation of Toolbox Functions”

25 Functions, Classes, and System Objects Supported for Code Generation

25-134

Name Product Remarks and Limitations

triang Signal Processing
Toolbox

Inputs must be constant

Specifying constants

To specify a constant input for fiaccel, use
coder.Constant. For more information, see
“Specify Constant Inputs at the Command Line”.

triangulate Computer Vision
System Toolbox

Supports MATLAB Function block: No

tril MATLAB • If supplied, the argument representing the
order of the diagonal matrix must be a real
and scalar integer value.

tril Fixed-Point
Designer

• If supplied, the index, k, must be a real and
scalar integer value that is not a fi object.

triu MATLAB • If supplied, the argument representing the
order of the diagonal matrix must be a real
and scalar integer value.

triu Fixed-Point
Designer

• If supplied, the index, k, must be a real and
scalar integer value that is not a fi object.

trnd Statistics
and Machine
Learning Toolbox

Can return a different sequence of numbers than
MATLAB if either of the following is true:

• The output is nonscalar.
• An input parameter is invalid for the

distribution.
true MATLAB • Dimensions must be real, nonnegative,

integers.
tstat Statistics

and Machine
Learning Toolbox

—

 Functions and Objects Supported for C and C++ Code Generation — Alphabetical List

25-135

Name Product Remarks and Limitations

tukeywin Signal Processing
Toolbox

Inputs must be constant.

Specifying constants

To specify a constant input for fiaccel, use
coder.Constant. For more information, see
“Specify Constant Inputs at the Command Line”.

typecast MATLAB • Value of string input argument type must be
lowercase.

• When you use typecast with inheritance of
input port data types in MATLAB Function
blocks, you can receive a size error. To avoid
this error, specify the block input port data
types explicitly.

• Integer input or result classes must map
directly to a C type on the target hardware.

• The input must be a variable-length vector or
a fixed-size vector. See

“Variable-Sizing Restrictions for Code
Generation of Toolbox Functions”

• The output vector always has the same
orientation as the input vector.

ufi Fixed-Point
Designer

• All properties related to data type must be
constant for code generation.

uint8, uint16, uint32,
uint64

MATLAB No integer overflow detection for int64 in
MEX or MATLAB Function block simulation on
Windows 32-bit platforms.

uint8, uint16, uint32,
uint64

Fixed-Point
Designer

—

uminus MATLAB —
uminus Fixed-Point

Designer
—

25 Functions, Classes, and System Objects Supported for Code Generation

25-136

Name Product Remarks and Limitations

undistortImage Computer Vision
System Toolbox

Compile-time constant input restriction: 'interp'
and 'OutputView'
Supports MATLAB Function block: No

unidcdf Statistics
and Machine
Learning Toolbox

—

unidinv Statistics
and Machine
Learning Toolbox

—

unidpdf Statistics
and Machine
Learning Toolbox

—

unidrnd Statistics
and Machine
Learning Toolbox

Can return a different sequence of numbers than
MATLAB if either of the following is true:

• The output is nonscalar.
• An input parameter is invalid for the

distribution.
unidstat Statistics

and Machine
Learning Toolbox

—

unifcdf Statistics
and Machine
Learning Toolbox

—

unifinv Statistics
and Machine
Learning Toolbox

—

unifpdf Statistics
and Machine
Learning Toolbox

—

 Functions and Objects Supported for C and C++ Code Generation — Alphabetical List

25-137

Name Product Remarks and Limitations

unifrnd Statistics
and Machine
Learning Toolbox

Can return a different sequence of numbers than
MATLAB if either of the following is true:

• The output is nonscalar.
• An input parameter is invalid for the

distribution.
unifstat Statistics

and Machine
Learning Toolbox

—

unigrid Phased Array
System Toolbox

Does not support variable-size inputs.

25 Functions, Classes, and System Objects Supported for Code Generation

25-138

Name Product Remarks and Limitations

union MATLAB • When you do not specify the 'rows' option:

• Inputs A and B must be vectors with
the same orientation. If you specify the
'legacy' option, inputs A and B must be
row vectors.

• The first dimension of a variable-size
row vector must have fixed length 1.
The second dimension of a variable-size
column vector must have fixed length 1.

• The input [] is not supported. Use a
1-by-0 or 0-by-1 input, for example ,
zeros(1,0), to represent the empty set.

• If you specify the 'legacy' option, empty
outputs are row vectors, 1-by-0, never 0-
by-0.

• When you specify both the 'legacy' option
and the 'rows' option, the outputs ia and
ib are column vectors. If these outputs are
empty, they are 0-by-1, never 0-by-0, even if
the output C is 0-by-0.

• When the setOrder is 'sorted' or when
you specify the 'legacy' option, the inputs
must already be sorted in ascending order.
The first output, C, is sorted in ascending
order.

• Complex inputs must be single or double.
• When one input is complex and the other

input is real, do one of the following:

• Set setOrder to 'stable'.
• Sort the real input in complex

ascending order (by absolute
value). Suppose the real input
is x. Use sort(complex(x))or
sortrows(complex(x)).

 Functions and Objects Supported for C and C++ Code Generation — Alphabetical List

25-139

Name Product Remarks and Limitations

• “Code Generation for Complex Data with
Zero-Valued Imaginary Parts”.

unique MATLAB • When you do not specify the'rows' option:

• The input A must be a vector. If you
specify the 'legacy' option, the input A
must be a row vector.

• The first dimension of a variable-size
row vector must have fixed length 1.
The second dimension of a variable-size
column vector must have fixed length 1.

• The input [] is not supported. Use a
1-by-0 or 0-by-1 input, for example,
zeros(1,0), to represent the empty set.

• If you specify the 'legacy' option, empty
outputs are row vectors, 1-by-0, never 0-
by-0.

• When you specify both the 'rows' option
and the 'legacy'option, outputs ia and
ic are column vectors. If these outputs are
empty, they are 0-by-1, even if the output C is
0-by-0.

• When the setOrder is 'sorted' or when
you specify the 'legacy' option, the input
A must already be sorted in ascending order.
The first output, C, is sorted in ascending
order.

• Complex inputs must be single or double.
unmkpp MATLAB • pp must be a valid piecewise polynomial

structure created by mkpp, spline, or
pchip in MATLAB or by the code generation
software.

• Does not support pp structures created by
interp1 in MATLAB.

25 Functions, Classes, and System Objects Supported for Code Generation

25-140

Name Product Remarks and Limitations

unwrap MATLAB • Row vector input is only supported when the
first two inputs are vectors and nonscalar

• Performs arithmetic in the output class.
Hence, results might not match MATLAB
due to different rounding errors

upfirdn Signal Processing
Toolbox

• Code generation for this function requires the
DSP System Toolbox software.

• Filter coefficients, upsampling factor, and
downsampling factor must be constants.
Expressions or variables are allowed if their
values do not change.

Specifying constants

To specify a constant input for fiaccel, use
coder.Constant. For more information, see
“Specify Constant Inputs at the Command
Line”.

uplus MATLAB —
uplus Fixed-Point

Designer
—

upper MATLAB • Supports only char inputs.
• Input values must be in the range 0-127.

upperbound Fixed-Point
Designer

—

upsample Signal Processing
Toolbox

Either declare input n as constant, or use the
assert function in the calling function to set
upper bounds for n. For example,

assert(n<10)

uv2azel Phased Array
System Toolbox

Does not support variable-size inputs.

uv2azelpat Phased Array
System Toolbox

Does not support variable-size inputs.

 Functions and Objects Supported for C and C++ Code Generation — Alphabetical List

25-141

Name Product Remarks and Limitations

uv2phitheta Phased Array
System Toolbox

Does not support variable-size inputs.

uv2phithetapat Phased Array
System Toolbox

Does not support variable-size inputs.

val2ind Phased Array
System Toolbox

Does not support variable-size inputs.

vander MATLAB —
var MATLAB • If supplied, dim must be a constant.

• “Variable-Sizing Restrictions for Code
Generation of Toolbox Functions”

• Does not support the nanflag argument.
vertcat Fixed-Point

Designer
—

vision.AlphaBlender Computer Vision
System Toolbox

Supports MATLAB Function block: Yes
“System Objects in MATLAB Code Generation”

vision.Autocorrelator Computer Vision
System Toolbox

Supports MATLAB Function block: Yes
“System Objects in MATLAB Code Generation”

vision.Autothresholder Computer Vision
System Toolbox

Supports MATLAB Function block: Yes
“System Objects in MATLAB Code Generation”

vision.BlobAnalysis Computer Vision
System Toolbox

Supports MATLAB Function block: Yes
“System Objects in MATLAB Code Generation”

vision.BoundaryTracer Computer Vision
System Toolbox

Supports MATLAB Function block: Yes
“System Objects in MATLAB Code Generation”

vision.CascadeObject-

Detector

Computer Vision
System Toolbox

Supports MATLAB Function block: No
Generated code for this function uses a
precompiled platform-specific shared library.
“System Objects in MATLAB Code Generation”

vision.ChromaResampler Computer Vision
System Toolbox

Supports MATLAB Function block: Yes
“System Objects in MATLAB Code Generation”

vision.Color-

SpaceConverter

Computer Vision
System Toolbox

Supports MATLAB Function block: Yes
“System Objects in MATLAB Code Generation”

http://www.mathworks.com/support/sysreq/current_release/

25 Functions, Classes, and System Objects Supported for Code Generation

25-142

Name Product Remarks and Limitations

vision.Connected-

ComponentLabeler

Computer Vision
System Toolbox

Supports MATLAB Function block: Yes
“System Objects in MATLAB Code Generation”

vision.Convolver Computer Vision
System Toolbox

Supports MATLAB Function block: Yes
“System Objects in MATLAB Code Generation”

vision.ContrastAdjuster Computer Vision
System Toolbox

Supports MATLAB Function block: Yes
“System Objects in MATLAB Code Generation”

vision.Crosscorrelator Computer Vision
System Toolbox

Supports MATLAB Function block: Yes
“System Objects in MATLAB Code Generation”

vision.Demosaic-

Interpolator

Computer Vision
System Toolbox

Supports MATLAB Function block: Yes
“System Objects in MATLAB Code Generation”

vision.DCT Computer Vision
System Toolbox

Supports MATLAB Function block: Yes
“System Objects in MATLAB Code Generation”

vision.Deinterlacer Computer Vision
System Toolbox

Supports MATLAB Function block: Yes
“System Objects in MATLAB Code Generation”

vision.Deployable Computer Vision
System Toolbox

Generates code on Windows host only.
Generated code for this function uses a
precompiled platform-specific shared library.
“System Objects in MATLAB Code Generation”

vision.DeployableVideo-

Player

Computer Vision
System Toolbox

Supports MATLAB Function block: Yes
Generated code for this function uses a
precompiled platform-specific shared library.
“System Objects in MATLAB Code Generation”

vision.EdgeDetector Computer Vision
System Toolbox

Supports MATLAB Function block: Yes
“System Objects in MATLAB Code Generation”

vision.FFT Computer Vision
System Toolbox

Supports MATLAB Function block: Yes
“System Objects in MATLAB Code Generation”

vision.Foreground-

Detector

Computer Vision
System Toolbox

Supports MATLAB Function block: No
Generated code for this function uses a
precompiled platform-specific shared library.
“System Objects in MATLAB Code Generation”

vision.GammaCorrector Computer Vision
System Toolbox

Supports MATLAB Function block: Yes
“System Objects in MATLAB Code Generation”

http://www.mathworks.com/support/sysreq/current_release/
http://www.mathworks.com/support/sysreq/current_release/
http://www.mathworks.com/support/sysreq/current_release/

 Functions and Objects Supported for C and C++ Code Generation — Alphabetical List

25-143

Name Product Remarks and Limitations

vision.GeometricRotator Computer Vision
System Toolbox

Supports MATLAB Function block: Yes
“System Objects in MATLAB Code Generation”

vision.GeometricScaler Computer Vision
System Toolbox

Supports MATLAB Function block: Yes
“System Objects in MATLAB Code Generation”

vision.GeometricShearer Computer Vision
System Toolbox

Supports MATLAB Function block: Yes
“System Objects in MATLAB Code Generation”

vision.Geometric-

Transformer

Computer Vision
System Toolbox

Supports MATLAB Function block: Yes
“System Objects in MATLAB Code Generation”

vision.Geometric-

Translator

Computer Vision
System Toolbox

Supports MATLAB Function block: Yes
“System Objects in MATLAB Code Generation”

vision.Histogram Computer Vision
System Toolbox

Supports MATLAB Function block: Yes
“System Objects in MATLAB Code Generation”

vision.Histogram-

BasedTracker

Computer Vision
System Toolbox

Supports MATLAB Function block: Yes
“System Objects in MATLAB Code Generation”

vision.Histogram-

Equalizer

 Supports MATLAB Function block: Yes
“System Objects in MATLAB Code Generation”

vision.HoughLines Computer Vision
System Toolbox

Supports MATLAB Function block: Yes
“System Objects in MATLAB Code Generation”

vision.HoughTransform Computer Vision
System Toolbox

Supports MATLAB Function block: Yes
“System Objects in MATLAB Code Generation”

vision.IDCT Computer Vision
System Toolbox

Supports MATLAB Function block: Yes
“System Objects in MATLAB Code Generation”

vision.IFFT Computer Vision
System Toolbox

Supports MATLAB Function block: Yes
“System Objects in MATLAB Code Generation”

vision.Image-

Complementer

Computer Vision
System Toolbox

Supports MATLAB Function block: Yes
“System Objects in MATLAB Code Generation”

vision.ImageFilter Computer Vision
System Toolbox

Supports MATLAB Function block: Yes
“System Objects in MATLAB Code Generation”

vision.ImageDataType-

Converter

Computer Vision
System Toolbox

Supports MATLAB Function block: Yes
“System Objects in MATLAB Code Generation”

vision.ImagePadder Computer Vision
System Toolbox

Supports MATLAB Function block: Yes
“System Objects in MATLAB Code Generation”

25 Functions, Classes, and System Objects Supported for Code Generation

25-144

Name Product Remarks and Limitations

vision.KalmanFilter Computer Vision
System Toolbox

Supports MATLAB Function block: Yes
“System Objects in MATLAB Code Generation”

vision.LocalMaxima-

Finder

Computer Vision
System Toolbox

Supports MATLAB Function block: Yes
“System Objects in MATLAB Code Generation”

vision.MarkerInserter Computer Vision
System Toolbox

Supports MATLAB Function block: Yes
“System Objects in MATLAB Code Generation”

vision.Maximum Computer Vision
System Toolbox

Supports MATLAB Function block: Yes
“System Objects in MATLAB Code Generation”

vision.Median Computer Vision
System Toolbox

Supports MATLAB Function block: Yes
“System Objects in MATLAB Code Generation”

vision.MedianFilter Computer Vision
System Toolbox

Supports MATLAB Function block: Yes
“System Objects in MATLAB Code Generation”

vision.Mean Computer Vision
System Toolbox

Supports MATLAB Function block: Yes
“System Objects in MATLAB Code Generation”

vision.Minimum Computer Vision
System Toolbox

Supports MATLAB Function block: Yes
“System Objects in MATLAB Code Generation”

vision.Morphological-

Close

Computer Vision
System Toolbox

Supports MATLAB Function block: Yes
“System Objects in MATLAB Code Generation”

vision.Morphological-

Dilate

Computer Vision
System Toolbox

Supports MATLAB Function block: Yes
“System Objects in MATLAB Code Generation”

vision.Morphological-

Erode

Computer Vision
System Toolbox

Supports MATLAB Function block: Yes
“System Objects in MATLAB Code Generation”

vision.Morphological-

Open

Computer Vision
System Toolbox

Supports MATLAB Function block: Yes
“System Objects in MATLAB Code Generation”

vision.PeopleDetector Computer Vision
System Toolbox

Supports MATLAB Function block: No
Generated code for this function uses a
precompiled platform-specific shared library.
“System Objects in MATLAB Code Generation”

vision.PointTracker Computer Vision
System Toolbox

Supports MATLAB Function block: No
“System Objects in MATLAB Code Generation”

vision.PSNR Computer Vision
System Toolbox

Supports MATLAB Function block: Yes
“System Objects in MATLAB Code Generation”

http://www.mathworks.com/support/sysreq/current_release/

 Functions and Objects Supported for C and C++ Code Generation — Alphabetical List

25-145

Name Product Remarks and Limitations

vision.Pyramid Computer Vision
System Toolbox

Supports MATLAB Function block: Yes
“System Objects in MATLAB Code Generation”

vision.ShapeInserter Computer Vision
System Toolbox

Supports MATLAB Function block: Yes
“System Objects in MATLAB Code Generation”

vision.Standard-

Deviation

Computer Vision
System Toolbox

Supports MATLAB Function block: Yes
“System Objects in MATLAB Code Generation”

vision.TemplateMatcher Computer Vision
System Toolbox

Supports MATLAB Function block: Yes
“System Objects in MATLAB Code Generation”

vision.TextInserter Computer Vision
System Toolbox

Supports MATLAB Function block: Yes
“System Objects in MATLAB Code Generation”

vision.Variance Computer Vision
System Toolbox

Supports MATLAB Function block: Yes
“System Objects in MATLAB Code Generation”

vision.VideoFileReader Computer Vision
System Toolbox

Supports MATLAB Function block: Yes
Generated code for this function uses a
precompiled platform-specific shared library.
“System Objects in MATLAB Code Generation”

vision.VideoFileWriter Computer Vision
System Toolbox

Supports MATLAB Function block: Yes
Generated code for this function uses a
precompiled platform-specific shared library.
“System Objects in MATLAB Code Generation”

watershed Image Processing
Toolbox

Supports only 2-D images. Supports only 4- or 8-
connectivity. Supports only up to 65,535 regions.
The output type is always uint16.

If you choose the generic MATLAB Host
Computer target platform, generated code uses
a precompiled, platform-specific shared library.

wblcdf Statistics
and Machine
Learning Toolbox

—

wblinv Statistics
and Machine
Learning Toolbox

—

http://www.mathworks.com/support/sysreq/current_release/
http://www.mathworks.com/support/sysreq/current_release/

25 Functions, Classes, and System Objects Supported for Code Generation

25-146

Name Product Remarks and Limitations

wblpdf Statistics
and Machine
Learning Toolbox

—

wblrnd Statistics
and Machine
Learning Toolbox

Can return a different sequence of numbers than
MATLAB if either of the following is true:

• The output is nonscalar.
• An input parameter is invalid for the

distribution.
wblstat Statistics

and Machine
Learning Toolbox

—

while MATLAB —
wilkinson MATLAB —
xcorr Signal Processing

Toolbox
—

xor MATLAB —
ycbcr2rgb Image Processing

Toolbox
—

yulewalk Signal Processing
Toolbox

If specified, the order of recursion must be a
constant. Expressions or variables are allowed if
their values do not change.

Specifying constants

To specify a constant input for fiaccel, use
coder.Constant. For more information, see
“Specify Constant Inputs at the Command Line”.

zeros MATLAB • Dimensions must be real, nonnegative,
integers.

zp2tf MATLAB —
zscore Statistics

and Machine
Learning Toolbox

—

 Functions and Objects Supported for C and C++ Code Generation — Category List

25-147

Functions and Objects Supported for C and C++ Code Generation
— Category List

You can generate efficient C and C++ code for a subset of MATLAB built-in functions and
toolbox functions, classes, and System objects that you call from MATLAB code. These
functions, classes, and System objects are listed by MATLAB category or toolbox category
in the following tables.

For an alphabetical list of supported functions, classes, and System objects, see
“Functions and Objects Supported for C and C++ Code Generation — Alphabetical List”.

Note: For more information on code generation for fixed-point algorithms, refer to “Code
Acceleration and Code Generation from MATLAB”.

In this section...

“Aerospace Toolbox” on page 25-149
“Arithmetic Operations in MATLAB” on page 25-149
“Bit-Wise Operations MATLAB” on page 25-150
“Casting in MATLAB” on page 25-151
“Communications System Toolbox” on page 25-151
“Complex Numbers in MATLAB” on page 25-157
“Computer Vision System Toolbox” on page 25-157
“Control Flow in MATLAB” on page 25-166
“Data and File Management in MATLAB” on page 25-167
“Data Types in MATLAB” on page 25-171
“Desktop Environment in MATLAB” on page 25-172
“Discrete Math in MATLAB” on page 25-172
“DSP System Toolbox” on page 25-173
“Error Handling in MATLAB” on page 25-180
“Exponents in MATLAB” on page 25-181
“Filtering and Convolution in MATLAB” on page 25-181
“Fixed-Point Designer” on page 25-182

25 Functions, Classes, and System Objects Supported for Code Generation

25-148

In this section...

“HDL Coder” on page 25-192
“Histograms in MATLAB” on page 25-192
“Image Acquisition Toolbox” on page 25-193
“Image Processing in MATLAB” on page 25-193
“Image Processing Toolbox” on page 25-193
“Input and Output Arguments in MATLAB” on page 25-202
“Interpolation and Computational Geometry in MATLAB” on page 25-202
“Linear Algebra in MATLAB” on page 25-206
“Logical and Bit-Wise Operations in MATLAB” on page 25-207
“MATLAB Compiler” on page 25-208
“Matrices and Arrays in MATLAB” on page 25-208
“Neural Network Toolbox” on page 25-216
“Nonlinear Numerical Methods in MATLAB” on page 25-217
“Numerical Integration and Differentiation in MATLAB” on page 25-217
“Optimization Functions in MATLAB” on page 25-218
“Phased Array System Toolbox” on page 25-218
“Polynomials in MATLAB” on page 25-228
“Programming Utilities in MATLAB” on page 25-229
“Relational Operators in MATLAB” on page 25-229
“Rounding and Remainder Functions in MATLAB” on page 25-229
“Set Operations in MATLAB” on page 25-230
“Signal Processing in MATLAB” on page 25-235
“Signal Processing Toolbox” on page 25-236
“Special Values in MATLAB” on page 25-241
“Specialized Math in MATLAB” on page 25-241
“Statistics in MATLAB” on page 25-242
“Statistics and Machine Learning Toolbox” on page 25-243
“String Functions in MATLAB” on page 25-252
“Structures in MATLAB” on page 25-253

 Functions and Objects Supported for C and C++ Code Generation — Category List

25-149

In this section...

“Trigonometry in MATLAB” on page 25-254

Aerospace Toolbox

C and C++ code generation for the following Aerospace Toolbox quaternion functions
requires the Aerospace Blockset software.

Function Remarks and Limitations

quatconj —
quatdivide —
quatinv —
quatmod —
quatmultiply —
quatnorm —
quatnormalize —

Arithmetic Operations in MATLAB

See “Array vs. Matrix Operations” for detailed descriptions of the following operator
equivalent functions.

Function Remarks and Limitations

ctranspose —
idivide • For efficient generated code, MATLAB rules for divide by zero are

supported only for the 'round' option.
isa —
ldivide —
minus —
mldivide —
mpower If A is a 2-by-2 or larger matrix and B is Inf or -Inf, mpower(A,B)

returns a matrix of NaNs.

25 Functions, Classes, and System Objects Supported for Code Generation

25-150

Function Remarks and Limitations

mrdivide —
mtimes • Multiplication of pure imaginary numbers by non-finite numbers might

not match MATLAB. The code generation software does not specialize
multiplication by pure imaginary numbers—it does not eliminate
calculations with the zero real part. For example, (Inf + 1i)*1i =
(Inf*0 – 1*1) + (Inf*1 + 1*0)i = NaN + Infi.

• “Variable-Sizing Restrictions for Code Generation of Toolbox Functions”
plus —
power • Generates an error during simulation. When both X and Y are real,

but power(X,Y) is complex, returns NaN in the generated code. To
get the complex result, make the input value X complex by passing in
complex(X). For example, power(complex(X),Y).

• Generates an error during simulation. When both X and Y are real, but
X .^ Y is complex, returns NaN in generated code. To get the complex
result, make the input value X complex by using complex(X). For
example, complex(X).^Y.

rdivide —
times Multiplication of pure imaginary numbers by non-finite numbers might

not match MATLAB. The code generation software does not specialize
multiplication by pure imaginary numbers—it does not eliminate
calculations with the zero real part. For example, (Inf + 1i)*1i =
(Inf*0 – 1*1) + (Inf*1 + 1*0)i = NaN + Infi.

transpose —
uminus —
uplus —

Bit-Wise Operations MATLAB

Function Remarks and Limitations

flintmax —
swapbytes Inheritance of the class of the input to swapbytes in a MATLAB Function

block is supported only when the class of the input is double. For non-
double inputs, the input port data types must be specified, not inherited.

 Functions and Objects Supported for C and C++ Code Generation — Category List

25-151

Casting in MATLAB

Function Remarks and Limitations

cast —
char —
class —
double —
int8, int16, int32,
int64

No integer overflow detection for int64 in MEX or MATLAB Function
block simulation on Windows 32-bit platforms.

logical —
single —
typecast • Value of string input argument type must be lowercase.

• When you use typecast with inheritance of input port data types in
MATLAB Function blocks, you can receive a size error. To avoid this
error, specify the block input port data types explicitly.

• Integer input or result classes must map directly to a C type on the
target hardware.

• The input must be a variable-length vector or a fixed-size vector. See

“Variable-Sizing Restrictions for Code Generation of Toolbox Functions”
• The output vector always has the same orientation as the input vector.

uint8, uint16,
uint32, uint64

No integer overflow detection for int64 in MEX or MATLAB Function
block simulation on Windows 32-bit platforms.

Communications System Toolbox

C and C++ code generation for the following functions and System objects requires the
Communications System Toolbox software.

Name Remarks and Limitations

Input and Output
comm.BarkerCode “System Objects in MATLAB Code Generation”
comm.GoldSequence “System Objects in MATLAB Code Generation”
comm.HadamardCode “System Objects in MATLAB Code Generation”

25 Functions, Classes, and System Objects Supported for Code Generation

25-152

Name Remarks and Limitations

comm.KasamiSequence “System Objects in MATLAB Code Generation”
comm.WalshCode “System Objects in MATLAB Code Generation”
comm.PNSequence “System Objects in MATLAB Code Generation”
lteZadoffChuSeq —
Signal and Delay Management
bi2de —
de2bi —
Display and Visual Analysis
comm.ConstellationDiagram “System Objects in MATLAB Code Generation”
dsp.ArrayPlot “System Objects in MATLAB Code Generation”
dsp.SpectrumAnalyzer “System Objects in MATLAB Code Generation”
dsp.TimeScope “System Objects in MATLAB Code Generation”
Source Coding
comm.DifferentialDecoder “System Objects in MATLAB Code Generation”
comm.DifferentialEncoder “System Objects in MATLAB Code Generation”
Cyclic Redundancy Check Coding
comm.CRCDetector “System Objects in MATLAB Code Generation”
comm.CRCGenerator “System Objects in MATLAB Code Generation”
comm.HDLCRCDetector “System Objects in MATLAB Code Generation”
comm.HDLCRCGenerator “System Objects in MATLAB Code Generation”
BCH Codes
comm.BCHDecoder “System Objects in MATLAB Code Generation”
comm.BCHEncoder “System Objects in MATLAB Code Generation”
Reed-Solomon Codes
comm.RSDecoder “System Objects in MATLAB Code Generation”
comm.RSEncoder “System Objects in MATLAB Code Generation”
comm.HDLRSDecoder “System Objects in MATLAB Code Generation”
comm.HDLRSEncoder “System Objects in MATLAB Code Generation”

 Functions and Objects Supported for C and C++ Code Generation — Category List

25-153

Name Remarks and Limitations

LDPC Codes
comm.LDPCDecoder “System Objects in MATLAB Code Generation”
comm.LDPCEncoder “System Objects in MATLAB Code Generation”
Convolutional Coding
comm.APPDecoder “System Objects in MATLAB Code Generation”
comm.ConvolutionalEncoder “System Objects in MATLAB Code Generation”
comm.TurboDecoder “System Objects in MATLAB Code Generation”
comm.TurboEncoder “System Objects in MATLAB Code Generation”
comm.ViterbiDecoder “System Objects in MATLAB Code Generation”
istrellis —
poly2trellis —
Signal Operations
comm.Descrambler “System Objects in MATLAB Code Generation”
comm.Scrambler “System Objects in MATLAB Code Generation”
Interleaving
comm.AlgebraicDeinterleaver “System Objects in MATLAB Code Generation”
comm.AlgebraicInterleaver “System Objects in MATLAB Code Generation”
comm.BlockDeinterleaver “System Objects in MATLAB Code Generation”
comm.BlockInterleaver “System Objects in MATLAB Code Generation”
comm.ConvolutionalDeinterleaver “System Objects in MATLAB Code Generation”
comm.ConvolutionalInterleaver “System Objects in MATLAB Code Generation”
comm.HelicalDeinterleaver “System Objects in MATLAB Code Generation”
comm.HelicalInterleaver “System Objects in MATLAB Code Generation”
comm.MatrixDeinterleaver “System Objects in MATLAB Code Generation”
comm.MatrixInterleaver “System Objects in MATLAB Code Generation”
comm.MatrixHelicalScanDeinterleaver “System Objects in MATLAB Code Generation”
comm.MatrixHelicalScanInterleaver “System Objects in MATLAB Code Generation”
comm.MultiplexedDeinterleaver “System Objects in MATLAB Code Generation”

25 Functions, Classes, and System Objects Supported for Code Generation

25-154

Name Remarks and Limitations

comm.MultiplexedInterleaver “System Objects in MATLAB Code Generation”
Frequency Modulation
comm.FSKDemodulator “System Objects in MATLAB Code Generation”
comm.FSKModulator “System Objects in MATLAB Code Generation”
Phase Modulation
comm.BPSKDemodulator “System Objects in MATLAB Code Generation”
comm.BPSKModulator “System Objects in MATLAB Code Generation”
comm.DBPSKDemodulator “System Objects in MATLAB Code Generation”
comm.DBPSKModulator “System Objects in MATLAB Code Generation”
comm.DPSKDemodulator “System Objects in MATLAB Code Generation”
comm.DPSKModulator “System Objects in MATLAB Code Generation”
comm.DQPSKDemodulator “System Objects in MATLAB Code Generation”
comm.DQPSKModulator “System Objects in MATLAB Code Generation”
comm.OQPSKDemodulator “System Objects in MATLAB Code Generation”
comm.OQPSKModulator “System Objects in MATLAB Code Generation”
comm.PSKDemodulator “System Objects in MATLAB Code Generation”
comm.PSKModulator “System Objects in MATLAB Code Generation”
comm.QPSKDemodulator “System Objects in MATLAB Code Generation”
comm.QPSKModulator “System Objects in MATLAB Code Generation”
Amplitude Modulation
comm.GeneralQAMDemodulator “System Objects in MATLAB Code Generation”
comm.GeneralQAMModulator “System Objects in MATLAB Code Generation”
comm.PAMDemodulator “System Objects in MATLAB Code Generation”
comm.PAMModulator “System Objects in MATLAB Code Generation”
comm.RectangularQAMDemodulator “System Objects in MATLAB Code Generation”
comm.RectangularQAMModulator “System Objects in MATLAB Code Generation”
Continuous Phase Modulation
comm.CPFSKDemodulator “System Objects in MATLAB Code Generation”

 Functions and Objects Supported for C and C++ Code Generation — Category List

25-155

Name Remarks and Limitations

comm.CPFSKModulator “System Objects in MATLAB Code Generation”
comm.CPMDemodulator “System Objects in MATLAB Code Generation”
comm.CPMModulator “System Objects in MATLAB Code Generation”
comm.GMSKDemodulator “System Objects in MATLAB Code Generation”
comm.GMSKModulator “System Objects in MATLAB Code Generation”
comm.MSKDemodulator “System Objects in MATLAB Code Generation”
comm.MSKModulator “System Objects in MATLAB Code Generation”
Trellis Coded Modulation
comm.GeneralQAMTCMDemodulator “System Objects in MATLAB Code Generation”
comm.GeneralQAMTCMModulator “System Objects in MATLAB Code Generation”
comm.PSKTCMDemodulator “System Objects in MATLAB Code Generation”
comm.PSKTCMModulator “System Objects in MATLAB Code Generation”
comm.RectangularQAMTCMDemodulator “System Objects in MATLAB Code Generation”
comm.RectangularQAMTCMModulator “System Objects in MATLAB Code Generation”
Orthogonal Frequency-Division Modulation
comm.OFDMDemodulator “System Objects in MATLAB Code Generation”
comm.OFDMModulator “System Objects in MATLAB Code Generation”
Analog Baseband Modulation
comm.FMBroadcastDemodulator “System Objects in MATLAB Code Generation”
comm.FMBroadcastModulator “System Objects in MATLAB Code Generation”
comm.FMDemodulator “System Objects in MATLAB Code Generation”
comm.FMModulator “System Objects in MATLAB Code Generation”
Filtering
comm.IntegrateAndDumpFilter “System Objects in MATLAB Code Generation”
comm.RaisedCosineReceiveFilter “System Objects in MATLAB Code Generation”
comm.RaisedCosineTransmitFilter “System Objects in MATLAB Code Generation”
Carrier Phase Synchronization
comm.CarrierSynchronizer “System Objects in MATLAB Code Generation”

25 Functions, Classes, and System Objects Supported for Code Generation

25-156

Name Remarks and Limitations

comm.CPMCarrierPhaseSynchronizer “System Objects in MATLAB Code Generation”
Timing Phase Synchronization
comm.SymbolSynchronizer “System Objects in MATLAB Code Generation”
comm.GMSKTimingSynchronizer “System Objects in MATLAB Code Generation”
comm.MSKTimingSynchronizer “System Objects in MATLAB Code Generation”
Synchronization Utilities
comm.DiscreteTimeVCO “System Objects in MATLAB Code Generation”
Equalization
comm.MLSEEqualizer “System Objects in MATLAB Code Generation”
MIMO
comm.LTEMIMOChannel “System Objects in MATLAB Code Generation”
comm.MIMOChannel “System Objects in MATLAB Code Generation”
comm.OSTBCCombiner “System Objects in MATLAB Code Generation”
comm.OSTBCEncoder “System Objects in MATLAB Code Generation”
comm.SphereDecoder “System Objects in MATLAB Code Generation”
Channel Modeling and RF Impairments
comm.AGC “System Objects in MATLAB Code Generation”
comm.AWGNChannel “System Objects in MATLAB Code Generation”
comm.BinarySymmetricChannel “System Objects in MATLAB Code Generation”
comm.IQImbalanceCompensator “System Objects in MATLAB Code Generation”
comm.LTEMIMOChannel “System Objects in MATLAB Code Generation”
comm.MemorylessNonlinearity “System Objects in MATLAB Code Generation”
comm.MIMOChannel “System Objects in MATLAB Code Generation”
comm.PhaseFrequencyOffset “System Objects in MATLAB Code Generation”
comm.PhaseNoise “System Objects in MATLAB Code Generation”
comm.RayleighChannel “System Objects in MATLAB Code Generation”
comm.RicianChannel “System Objects in MATLAB Code Generation”
comm.ThermalNoise “System Objects in MATLAB Code Generation”

 Functions and Objects Supported for C and C++ Code Generation — Category List

25-157

Name Remarks and Limitations

comm.PSKCoarseFrequencyEstimator “System Objects in MATLAB Code Generation”
comm.QAMCoarseFrequencyEstimator “System Objects in MATLAB Code Generation”
iqcoef2imbal —
iqimbal2coef —
Measurements and Analysis
comm.ACPR “System Objects in MATLAB Code Generation”
comm.CCDF “System Objects in MATLAB Code Generation”
comm.ErrorRate “System Objects in MATLAB Code Generation”
comm.EVM “System Objects in MATLAB Code Generation”
comm.MER “System Objects in MATLAB Code Generation”

Complex Numbers in MATLAB

Function Remarks and Limitations

complex —
conj —
imag —
isnumeric —
isreal —
isscalar —
real —
unwrap • Row vector input is only supported when the first two inputs are vectors

and nonscalar
• Performs arithmetic in the output class. Hence, results might not match

MATLAB due to different rounding errors

Computer Vision System Toolbox

C and C++ code generation for the following functions and System objects requires the
Computer Vision System Toolbox software.

25 Functions, Classes, and System Objects Supported for Code Generation

25-158

Name Remarks and Limitations

Feature Detection, Extraction, and Matching
BRISKPoints Supports MATLAB Function block: No

To index locations with this object, use
the syntax: points.Location(idx,:),
for points object. See
visionRecovertformCodeGeneration_kernel.m,
which is used in the “Introduction to Code
Generation with Feature Matching and
Registration” example.

cornerPoints Supports MATLAB Function block: No
To index locations with this object, use
the syntax: points.Location(idx,:),
for points object. See
visionRecovertformCodeGeneration_kernel.m,
which is used in the “Introduction to Code
Generation with Feature Matching and
Registration” example.

detectBRISKFeatures Supports MATLAB Function block: No
Generated code for this function uses a
precompiled platform-specific shared library.

detectFASTFeatures Supports MATLAB Function block: No
Generated code for this function uses a
precompiled platform-specific shared library.

detectHarrisFeatures Compile-time constant input: 'FilterSize'
Supports MATLAB Function block: No
Generated code for this function uses a
precompiled platform-specific shared library.

detectMinEigenFeatures Compile-time constant input: 'FilterSize'
Supports MATLAB Function block: No
Generated code for this function uses a
precompiled platform-specific shared library.

http://www.mathworks.com/support/sysreq/current_release/
http://www.mathworks.com/support/sysreq/current_release/
http://www.mathworks.com/support/sysreq/current_release/
http://www.mathworks.com/support/sysreq/current_release/

 Functions and Objects Supported for C and C++ Code Generation — Category List

25-159

Name Remarks and Limitations

detectMSERFeatures Supports MATLAB Function block: No
Generated code for this function uses a
precompiled platform-specific shared library.
For code generation, the function outputs
regions.PixelList as an array. The region sizes
are defined in regions.Lengths.

detectSURFFeatures Supports MATLAB Function block: No
Generated code for this function uses a
precompiled platform-specific shared library.

extractFeatures Generates platform-dependent library: Yes for
BRISK, FREAK, and SURF methods only.
Compile-time constant input restrictions:
'Method'
Supports MATLAB Function block: Yes for Block
method only.
Generated code for this function uses a
precompiled platform-specific shared library.

extractHOGFeatures Supports MATLAB Function block: No
matchFeatures Generates platform-dependent library: Yes for

MATLAB host.
Generates portable C code for non-host target.
Compile-time constant input: 'Method‘ and
'Metric'.
Supports MATLAB Function block: Yes

MSERRegions Supports MATLAB Function block: Yes
For code generation, you must specify both
the pixellist cell array and the length of each
array, as the second input. The object outputs,
regions.PixelList as an array. The region sizes
are defined in regions.Lengths.
Generated code for this function uses a
precompiled platform-specific shared library.

http://www.mathworks.com/support/sysreq/current_release/
http://www.mathworks.com/support/sysreq/current_release/
http://www.mathworks.com/support/sysreq/current_release/
http://www.mathworks.com/support/sysreq/current_release/

25 Functions, Classes, and System Objects Supported for Code Generation

25-160

Name Remarks and Limitations

SURFPoints Supports MATLAB Function block: No
To index locations with this object, use
the syntax: points.Location(idx,:),
for points object. See
visionRecovertformCodeGeneration_kernel.m,
which is used in the “Introduction to Code
Generation with Feature Matching and
Registration” example.

vision.BoundaryTracer Supports MATLAB Function block: Yes
“System Objects in MATLAB Code Generation”

vision.EdgeDetector Supports MATLAB Function block: Yes
“System Objects in MATLAB Code Generation”

Image Registration and Geometric Transformations
estimateGeometricTransform Supports MATLAB Function block: No
vision.GeometricRotator Supports MATLAB Function block: Yes

“System Objects in MATLAB Code Generation”
vision.GeometricScaler Supports MATLAB Function block: Yes

“System Objects in MATLAB Code Generation”
vision.GeometricShearer Supports MATLAB Function block: Yes

“System Objects in MATLAB Code Generation”
vision.GeometricTransformer Supports MATLAB Function block: Yes

“System Objects in MATLAB Code Generation”
vision.GeometricTranslator Supports MATLAB Function block: Yes

“System Objects in MATLAB Code Generation”
Object Detection and Recognition
ocr Compile-time constant input: 'TextLayout',

'Language', and 'CharacterSet'.
Supports MATLAB Function block: No
Generated code for this function uses a
precompiled platform-specific shared library.

ocrText Supports MATLAB Function block: No

http://www.mathworks.com/support/sysreq/current_release/

 Functions and Objects Supported for C and C++ Code Generation — Category List

25-161

Name Remarks and Limitations

vision.PeopleDetector Supports MATLAB Function block: No
Generated code for this function uses a
precompiled platform-specific shared library.
“System Objects in MATLAB Code Generation”

vision.CascadeObjectDetector Supports MATLAB Function block: No
Generated code for this function uses a
precompiled platform-specific shared library.
“System Objects in MATLAB Code Generation”

Tracking and Motion Estimation
assignDetectionsToTracks Supports MATLAB Function block: Yes
opticalFlowHS Supports MATLAB Function block: No

Generated code for this function uses a
precompiled platform-specific shared library.

opticalFlowLKDoG Supports MATLAB Function block: No
Generated code for this function uses a
precompiled platform-specific shared library.

opticalFlowLK Supports MATLAB Function block: No
Generated code for this function uses a
precompiled platform-specific shared library.

opticalFlow Supports MATLAB Function block: Yes
vision.BlockMatcher Supports MATLAB Function block: Yes

“System Objects in MATLAB Code Generation”
vision.ForegroundDetector Supports MATLAB Function block: No

Generates platform-dependent library: Yes for
MATLAB host.
Generates portable C code for non-host target.
Generated code for this function uses a
precompiled platform-specific shared library.
“System Objects in MATLAB Code Generation”

vision.HistogramBasedTracker Supports MATLAB Function block: Yes
“System Objects in MATLAB Code Generation”

vision.KalmanFilter Supports MATLAB Function block: Yes
“System Objects in MATLAB Code Generation”

http://www.mathworks.com/support/sysreq/current_release/
http://www.mathworks.com/support/sysreq/current_release/
http://www.mathworks.com/support/sysreq/current_release/
http://www.mathworks.com/support/sysreq/current_release/
http://www.mathworks.com/support/sysreq/current_release/
http://www.mathworks.com/support/sysreq/current_release/

25 Functions, Classes, and System Objects Supported for Code Generation

25-162

Name Remarks and Limitations

vision.PointTracker Supports MATLAB Function block: No
“System Objects in MATLAB Code Generation”

vision.TemplateMatcher Supports MATLAB Function block: Yes
“System Objects in MATLAB Code Generation”

Camera Calibration and Stereo Vision
bboxOverlapRatio Supports MATLAB Function block: No
disparity Compile-time constant input restriction:

'Method'.
Supports MATLAB Function block: No
Generated code for this function uses a
precompiled platform-specific shared library.

cameraMatrix Supports MATLAB Function block: No
cameraParameters Supports MATLAB Function block: No
epipolarline Supports MATLAB Function block: Yes
estimateFundamentalMatrix Compile-time constant input restriction:

'Method', 'OutputClass', 'DistanceType', and
'ReportRuntimeError'.
Supports MATLAB Function block: Yes

estimateUncalibratedRectification Supports MATLAB Function block: Yes
Only accepts input points as M-by-2 matrices for
C code generation

extrinsics Supports MATLAB Function block: No
isEpipoleInImage Supports MATLAB Function block: Yes
lineToBorderPoints Supports MATLAB Function block: Yes
reconstructScene Supports MATLAB Function block: No
rectifyStereoImages Compile-time constant input restriction: 'interp'

and 'OutputView'
Supports MATLAB Function block: No

selectStrongestBbox Supports MATLAB Function block: No
stereoParameters Supports MATLAB Function block: No
triangulate Supports MATLAB Function block: No

http://www.mathworks.com/support/sysreq/current_release/

 Functions and Objects Supported for C and C++ Code Generation — Category List

25-163

Name Remarks and Limitations

undistortImage Compile-time constant input restriction: 'interp'
and 'OutputView'
Supports MATLAB Function block: No

Statistics
vision.Autocorrelator Supports MATLAB Function block: Yes

“System Objects in MATLAB Code Generation”
vision.BlobAnalysis Supports MATLAB Function block: Yes

“System Objects in MATLAB Code Generation”
vision.Crosscorrelator Supports MATLAB Function block: Yes

“System Objects in MATLAB Code Generation”
vision.Histogram Supports MATLAB Function block: Yes

“System Objects in MATLAB Code Generation”
vision.LocalMaximaFinder Supports MATLAB Function block: Yes

“System Objects in MATLAB Code Generation”
vision.Maximum Supports MATLAB Function block: Yes

“System Objects in MATLAB Code Generation”
vision.Mean Supports MATLAB Function block: Yes

“System Objects in MATLAB Code Generation”
vision.Median Supports MATLAB Function block: Yes

“System Objects in MATLAB Code Generation”
vision.Minimum Supports MATLAB Function block: Yes

“System Objects in MATLAB Code Generation”
vision.PSNR Supports MATLAB Function block: Yes

“System Objects in MATLAB Code Generation”
vision.StandardDeviation Supports MATLAB Function block: Yes

“System Objects in MATLAB Code Generation”
vision.Variance Supports MATLAB Function block: Yes

“System Objects in MATLAB Code Generation”
Morphological Operations
vision.ConnectedComponentLabeler Supports MATLAB Function block: Yes

“System Objects in MATLAB Code Generation”

25 Functions, Classes, and System Objects Supported for Code Generation

25-164

Name Remarks and Limitations

vision.MorphologicalBottomHat Supports MATLAB Function block: Yes
“System Objects in MATLAB Code Generation”

vision.MorphologicalClose Supports MATLAB Function block: Yes
“System Objects in MATLAB Code Generation”

vision.MorphologicalDilate Supports MATLAB Function block: Yes
“System Objects in MATLAB Code Generation”

vision.MorphologicalErode Supports MATLAB Function block: Yes
“System Objects in MATLAB Code Generation”

vision.MorphologicalOpen Supports MATLAB Function block: Yes
“System Objects in MATLAB Code Generation”

vision.MorphologicalTopHat Supports MATLAB Function block: Yes
“System Objects in MATLAB Code Generation”

Filters, Transforms, and Enhancements
integralImage Supports MATLAB Function block: Yes
vision.Convolver Supports MATLAB Function block: Yes

“System Objects in MATLAB Code Generation”
vision.ContrastAdjuster Supports MATLAB Function block: Yes

“System Objects in MATLAB Code Generation”
vision.DCT Supports MATLAB Function block: Yes

“System Objects in MATLAB Code Generation”
vision.Deinterlacer Supports MATLAB Function block: Yes

“System Objects in MATLAB Code Generation”
vision.EdgeDetector Supports MATLAB Function block: Yes

“System Objects in MATLAB Code Generation”
vision.FFT Supports MATLAB Function block: Yes

“System Objects in MATLAB Code Generation”
vision.HistogramEqualizer Supports MATLAB Function block: Yes

“System Objects in MATLAB Code Generation”
vision.HoughLines Supports MATLAB Function block: Yes

“System Objects in MATLAB Code Generation”
vision.HoughTransform Supports MATLAB Function block: Yes

“System Objects in MATLAB Code Generation”

 Functions and Objects Supported for C and C++ Code Generation — Category List

25-165

Name Remarks and Limitations

vision.IDCT Supports MATLAB Function block: Yes
“System Objects in MATLAB Code Generation”

vision.IFFT Supports MATLAB Function block: Yes
“System Objects in MATLAB Code Generation”

vision.ImageFilter Supports MATLAB Function block: Yes
“System Objects in MATLAB Code Generation”

vision.MedianFilter Supports MATLAB Function block: Yes
“System Objects in MATLAB Code Generation”

vision.Pyramid Supports MATLAB Function block: Yes
“System Objects in MATLAB Code Generation”

Video Loading, Saving, and Streaming
vision.DeployableVideoPlayer Supports MATLAB Function block: Yes

Generated code for this function uses a
precompiled platform-specific shared library.
“System Objects in MATLAB Code Generation”

vision.VideoFileReader Supports MATLAB Function block: Yes
Generated code for this function uses a
precompiled platform-specific shared library.
“System Objects in MATLAB Code Generation”

Does not generate code for reading compressed
images on the Mac.

vision.VideoFileWriter Supports MATLAB Function block: Yes
Generated code for this function uses a
precompiled platform-specific shared library.
“System Objects in MATLAB Code Generation”

Color Space Formatting and Conversions
vision.Autothresholder Supports MATLAB Function block: Yes

“System Objects in MATLAB Code Generation”
vision.ChromaResampler Supports MATLAB Function block: Yes

“System Objects in MATLAB Code Generation”
vision.ColorSpaceConverter Supports MATLAB Function block: Yes

“System Objects in MATLAB Code Generation”

http://www.mathworks.com/support/sysreq/current_release/
http://www.mathworks.com/support/sysreq/current_release/
http://www.mathworks.com/support/sysreq/current_release/

25 Functions, Classes, and System Objects Supported for Code Generation

25-166

Name Remarks and Limitations

vision.DemosaicInterpolator Supports MATLAB Function block: Yes
“System Objects in MATLAB Code Generation”

vision.GammaCorrector Supports MATLAB Function block: Yes
“System Objects in MATLAB Code Generation”

vision.ImageComplementer Supports MATLAB Function block: Yes
“System Objects in MATLAB Code Generation”

vision.ImageDataTypeConverter Supports MATLAB Function block: Yes
“System Objects in MATLAB Code Generation”

vision.ImagePadder Supports MATLAB Function block: Yes
“System Objects in MATLAB Code Generation”

Graphics
insertMarker Compile-time constant input: 'Shape' and 'Color'

Supports MATLAB Function block: Yes
insertShape Compile-time constant input: 'Color' and

'SmoothEdges'
Supports MATLAB Function block: Yes

vision.AlphaBlender Supports MATLAB Function block: Yes
“System Objects in MATLAB Code Generation”

vision.MarkerInserter Supports MATLAB Function block: Yes
“System Objects in MATLAB Code Generation”

vision.ShapeInserter Supports MATLAB Function block: Yes
“System Objects in MATLAB Code Generation”

vision.TextInserter Supports MATLAB Function block: Yes
“System Objects in MATLAB Code Generation”

Control Flow in MATLAB

Function Remarks and Limitations

break —
continue —
end —
for —

 Functions and Objects Supported for C and C++ Code Generation — Category List

25-167

Function Remarks and Limitations

if, elseif, else —
parfor Treated as a for-loop when used with fiaccel.
return —
switch, case,

otherwise

• If all case expressions are scalar integer values, generates a C switch
statement. At run time, if the switch value is not an integer, generates
an error.

• When the case expressions contain noninteger or nonscalar values, the
code generation software generates C if statements in place of a C
switch statement.

while —

Data and File Management in MATLAB

Function Remarks and Limitations

computer • Information about the computer on which the code generation software
is running.

• Use only when the code generation target is S-function (Simulation) or
MEX-function.

fclose —
feof —
fopen • Does not support:

• machineformat, encoding, or fileID inputs
• message output
• fopen('all')

• If you disable extrinsic calls, you cannot return fileIDs created with
fopen to MATLAB or extrinsic functions. You can use such fileIDs
only internally.

• When generating C/C++ executables, static libraries, or dynamic
libraries, you can open up to 20 files.

• The generated code does not report errors from invalid file identifiers.
Write your own file open error handling in your MATLAB code. Test

25 Functions, Classes, and System Objects Supported for Code Generation

25-168

Function Remarks and Limitations

whether fopen returns -1, which indicates that the file open failed. For
example:

...

fid = fopen(filename, 'r');

if fid == -1

 % fopen failed

else

% fopen successful, okay to call fread

A = fread(fid);

...

• The behavior of the generated code for fread is compiler-dependent if
you:

1 Open a file using fopen with a permission of a+.
2 Read the file using fread before calling an I/O function, such as

fseek or frewind, that sets the file position indicator.

 Functions and Objects Supported for C and C++ Code Generation — Category List

25-169

Function Remarks and Limitations

fprintf • Does not support:

• b and t subtypes on %u, %o %x, and %X formats.
• $ flag for reusing input arguments.
• printing arrays.

• There is no automatic casting. Input arguments must match their
format types for predictable results.

• Escaped characters are limited to the decimal range of 0–127.
• A call to fprintf with fileID equal to 1 or 2 becomes printf in the

generated C/C++ code in the following cases:

• The fprintf call is inside a parfor loop.
• Extrinsic calls are disabled.

• When the MATLAB behavior differs from the C compiler behavior,
fprintf matches the C compiler behavior in the following cases:

• The format specifier has a corresponding C format specifier, for
example, %e or %E.

• The fprintf call is inside a parfor loop.
• Extrinsic calls are disabled.

• When you call fprintf with the format specifier %s, do not put a null
character in the middle of the input string. Use fprintf(fid, '%c',
char(0)) to write a null character.

• When you call fprintf with an integer format specifier, the type of
the integer argument must be a type that the target hardware can
represent as a native C type. For example, if you call fprintf('%d',
int64(n)), the target hardware must have a native C type that
supports a 64-bit integer.

25 Functions, Classes, and System Objects Supported for Code Generation

25-170

Function Remarks and Limitations

fread • precision must be a constant.
• The source and output that precision specifies cannot have values

long, ulong, unsigned long, bitN, or ubitN.
• You cannot use the machineformat input.
• If the source or output that precision specifies is a C type, for

example, int, the target and production sizes for that type must:

• Match.
• Map directly to a MATLAB type.

• The source type that precision specifies must map directly to a C
type on the target hardware.

• If the fread call reads the entire file, all of the data must fit in the
largest array available for code generation.

• If sizeA is not constant or contains a nonfinite element, then dynamic
memory allocation is required.

• Treats a char value for source or output as a signed 8-bit integer. Use
values between 0 and 127 only.

• The generated code does not report file read errors. Write your own
file read error handling in your MATLAB code. Test that the number
of bytes read matches the number of bytes that you requested. For
example:

...

N = 100;

[vals, numRead] = fread(fid, N, '*double');

if numRead ~= N

 % fewer elements read than expected

end

...

frewind —

 Functions and Objects Supported for C and C++ Code Generation — Category List

25-171

Function Remarks and Limitations

load • Use only when generating MEX or code for Simulink simulation. To load
compile-time constants, use coder.load.

• Does not support use of the function without assignment to a
structure or array. For example, use S = load(filename), not
load(filename).

• The output S must be the name of a structure or array without any
subscripting. For example, S[i] = load('myFile.mat') is not
allowed.

• Arguments to load must be compile-time constant strings.
• Does not support loading objects.
• If the MAT-file contains unsupported constructs, use

load(filename,variables) to load only the supported constructs.
• You cannot use save in a function intended for code generation.

The code generation software does not support the save function.
Furthermore, you cannot use coder.extrinsic with save. Prior to
generating code, you can use save to save the workspace data to a MAT-
file.

You must use coder.varsize to explicitly declare variable-size data
loaded using the load function.

Data Types in MATLAB

Function Remarks and Limitations

deal —
iscell —
isobject —
nargchk • Output structure does not include stack information.

Note: nargchk will be removed in a future release.
narginchk —
nargoutchk —

25 Functions, Classes, and System Objects Supported for Code Generation

25-172

Function Remarks and Limitations

str2func • String must be constant/known at compile time
structfun • Does not support the ErrorHandler option.

• The number of outputs must be less than or equal to three.

Desktop Environment in MATLAB

Function Remarks and Limitations

ismac • Returns true or false based on the MATLAB version used for code
generation.

• Use only when the code generation target is S-function (Simulation)
or MEX-function.

ispc • Returns true or false based on the MATLAB version you use for code
generation.

• Use only when the code generation target is S-function (Simulation)
or MEX-function.

isunix • Returns true or false based on the MATLAB version used for code
generation.

• Use only when the code generation target is S-function (Simulation)
or MEX-function.

Discrete Math in MATLAB

Function Remarks and Limitations

factor • The maximum double precision input is 2^33.
• The maximum single precision input is 2^25.
• The input n cannot have type int64 or uint64.

gcd —
isprime • The maximum double precision input is 2^33.

• The maximum single precision input is 2^25.
• The input X cannot have type int64 or uint64.

lcm —

 Functions and Objects Supported for C and C++ Code Generation — Category List

25-173

Function Remarks and Limitations

nchoosek • When the first input, x, is a scalar, nchoosek returns a binomial
coefficient. In this case, x must be a nonnegative integer. It cannot have
type int64 or uint64.

• When the first input, x, is a vector, nchoosek treats it as a set. In this
case, x can have type int64 or uint64.

• The second input, k, cannot have type int64 or uint64.
• “Variable-Sizing Restrictions for Code Generation of Toolbox Functions”

primes • The maximum double precision input is 2^32.
• The maximum single precision input is 2^24.
• The input n cannot have type int64 or uint64.

DSP System Toolbox

C code generation for the following functions and System objects requires the DSP
System Toolbox license. Many DSP System Toolbox functions require constant inputs
for code generation. To specify a constant input for fiaccel, use coder.Constant. For
more information, see “Specify Constant Inputs at the Command Line”.

Name Remarks and Limitations

Estimation
dsp.BurgAREstimator “System Objects in MATLAB Code Generation”
dsp.BurgSpectrumEstimator “System Objects in MATLAB Code Generation”
dsp.CepstralToLPC “System Objects in MATLAB Code Generation”
dsp.CrossSpectrumEstimator “System Objects in MATLAB Code Generation”
dsp.LevinsonSolver “System Objects in MATLAB Code Generation”
dsp.LPCToAutocorrelation “System Objects in MATLAB Code Generation”
dsp.LPCToCepstral “System Objects in MATLAB Code Generation”
dsp.LPCToLSF “System Objects in MATLAB Code Generation”
dsp.LPCToLSP “System Objects in MATLAB Code Generation”
dsp.LPCToRC “System Objects in MATLAB Code Generation”
dsp.LSFToLPC “System Objects in MATLAB Code Generation”

25 Functions, Classes, and System Objects Supported for Code Generation

25-174

Name Remarks and Limitations

dsp.LSPToLPC “System Objects in MATLAB Code Generation”
dsp.RCToAutocorrelation “System Objects in MATLAB Code Generation”
dsp.RCToLPC “System Objects in MATLAB Code Generation”
dsp.SpectrumEstimator “System Objects in MATLAB Code Generation”
dsp.TransferFunctionEstimator “System Objects in MATLAB Code Generation”
Filters
ca2tf All inputs must be constant. Expressions or

variables are allowed if their values do not
change.

cl2tf All inputs must be constant. Expressions or
variables are allowed if their values do not
change.

dsp.AdaptiveLatticeFilter “System Objects in MATLAB Code Generation”
dsp.AffineProjectionFilter “System Objects in MATLAB Code Generation”
dsp.AllpoleFilter • “System Objects in MATLAB Code

Generation”
• Only the Denominator property is tunable

for code generation.
dsp.BiquadFilter “System Objects in MATLAB Code Generation”
dsp.CICCompensationDecimator “System Objects in MATLAB Code Generation”
dsp.CICCompensationInterpolator “System Objects in MATLAB Code Generation”
dsp.CICDecimator “System Objects in MATLAB Code Generation”
dsp.CICInterpolator “System Objects in MATLAB Code Generation”
dsp.FarrowRateConverter “System Objects in MATLAB Code Generation”
dsp.FastTransversalFilter “System Objects in MATLAB Code Generation”

 Functions and Objects Supported for C and C++ Code Generation — Category List

25-175

Name Remarks and Limitations

dsp.FilterCascade • You cannot generate code directly from
dsp.FilterCascade. You can use the
generateFilteringCode method to
generate a MATLAB function. You can
generate C/C++ code from this MATLAB
function.

• “System Objects in MATLAB Code
Generation”

dsp.FilteredXLMSFilter “System Objects in MATLAB Code Generation”
dsp.FIRDecimator “System Objects in MATLAB Code Generation”
dsp.FIRFilter • “System Objects in MATLAB Code

Generation”
• Only the Numerator property is tunable for

code generation.
dsp.FIRHalfbandDecimator “System Objects in MATLAB Code Generation”
dsp.FIRHalfbandInterpolator “System Objects in MATLAB Code Generation”
dsp.FIRInterpolator “System Objects in MATLAB Code Generation”
dsp.FIRRateConverter “System Objects in MATLAB Code Generation”
dsp.FrequencyDomainAdaptiveFilter “System Objects in MATLAB Code Generation”
dsp.HighpassFilter “System Objects in MATLAB Code Generation”
dsp.IIRFilter • Only the Numerator and Denominator

properties are tunable for code generation.
• “System Objects in MATLAB Code

Generation”
dsp.KalmanFilter “System Objects in MATLAB Code Generation”
dsp.LMSFilter “System Objects in MATLAB Code Generation”
dsp.LowpassFilter “System Objects in MATLAB Code Generation”
dsp.RLSFilter “System Objects in MATLAB Code Generation”
dsp.SampleRateConverter “System Objects in MATLAB Code Generation”

25 Functions, Classes, and System Objects Supported for Code Generation

25-176

Name Remarks and Limitations

firceqrip All inputs must be constant. Expressions or
variables are allowed if their values do not
change.

fireqint All inputs must be constant. Expressions or
variables are allowed if their values do not
change.

firgr • All inputs must be constant. Expressions or
variables are allowed if their values do not
change.

• Does not support syntaxes that have cell
array input.

firhalfband All inputs must be constant. Expressions or
variables are allowed if their values do not
change.

firlpnorm • All inputs must be constant. Expressions or
variables are allowed if their values do not
change.

• Does not support syntaxes that have cell
array input.

firminphase All inputs must be constant. Expressions or
variables are allowed if their values do not
change.

firnyquist All inputs must be constant. Expressions or
variables are allowed if their values do not
change.

firpr2chfb All inputs must be constant. Expressions or
variables are allowed if their values do not
change.

ifir All inputs must be constant. Expressions or
variables are allowed if their values do not
change.

iircomb All inputs must be constant. Expressions or
variables are allowed if their values do not
change.

 Functions and Objects Supported for C and C++ Code Generation — Category List

25-177

Name Remarks and Limitations

iirgrpdelay • All inputs must be constant. Expressions or
variables are allowed if their values do not
change.

• Does not support syntaxes that have cell
array input.

iirlpnorm • All inputs must be constant. Expressions or
variables are allowed if their values do not
change.

• Does not support syntaxes that have cell
array input.

iirlpnormc • All inputs must be constant. Expressions or
variables are allowed if their values do not
change.

• Does not support syntaxes that have cell
array input.

iirnotch All inputs must be constant. Expressions or
variables are allowed if their values do not
change.

iirparameq —
iirpeak All inputs must be constant. Expressions or

variables are allowed if their values do not
change.

tf2ca All inputs must be constant. Expressions or
variables are allowed if their values do not
change.

tf2cl All inputs must be constant. Expressions or
variables are allowed if their values do not
change.

Math Operations
dsp.ArrayVectorAdder “System Objects in MATLAB Code Generation”
dsp.ArrayVectorDivider “System Objects in MATLAB Code Generation”
dsp.ArrayVectorMultiplier “System Objects in MATLAB Code Generation”

25 Functions, Classes, and System Objects Supported for Code Generation

25-178

Name Remarks and Limitations

dsp.ArrayVectorSubtractor “System Objects in MATLAB Code Generation”
dsp.CumulativeProduct “System Objects in MATLAB Code Generation”
dsp.CumulativeSum “System Objects in MATLAB Code Generation”
dsp.LDLFactor “System Objects in MATLAB Code Generation”
dsp.LevinsonSolver “System Objects in MATLAB Code Generation”
dsp.LowerTriangularSolver “System Objects in MATLAB Code Generation”
dsp.LUFactor “System Objects in MATLAB Code Generation”
dsp.Normalizer “System Objects in MATLAB Code Generation”
dsp.UpperTriangularSolver “System Objects in MATLAB Code Generation”
Quantizers
dsp.ScalarQuantizerDecoder “System Objects in MATLAB Code Generation”
dsp.ScalarQuantizerEncoder “System Objects in MATLAB Code Generation”
dsp.VectorQuantizerDecoder “System Objects in MATLAB Code Generation”
dsp.VectorQuantizerEncoder “System Objects in MATLAB Code Generation”
Scopes
dsp.SpectrumAnalyzer This System object does not generate code. It is

automatically declared as an extrinsic variable
using the coder.extrinsic function.

dsp.TimeScope This System object does not generate code. It is
automatically declared as an extrinsic variable
using the coder.extrinsic function.

Signal Management
dsp.Counter “System Objects in MATLAB Code Generation”
dsp.DelayLine “System Objects in MATLAB Code Generation”
Signal Operations
dsp.Convolver “System Objects in MATLAB Code Generation”
dsp.DCBlocker “System Objects in MATLAB Code Generation”
dsp.Delay “System Objects in MATLAB Code Generation”
dsp.DigitalDownConverter “System Objects in MATLAB Code Generation”

 Functions and Objects Supported for C and C++ Code Generation — Category List

25-179

Name Remarks and Limitations

dsp.DigitalUpConverter “System Objects in MATLAB Code Generation”
dsp.Interpolator “System Objects in MATLAB Code Generation”
dsp.NCO “System Objects in MATLAB Code Generation”
dsp.PeakFinder “System Objects in MATLAB Code Generation”
dsp.PhaseExtractor “System Objects in MATLAB Code Generation”
dsp.PhaseUnwrapper “System Objects in MATLAB Code Generation”
dsp.VariableFractionalDelay “System Objects in MATLAB Code Generation”
dsp.VariableIntegerDelay “System Objects in MATLAB Code Generation”
dsp.Window • This object has no tunable properties for code

generation.
• “System Objects in MATLAB Code

Generation”
dsp.ZeroCrossingDetector “System Objects in MATLAB Code Generation”
Sinks
dsp.AudioPlayer “System Objects in MATLAB Code Generation”
dsp.AudioFileWriter “System Objects in MATLAB Code Generation”
dsp.UDPSender “System Objects in MATLAB Code Generation”
Sources
dsp.AudioFileReader “System Objects in MATLAB Code Generation”
dsp.AudioRecorder “System Objects in MATLAB Code Generation”
dsp.SignalSource “System Objects in MATLAB Code Generation”
dsp.SineWave • This object has no tunable properties for code

generation.
• “System Objects in MATLAB Code

Generation”
dsp.UDPReceiver “System Objects in MATLAB Code Generation”
Statistics
dsp.Autocorrelator “System Objects in MATLAB Code Generation”
dsp.Crosscorrelator “System Objects in MATLAB Code Generation”

25 Functions, Classes, and System Objects Supported for Code Generation

25-180

Name Remarks and Limitations

dsp.Histogram • This object has no tunable properties for code
generation.

• “System Objects in MATLAB Code
Generation”

dsp.Maximum “System Objects in MATLAB Code Generation”
dsp.Mean “System Objects in MATLAB Code Generation”
dsp.Median “System Objects in MATLAB Code Generation”
dsp.Minimum “System Objects in MATLAB Code Generation”
dsp.PeakToPeak “System Objects in MATLAB Code Generation”
dsp.PeakToRMS “System Objects in MATLAB Code Generation”
dsp.RMS “System Objects in MATLAB Code Generation”
dsp.StandardDeviation “System Objects in MATLAB Code Generation”
dsp.StateLevels “System Objects in MATLAB Code Generation”
dsp.Variance “System Objects in MATLAB Code Generation”
Transforms
dsp.AnalyticSignal “System Objects in MATLAB Code Generation”
dsp.DCT “System Objects in MATLAB Code Generation”
dsp.FFT “System Objects in MATLAB Code Generation”
dsp.IDCT “System Objects in MATLAB Code Generation”
dsp.IFFT “System Objects in MATLAB Code Generation”

Error Handling in MATLAB

Function Remarks and Limitations

assert • Generates specified error messages at compile time only if all input
arguments are constants or depend on constants. Otherwise, generates
specified error messages at run time.

• For standalone code generation, excluded from the generated code.
• See “Rules for Using assert Function”.

error For standalone code generation, excluded from the generated code.

 Functions and Objects Supported for C and C++ Code Generation — Category List

25-181

Exponents in MATLAB

Function Remarks and Limitations

exp —
expm —
expm1 —
factorial —
log • Generates an error during simulation and returns NaN in generated

code when the input value x is real, but the output should be complex.
To get the complex result, make the input value complex by passing in
complex(x).

log2 —
log10 —
log1p —
nextpow2 —
nthroot —
reallog —
realpow —
realsqrt —
sqrt • Generates an error during simulation and returns NaN in generated

code when the input value x is real, but the output should be complex.
To get the complex result, make the input value complex by passing in
complex(x).

Filtering and Convolution in MATLAB

Function Remarks and Limitations

conv —
conv2 —
convn —
deconv —

25 Functions, Classes, and System Objects Supported for Code Generation

25-182

Function Remarks and Limitations

detrend • If supplied and not empty, the input argument bp must satisfy the
following requirements:

• Be real.
• Be sorted in ascending order.
• Restrict elements to integers in the interval [1, n-2]. n is the

number of elements in a column of input argument X , or the number
of elements in X when X is a row vector.

• Contain all unique values.
• “Variable-Sizing Restrictions for Code Generation of Toolbox

Functions”
filter —
filter2 —

Fixed-Point Designer

In addition to function-specific limitations listed in the table, the following general
limitations apply to the use of Fixed-Point Designer functions in generated code, with
fiaccel:

• fipref and quantizer objects are not supported.
• Word lengths greater than 128 bits are not supported.
• You cannot change the fimath or numerictype of a given fi variable after that

variable has been created.
• The boolean value of the DataTypeMode and DataType properties are not

supported.
• For all SumMode property settings other than FullPrecision, the CastBeforeSum

property must be set to true.
• You can use parallel for (parfor) loops in code compiled with fiaccel, but those

loops are treated like regular for loops.
• When you compile code containing fi objects with nontrivial slope and bias scaling,

you may see different results in generated code than you achieve by running the same
code in MATLAB.

 Functions and Objects Supported for C and C++ Code Generation — Category List

25-183

Function Remarks/Limitations

abs N/A
accumneg N/A
accumpos N/A
add • Code generation in MATLAB does not support the syntax

F.add(a,b). You must use the syntax add(F,a,b).
all N/A
any N/A
atan2 N/A
bitand Not supported for slope-bias scaled fi objects.
bitandreduce N/A
bitcmp N/A
bitconcat N/A
bitget N/A
bitor Not supported for slope-bias scaled fi objects.
bitorreduce N/A
bitreplicate N/A
bitrol N/A
bitror N/A
bitset N/A
bitshift N/A
bitsliceget N/A
bitsll Generated code may not handle out of range shifting.
bitsra Generated code may not handle out of range shifting.
bitsrl Generated code may not handle out of range shifting.
bitxor Not supported for slope-bias scaled fi objects.
bitxorreduce N/A
ceil N/A
complex N/A

25 Functions, Classes, and System Objects Supported for Code Generation

25-184

Function Remarks/Limitations

conj N/A
conv • Variable-sized inputs are only supported when the SumMode

property of the governing fimath is set to Specify precision or
Keep LSB.

• For variable-sized signals, you may see different results between
generated code and MATLAB.

• In the generated code, the output for variable-sized signals is
computed using the SumMode property of the governing fimath.

• In MATLAB, the output for variable-sized signals is computed
using the SumMode property of the governing fimath when
both inputs are nonscalar. However, if either input is a scalar,
MATLAB computes the output using the ProductMode of the
governing fimath.

convergent N/A
cordicabs Variable-size signals are not supported.
cordicangle Variable-size signals are not supported.
cordicatan2 Variable-size signals are not supported.
cordiccart2pol Variable-size signals are not supported.
cordiccexp Variable-size signals are not supported.
cordiccos Variable-size signals are not supported.
cordicpol2cart Variable-size signals are not supported.
cordicrotate Variable-size signals are not supported.
cordicsin Variable-size signals are not supported.
cordicsincos Variable-size signals are not supported.
cos N/A
ctranspose N/A
diag If supplied, the index, k, must be a real and scalar integer value that is

not a fi object.

 Functions and Objects Supported for C and C++ Code Generation — Category List

25-185

Function Remarks/Limitations

divide • Any non-fi input must be constant; that is, its value must be
known at compile time so that it can be cast to a fi object.

• Complex and imaginary divisors are not supported.
• Code generation in MATLAB does not support the syntax

T.divide(a,b).
double For the automated workflow, do not use explicit double or single casts

in your MATLAB algorithm to insulate functions that do not support
fixed-point data types. The automated conversion tool does not support
these casts. Instead of using casts, supply a replacement function. For
more information, see “Function Replacements”.

end N/A
eps • Supported for scalar fixed-point signals only.

• Supported for scalar, vector, and matrix, fi single and fi double
signals.

eq Not supported for fixed-point signals with different biases.
fi • The default constructor syntax without any input arguments is not

supported.
• If the numerictype is not fully specified, the input to fi must be a

constant, a fi, a single, or a built-in integer value. If the input is a
built-in double value, it must be a constant. This limitation allows
fi to autoscale its fraction length based on the known data type of
the input.

• All properties related to data type must be constant for code
generation.

• numerictype object information must be available for nonfixed-
point Simulink inputs.

filter • Variable-sized inputs are only supported when the SumMode
property of the governing fimath is set to Specify precision or
Keep LSB.

25 Functions, Classes, and System Objects Supported for Code Generation

25-186

Function Remarks/Limitations

fimath • Fixed-point signals coming in to a MATLAB Function block from
Simulink are assigned a fimath object. You define this object in
the MATLAB Function block dialog in the Model Explorer.

• Use to create fimath objects in the generated code.
• If the ProductMode property of the fimath object is set to

anything other than FullPrecision, the ProductWordLength
and ProductFractionLength properties must be constant.

• If the SumMode property of the fimath object is set to anything
other than FullPrecision, the SumWordLength and
SumFractionLength properties must be constant.

fix N/A
fixed.Quantizer N/A
flip The dimensions argument must be a built-in type; it cannot be a fi

object.
fliplr N/A
flipud N/A
floor N/A
for N/A
ge Not supported for fixed-point signals with different biases.
get The syntax structure = get(o) is not supported.
getlsb N/A
getmsb N/A
gt Not supported for fixed-point signals with different biases.
horzcat N/A
imag N/A
int8, int16, int32,
 int64

N/A

ipermute N/A
iscolumn N/A
isempty N/A

 Functions and Objects Supported for C and C++ Code Generation — Category List

25-187

Function Remarks/Limitations

isequal N/A
isfi Avoid using the isfi function in code that you intend to convert

using the automated workflow. The value returned by isfi in the
fixed-point code might differ from the value returned in the original
MATLAB algorithm. The behavior of the fixed-point code might differ
from the behavior of the original algorithm.

isfimath N/A
isfimathlocal N/A
isfinite N/A
isinf N/A
isnan N/A
isnumeric N/A
isnumerictype N/A
isreal N/A
isrow N/A
isscalar N/A
issigned N/A
isvector N/A
le Not supported for fixed-point signals with different biases.
length N/A
logical N/A
lowerbound N/A
lsb • Supported for scalar fixed-point signals only.

• Supported for scalar, vector, and matrix, fi single and double
signals.

lt Not supported for fixed-point signals with different biases.
max N/A
mean N/A
median N/A

25 Functions, Classes, and System Objects Supported for Code Generation

25-188

Function Remarks/Limitations

min N/A
minus Any non-fi input must be constant; that is, its value must be known

at compile time so that it can be cast to a fi object.
mpower • When the exponent k is a variable and the input is a scalar,

the ProductMode property of the governing fimath must be
SpecifyPrecision.

• When the exponent k is a variable and the input is not scalar,
the SumMode property of the governing fimath must be
SpecifyPrecision.

• Variable-sized inputs are only supported when the SumMode
property of the governing fimath is set to SpecifyPrecision or
Keep LSB.

• For variable-sized signals, you may see different results between
the generated code and MATLAB.

• In the generated code, the output for variable-sized signals is
computed using the SumMode property of the governing fimath.

• In MATLAB, the output for variable-sized signals is computed
using the SumMode property of the governing fimath when
the first input, a, is nonscalar. However, when a is a scalar,
MATLAB computes the output using the ProductMode of the
governing fimath.

mpy • Code generation in MATLAB does not support the syntax
F.mpy(a,b). You must use the syntax mpy(F,a,b).

• When you provide complex inputs to the mpy function inside of a
MATLAB Function block, you must declare the input as complex
before running the simulation. To do so, go to the Ports and
data manager and set the Complexity parameter for all known
complex inputs to On.

mrdivide N/A

 Functions and Objects Supported for C and C++ Code Generation — Category List

25-189

Function Remarks/Limitations

mtimes • Any non-fi input must be constant; that is, its value must be
known at compile time so that it can be cast to a fi object.

• Variable-sized inputs are only supported when the SumMode
property of the governing fimath is set to SpecifyPrecision or
KeepLSB.

• For variable-sized signals, you may see different results between
the generated code and MATLAB.

• In the generated code, the output for variable-sized signals is
computed using the SumMode property of the governing fimath.

• In MATLAB, the output for variable-sized signals is computed
using the SumMode property of the governing fimath when
both inputs are nonscalar. However, if either input is a scalar,
MATLAB computes the output using the ProductMode of the
governing fimath.

ndims N/A
ne Not supported for fixed-point signals with different biases.
nearest N/A
numberofelements numberofelements will be removed in a future release. Use numel

instead.
numel N/A
numerictype • Fixed-point signals coming in to a MATLAB Function block from

Simulink are assigned a numerictype object that is populated
with the signal's data type and scaling information.

• Returns the data type when the input is a nonfixed-point signal.
• Use to create numerictype objects in generated code.
• All numerictype object properties related to the data type must be

constant.
permute The dimensions argument must be a built-in type; it cannot be a fi

object.
plus Any non-fi inputs must be constant; that is, its value must be known

at compile time so that it can be cast to a fi object.
pow2 N/A

25 Functions, Classes, and System Objects Supported for Code Generation

25-190

Function Remarks/Limitations

power When the exponent k is a variable, the ProductMode property of the
governing fimath must be SpecifyPrecision.

qr N/A
quantize N/A
range N/A
rdivide N/A
real N/A
realmax N/A
realmin N/A
reinterpretcast N/A
removefimath N/A
repmat The dimensions argument must be a built-in type; it cannot be a fi

object.
rescale N/A
reshape N/A
rot90 In the syntax rot90(A,k), the argument k must be a built-in type; it

cannot be a fi object.
round N/A
setfimath N/A
sfi • All properties related to data type must be constant for code

generation.
shiftdim The dimensions argument must be a built-in type; it cannot be a fi

object.
sign N/A
sin N/A
single For the automated workflow, do not use explicit double or single casts

in your MATLAB algorithm to insulate functions that do not support
fixed-point data types. The automated conversion tool does not support
these casts. Instead of using casts, supply a replacement function. For
more information, see “Function Replacements”.

 Functions and Objects Supported for C and C++ Code Generation — Category List

25-191

Function Remarks/Limitations

size N/A
sort The dimensions argument must be a built-in type; it cannot be a fi

object.
squeeze N/A
sqrt • Complex and [Slope Bias] inputs error out.

• Negative inputs yield a 0 result.
storedInteger N/A
storedIntegerToDouble N/A
sub • Code generation in MATLAB does not support the syntax

F.sub(a,b). You must use the syntax sub(F,a,b).
subsasgn N/A
subsref N/A
sum Variable-sized inputs are only supported when the SumMode property

of the governing fimath is set to Specify precision or Keep LSB.
times • Any non-fi input must be constant; that is, its value must be

known at compile time so that it can be cast to a fi object.
• When you provide complex inputs to the times function inside of

a MATLAB Function block, you must declare the input as complex
before running the simulation. To do so, go to the Ports and
data manager and set the Complexity parameter for all known
complex inputs to On.

transpose N/A
tril If supplied, the index, k, must be a real and scalar integer value that is

not a fi object.
triu If supplied, the index, k, must be a real and scalar integer value that is

not a fi object.
ufi • All properties related to data type must be constant for code

generation.
uint8, uint16, uint32,
 uint64

N/A

uminus N/A

25 Functions, Classes, and System Objects Supported for Code Generation

25-192

Function Remarks/Limitations

uplus N/A
upperbound N/A
vertcat N/A

HDL Coder

Function Remarks and Limitations

hdl.RAM This System object is available with MATLAB.

Histograms in MATLAB

Function Remarks and Limitations

hist • Histogram bar plotting not supported. Call with at least one output
argument.

• If supplied, the second argument x must be a scalar constant.
• Inputs must be real.

For the syntax [nout, xout] = hist(y,x):

• When y is a fixed-size vector or variable-length vector:

• nout is always a row vector.
• If x is a vector, xout is a vector with the same orientation as x.
• If x is a scalar (fixed-size), xout is a row vector.

• nout and xout are column vectors when the following conditions are
true:

• y is a matrix
• size(y,1) and size(y,2) do not have fixed length 1
• One of size(y,1) and size(y,2) has length 1 at run time

• A variable-sizex is interpreted as a vector input even if it is a scalar at
run time.

• If at least one of the inputs is empty, vector orientations in the output
can differ from MATLAB.

 Functions and Objects Supported for C and C++ Code Generation — Category List

25-193

Function Remarks and Limitations

histc • The output of a variable-size array that becomes a column vector at run
time is a column-vector, not a row-vector.

• If supplied, dim must be a constant.
• “Variable-Sizing Restrictions for Code Generation of Toolbox Functions”

Image Acquisition Toolbox

If you install Image Acquisition Toolbox software, you can generate C and C++ code for
the VideoDevice System object. See imaq.VideoDevice and “Code Generation with
VideoDevice System Object”.

Image Processing in MATLAB

Function Remarks and Limitations

im2double —
rgb2gray —

Image Processing Toolbox

The following table lists the Image Processing Toolbox functions that have been enabled
for code generation. You must have the MATLAB Coder software installed to generate C
code from MATLAB for these functions.

Image Processing Toolbox provides three types of code generation support:

• Functions that generate C code.
• Functions that generate C code that depends on a platform-specific shared library

(.dll, .so, or .dylib). Use of a shared library preserves performance optimizations
in these functions, but this limits the target platforms for which you can generate
code. For more information, see “Code Generation for Image Processing”.

• Functions that generate C code or C code that depends on a shared library, depending
on which target platform you specify in MATLAB Coder. If you specify the generic
MATLAB Host Computer target platform, these functions generate C code that
depends on a shared library. If you specify any other target platform, these functions
generate C code.

25 Functions, Classes, and System Objects Supported for Code Generation

25-194

In generated code, each supported toolbox function has the same name, arguments, and
functionality as its Image Processing Toolbox counterpart. However, some functions have
limitations. The following table includes information about code generation limitations
that might exist for each function. In the following table, all the functions generate C
code. The table identifies those functions that generate C code that depends on a shared
library, and those functions that can do both, depending on which target platform you
choose.

Function Remarks/Limitations

affine2d When generating code, you can only specify single objects—arrays of
objects are not supported.

bwdist The method argument must be a compile-time constant. Input images
must have fewer than 232 pixels.

Generated code for this function uses a precompiled, platform-specific
shared library.

bweuler If you choose the generic MATLAB Host Computer target platform,
generated code uses a precompiled, platform-specific shared library.

bwlabel When generating code, the parameter n must be a compile-time
constant.

bwlookup For best results, specify an input image of class logical.

If you choose the generic MATLAB Host Computer target platform,
generated code uses a precompiled, platform-specific shared library.

bwmorph The text string specifying the operation must be a constant and, for
best results, specify an input image of class logical.

If you choose the generic MATLAB Host Computer target platform,
generated code uses a precompiled, platform-specific shared library.

bwpack Generated code for this function uses a precompiled platform-specific
shared library.

bwperim Supports only 2-D images. Does not support any no-output-argument
syntaxes. The connectivity matrix input argument, conn, must be a
compile-time constant.

If you choose the generic MATLAB Host Computer target platform,
generated code uses a precompiled, platform-specific shared library.

 Functions and Objects Supported for C and C++ Code Generation — Category List

25-195

Function Remarks/Limitations

bwselect Supports only the 3 and 4 input argument syntaxes: BW2 =
bwselect(BW,c,r) and BW2 = bwselect(BW,c,r,n). The optional
fourth input argument, n, must be a compile-time constant. In addition,
with code generation, bwselect only supports only the 1 and 2 output
argument syntaxes: BW2 = bwselect(___) or [BW2, idx] =
bwselect(___).

If you choose the generic MATLAB Host Computer target platform,
generated code uses a precompiled, platform-specific shared library.

bwtraceboundary The dir, fstep, and conn arguments must be compile-time constants.
bwunpack Generated code for this function uses a precompiled platform-specific

shared library.
conndef Input arguments must be compile-time constants.
edge The method, direction, and sigma arguments must be a compile-

time constants. In addition, nonprogrammatic syntaxes are not
supported. For example, the syntax edge(im), where edge does not
return a value but displays an image instead, is not supported.

If you choose the generic MATLAB Host Computer target platform,
generated code uses a precompiled, platform-specific shared library.

fitgeotrans The transformtype argument must be a compile-time constant.
The function supports the following transformation types:
'nonreflectivesimilarity', 'similarity', 'affine', or
'projective'.

fspecial Inputs must be compile-time constants. Expressions or variables are
allowed if their values do not change.

getrangefromclass —
histeq All the syntaxes that include indexed images are not supported. This

includes all syntaxes that accept map as input and return newmap.

Generated code for this function uses a precompiled platform-specific
shared library.

im2uint8 If you choose the generic MATLAB Host Computer target platform,
generated code uses a precompiled, platform-specific shared library.

25 Functions, Classes, and System Objects Supported for Code Generation

25-196

Function Remarks/Limitations

im2uint16 Generated code for this function uses a precompiled platform-specific
shared library.

im2int16 Generated code for this function uses a precompiled platform-specific
shared library.

im2single —
im2double —
imadjust Does not support syntaxes that include indexed images. This includes

all syntaxes that accept map as input and return newmap.

Generated code for this function uses a precompiled platform-specific
shared library.

imbothat The input image IM must be either 2-D or 3-D image. The structuring
element input argument SE must be a compile-time constant.

If you choose the generic MATLAB Host Computer target platform,
generated code uses a precompiled, platform-specific shared library.

imclearborder The optional second input argument, conn, must be a compile-time
constant. Supports only up to 3-D inputs.

If you choose the generic MATLAB Host Computer target platform,
generated code uses a precompiled, platform-specific shared library.

imclose The input image IM must be either 2-D or 3-D image. The structuring
element input argument SE must be a compile-time constant.

If you choose the generic MATLAB Host Computer target platform,
generated code uses a precompiled, platform-specific shared library.

imcomplement Does not support int64 and uint64 data types.

 Functions and Objects Supported for C and C++ Code Generation — Category List

25-197

Function Remarks/Limitations

imdilate The input image IM must be either 2-D or 3-D image. The SE, PACKOPT,
and SHAPE input arguments must be a compile-time constant. The
structuring element argument SE must be a single element—arrays of
structuring elements are not supported. To obtain the same result as
that obtained using an array of structuring elements, call the function
sequentially.

If you choose the generic MATLAB Host Computer target platform,
generated code uses a precompiled, platform-specific shared library.

imerode The input image IM must be either 2-D or 3-D image. The SE, PACKOPT,
and SHAPE input arguments must be a compile-time constant. The
structuring element argument SE must be a single element—arrays of
structuring elements are not supported. To obtain the same result as
that obtained using an array of structuring elements, call the function
sequentially.

If you choose the generic MATLAB Host Computer target platform,
generated code uses a precompiled, platform-specific shared library.

imextendedmax The optional third input argument, conn, must be a compile-time
constant.

If you choose the generic MATLAB Host Computer target platform,
generated code uses a precompiled, platform-specific shared library.

imextendedmin The optional third input argument, conn, must be a compile-time
constant.

If you choose the generic MATLAB Host Computer target platform,
generated code uses a precompiled, platform-specific shared library.

25 Functions, Classes, and System Objects Supported for Code Generation

25-198

Function Remarks/Limitations

imfill The optional input connectivity, conn and the string 'holes' must be
compile-time constants.

Supports only up to 3-D inputs.

The interactive mode to select points, imfill(BW,0,CONN) is not
supported in code generation.

locations can be a P-by-1 vector, in which case it contains the
linear indices of the starting locations. locations can also be a P-
by-ndims(I) matrix, in which case each row contains the array indices
of one of the starting locations. Once you select a format at compile-
time, you cannot change it at run time. However, the number of points
in locations can be varied at run time.

If you choose the generic MATLAB Host Computer target platform,
generated code uses a precompiled, platform-specific shared library.

imfilter The input image can be either 2-D or 3-D. The value of the input
argument, options, must be a compile-time constant.

If you choose the generic MATLAB Host Computer target platform,
generated code uses a precompiled, platform-specific shared library.

imhist The optional second input argument, n, must be a compile-time
constant. In addition, nonprogrammatic syntaxes are not supported.
For example, the syntaxes where imhist displays the histogram are
not supported.

If you choose the generic MATLAB Host Computer target platform,
generated code uses a precompiled, platform-specific shared library.

imhmax The optional third input argument, conn, must be a compile-time
constant

If you choose the generic MATLAB Host Computer target platform,
generated code uses a precompiled, platform-specific shared library.

 Functions and Objects Supported for C and C++ Code Generation — Category List

25-199

Function Remarks/Limitations

imhmin The optional third input argument, conn, must be a compile-time
constant

If you choose the generic MATLAB Host Computer target platform,
generated code uses a precompiled, platform-specific shared library.

imlincomb The output_class argument must be a compile-time constant.

Generated code for this function uses a precompiled platform-specific
shared library.

imopen The input image IM must be either 2-D or 3-D image. The structuring
element input argument SE must be a compile-time constant.

If you choose the generic MATLAB Host Computer target platform,
generated code uses a precompiled, platform-specific shared library.

imquantize —
imreconstruct The optional third input argument, conn, must be a compile-time

constant.

If you choose the generic MATLAB Host Computer target platform,
generated code uses a precompiled, platform-specific shared library.

imref2d The XWorldLimits, YWorldLimits and ImageSize properties can be
set only during object construction. When generating code, you can only
specify single objects—arrays of objects are not supported.

imref3d The XWorldLimits, YWorldLimits, ZWorldLimits and ImageSize
properties can be set only during object construction. When generating
code, you can only specify single objects—arrays of objects are not
supported.

imregionalmax The optional second input argument, conn, must be a compile-time
constant.

If you choose the generic MATLAB Host Computer target platform,
generated code uses a precompiled, platform-specific shared library.

25 Functions, Classes, and System Objects Supported for Code Generation

25-200

Function Remarks/Limitations

imregionalmin The optional second input argument, conn, must be a compile-time
constant.

If you choose the generic MATLAB Host Computer target platform,
generated code uses a precompiled, platform-specific shared library.

imtophat The input image IM must be either 2-D or 3-D image. The structuring
element input argument SE must be a compile-time constant.

If you choose the generic MATLAB Host Computer target platform,
generated code uses a precompiled, platform-specific shared library.

imwarp The geometric transformation object input, tform, must be either
affine2d or projective2d. Additionally, the interpolation method
and optional parameter names must be string constants.

If you choose the generic MATLAB Host Computer target platform,
generated code uses a precompiled, platform-specific shared library.

intlut Generated code for this function uses a precompiled platform-specific
shared library.

iptcheckconn Input arguments must be compile-time constants.
iptcheckmap —
label2rgb Referring to the standard syntax:

RGB = label2rgb(L, map, zerocolor, order)

• Submit at least two input arguments: the label matrix, L, and the
colormap matrix, map.

• map must be an n-by-3, double, colormap matrix. You cannot use
a string containing the name of a MATLAB colormap function or a
function handle of a colormap function.

• If you set the boundary color zerocolor to the same color as one of
the regions, label2rgb will not issue a warning.

• If you supply a value for order, it must be 'noshuffle'.
mean2 —

 Functions and Objects Supported for C and C++ Code Generation — Category List

25-201

Function Remarks/Limitations

medfilt2 The padopt argument must be a compile-time constant.

If you choose the generic MATLAB Host Computer target platform,
generated code uses a precompiled, platform-specific shared library.

multithresh If you choose the generic MATLAB Host Computer target platform,
generated code uses a precompiled, platform-specific shared library.

ordfilt2 The padopt argument must be a compile-time constant.

If you choose the generic MATLAB Host Computer target platform,
generated code uses a precompiled, platform-specific shared library.

padarray Support only up to 3-D inputs.

Input arguments, padval and direction are expected to be compile-
time constants.

projective2d When generating code, you can only specify single objects—arrays of
objects are not supported.

regionprops Supports only 2-D images. Does not accept the connected component
structure (CC) returned by bwconncomp. Use bwlabel to create
a label matrix, or pass the image to regionprops directly. Does
not support the table output type. Does not accept cell arrays as
input—use a comma-separated list instead. Does not support the
properties ConvexArea, ConvexHull, ConvexImage, Solidity, and
SubarrayIdx.

If you choose the generic MATLAB Host Computer target platform,
generated code uses a precompiled, platform-specific shared library.

rgb2gray —
rgb2ycbcr —
strel Input arguments must be compile-time constants. The following

methods are not supported for code generation: getsequence,
reflect, translate, disp, display, loadobj. When generating
code, you can only specify single objects—arrays of objects are not
supported.

stretchlim If you choose the generic MATLAB Host Computer target platform,
generated code uses a precompiled, platform-specific shared library.

25 Functions, Classes, and System Objects Supported for Code Generation

25-202

Function Remarks/Limitations

watershed Supports only 2-D images. Supports only 4- or 8-connectivity. Supports
only up to 65,535 regions. The output type is always uint16.

If you choose the generic MATLAB Host Computer target platform,
generated code uses a precompiled, platform-specific shared library.

ycbcr2rgb —

Input and Output Arguments in MATLAB

Function Remarks and Limitations

nargin —
nargout • For a function with no output arguments,

returns 1 if called without a terminating
semicolon.

Note: This behavior also affects extrinsic calls
with no terminating semicolon. nargout is 1 for
the called function in MATLAB.

Interpolation and Computational Geometry in MATLAB

Function Remarks and Limitations

cart2pol —
cart2sph —
interp1 “Variable-Sizing Restrictions for Code Generation of Toolbox Functions”
interp1q Might not match MATLAB when some Y values are Inf or NaN.
interp2 • Xq and Yq must be the same size. Use meshgrid to evaluate on a grid.

• For best results, provide X and Y as vectors.
• For the 'cubic' method, reports an error if the grid does not have

uniform spacing. In this case, use the 'spline' method.
• For best results when you use the 'spline' method:

• Use meshgrid to create the inputs Xq and Yq.

 Functions and Objects Supported for C and C++ Code Generation — Category List

25-203

Function Remarks and Limitations

• Use a small number of interpolation points relative to the dimensions
of V. Interpolating over a large set of scattered points can be
inefficient.

interp3 • Xq, Yq, and Zq must be the same size. Use meshgrid to evaluate on a
grid.

• For best results, provide X, Y, and Z as vectors.
• For the 'cubic' method, reports an error if the grid does not have

uniform spacing. In this case, use the 'spline' method.
• For best results when you use the 'spline' method:

• Use meshgrid to create the inputs Xq, Yq, and Zq.
• Use a small number of interpolation points relative to the dimensions

of V. Interpolating over a large set of scattered points can be
inefficient.

meshgrid —

25 Functions, Classes, and System Objects Supported for Code Generation

25-204

Function Remarks and Limitations

mkpp • The output structure pp differs from the pp structure in MATLAB. In
MATLAB, ppval cannot use the pp structure from the code generation
software. For code generation, ppval cannot use a pp structure
created by MATLAB. unmkpp can use a MATLAB pp structure for code
generation.

To create a MATLAB pp structure from a pp structure created by the
code generation software:

• In code generation, use unmkpp to return the piecewise polynomial
details to MATLAB.

• In MATLAB, use mkpp to create the pp structure.
• If you do not provide d, then coefs must be two-dimensional and have

a fixed number of columns. In this case, the number of columns is the
order.

• To define a piecewise constant polynomial, coefs must be a column
vector or d must have at least two elements.

• If you provide d and d is 1, d must be a constant. Otherwise, if the input
to ppval is nonscalar, the shape of the output of ppval can differ from
ppval in MATLAB.

• If you provide d, it must have a fixed length. One of the following sets of
statements must be true:

1 Suppose that m = length(d) and npieces = length(breaks)
- 1.

size(coefs,j) = d(j)

size(coefs,m+1) = npieces

size(coefs,m+2) = order

j = 1,2,...,m. The dimension m+2 must be fixed length.
2 Suppose that m = length(d) and npieces = length(breaks)

- 1.

size(coefs,1) = prod(d)*npieces

size(coefs,2) = order

The second dimension must be fixed length.
• If you do not provide d, the following statements must be true:

 Functions and Objects Supported for C and C++ Code Generation — Category List

25-205

Function Remarks and Limitations

Suppose that m = length(d) and npieces = length(breaks) - 1.

size(coefs,1) = prod(d)*npieces

size(coefs,2) = order

The second dimension must be fixed length.

pchip • Input x must be strictly increasing.
• Does not remove y entries with NaN values.
• If you generate code for the pp = pchip(x,y) syntax, you cannot

input pp to the ppval function in MATLAB. To create a MATLAB pp
structure from a pp structure created by the code generation software:

• In code generation, use unmkpp to return the piecewise polynomial
details to MATLAB.

• In MATLAB, use mkpp to create the pp structure.
pol2cart —
polyarea —
ppval The size of output v does not match MATLAB when both of the following

statements are true:

• The input x is a variable-size array that is not a variable-length vector.
• x becomes a row vector at run time.

The code generation software does not remove the singleton dimensions.
However, MATLAB might remove singleton dimensions.

For example, suppose that x is a :4-by-:5 array (the first dimension is
variable size with an upper bound of 4 and the second dimension is variable
size with an upper bound of 5). Suppose that ppval(pp,0) returns a 2-
by-3 fixed-size array. v has size 2-by-3-by-:4-by-:5. At run time, suppose
that, size(x,1) =1 and size (x,2) = 5. In the generated code, the size(v) is
[2,3,1,5]. In MATLAB, the size is [2,3,5].

rectint —
sph2cart —

25 Functions, Classes, and System Objects Supported for Code Generation

25-206

Function Remarks and Limitations

spline • Input x must be strictly increasing.
• Does not remove Y entries with NaN values.
• Does not report an error for infinite endslopes in Y.
• If you generate code for the pp = spline(x,Y) syntax, you cannot

input pp to the ppval function in MATLAB. To create a MATLAB pp
structure from a pp structure created by the code generation software:

• In code generation, use unmkpp to return the piecewise polynomial
details to MATLAB.

• In MATLAB, use mkpp to create the pp structure.
unmkpp • pp must be a valid piecewise polynomial structure created by mkpp,

spline, or pchip in MATLAB or by the code generation software.
• Does not support pp structures created by interp1 in MATLAB.

Linear Algebra in MATLAB

Function Remarks and Limitations

bandwidth —
isbanded —
isdiag —
ishermitian —
istril —
istriu —
issymmetric —
linsolve • The option structure must be a constant.

• Supports only a scalar option structure input. It does not support arrays
of option structures.

• Only optimizes these cases:

• UT

• LT

 Functions and Objects Supported for C and C++ Code Generation — Category List

25-207

Function Remarks and Limitations

• UHESS = true (the TRANSA can be either true or false)
• SYM = true and POSDEF = true

Other options are equivalent to using mldivide.

lsqnonneg • You must enable support for variable-size arrays.
• The message string in the output structure output (the fifth output) is

not translated.
null • Might return a different basis than MATLAB

• Does not support rational basis option (second input)
orth • Can return a different basis than MATLAB
rsf2csf —
schur Can return a different Schur decomposition in generated code than in

MATLAB.
sqrtm —

Logical and Bit-Wise Operations in MATLAB

Function Remarks and Limitations

and —
bitand —
bitcmp —
bitget —
bitor —
bitset —
bitshift —
bitxor —
not —
or —
xor —

25 Functions, Classes, and System Objects Supported for Code Generation

25-208

MATLAB Compiler

C and C++ code generation for the following functions requires the MATLAB Compiler
software.

Function Remarks and Limitations

isdeployed • Returns true and false as appropriate for MEX and SIM targets
• Returns false for other targets

ismcc • Returns true and false as appropriate for MEX and SIM targets.
• Returns false for other targets.

Matrices and Arrays in MATLAB

Function Remarks and Limitations

abs —
all “Variable-Sizing Restrictions for Code Generation of Toolbox Functions”
angle —
any “Variable-Sizing Restrictions for Code Generation of Toolbox Functions”
blkdiag —
bsxfun “Variable-Sizing Restrictions for Code Generation of Toolbox Functions”
cat • If supplied, dim must be a constant.

• “Variable-Sizing Restrictions for Code Generation of Toolbox
Functions”

circshift —
colon • Does not accept complex inputs.

• The input i cannot have a logical value.
• Does not accept vector inputs.
• Inputs must be constants.
• Uses single-precision arithmetic to produce single-precision results.

compan —
cond “Variable-Sizing Restrictions for Code Generation of Toolbox Functions”

 Functions and Objects Supported for C and C++ Code Generation — Category List

25-209

Function Remarks and Limitations

cov • “Variable-Sizing Restrictions for Code Generation of Toolbox
Functions”

• Does not support the nanflag argument.
cross • If supplied, dim must be a constant.

• “Variable-Sizing Restrictions for Code Generation of Toolbox
Functions”

cumprod Does not support logical inputs. Cast input to double first.
cumsum Does not support logical inputs. Cast input to double first.
det —

25 Functions, Classes, and System Objects Supported for Code Generation

25-210

Function Remarks and Limitations

diag • If supplied, the argument representing the order of the diagonal
matrix must be a real and scalar integer value.

• For variable-size inputs that are variable-length vectors (1-by-: or :-
by-1), diag:

• Treats the input as a vector input.
• Returns a matrix with the given vector along the specified

diagonal.

• For variable-size inputs that are not variable-length vectors, diag:

• Treats the input as a matrix.
• Does not support inputs that are vectors at run time.
• Returns a variable-length vector.

If the input is variable-size (:m-by-:n) and has shape 0-by-0 at run
time, the output is 0-by-1 not 0-by-0. However, if the input is a
constant size 0-by-0, the output is [].

• For variable-size inputs that are not variable-length vectors (1-by-:
or :-by-1), diag treats the input as a matrix from which to extract
a diagonal vector. This behavior occurs even if the input array is a
vector at run time. To force diag to build a matrix from variable-
size inputs that are not 1-by-: or :-by-1, use:

• diag(x(:)) instead of diag(x)
• diag(x(:),k) instead of diag(x,k)

• “Variable-Sizing Restrictions for Code Generation of Toolbox
Functions”

diff • If supplied, the arguments representing the number of times
to apply diff and the dimension along which to calculate the
difference must be constants.

• “Variable-Sizing Restrictions for Code Generation of Toolbox
Functions”

dot —

 Functions and Objects Supported for C and C++ Code Generation — Category List

25-211

Function Remarks and Limitations

eig • For code generation,QZ algorithm is used in all cases. MATLAB can
use different algorithms for different inputs. Consequently, V might
represent a different basis of eigenvectors. The eigenvalues in D
might not be in the same order as in MATLAB.

• With one input, [V,D] = eig(A), the results are similar to
those obtained using [V,D] = eig(A,eye(size(A)),'qz') in
MATLAB, except that for code generation, the columns of V are
normalized.

• Options 'balance', and 'nobalance' are not supported for the
standard eigenvalue problem. 'chol' is not supported for the
symmetric generalized eigenvalue problem.

• Outputs are of complex type.
• Does not support the option to calculate left eigenvectors.

eye classname must be a built-in MATLAB numeric type. Does not invoke
the static eye method for other classes. For example, eye(m, n,
'myclass’) does not invoke myclass.eye(m,n).

false • Dimensions must be real, nonnegative, integers.
find • Issues an error if a variable-size input becomes a row vector at run

time.

Note: This limitation does not apply when the input is scalar or a
variable-length row vector.

• For variable-size inputs, the shape of empty outputs, 0-by-0, 0-by-1,
or 1-by-0, depends on the upper bounds of the size of the input. The
output might not match MATLAB when the input array is a scalar
or [] at run time. If the input is a variable-length row vector, the size
of an empty output is 1-by-0, otherwise it is 0-by-1.

• Always returns a variable-length vector. Even when you provide
the output vector k, the output cannot be fixed-size because the
output can contain fewer than k elements. For example, find(x,1)
returns a variable-length vector with 1 or 0 elements.

flip —
flipdim Note: flipdim will be removed in a future release. Use flip instead.

25 Functions, Classes, and System Objects Supported for Code Generation

25-212

Function Remarks and Limitations

fliplr —
flipud —
full —
hadamard —
hankel —
hilb —
ind2sub • The first argument should be a valid size vector. Size vectors for

arrays with more than intmax elements are not supported.
• “Variable-Sizing Restrictions for Code Generation of Toolbox

Functions”
inv Singular matrix inputs can produce nonfinite values that differ from

MATLAB results.
invhilb —
ipermute “Variable-Sizing Restrictions for Code Generation of Toolbox Functions”
iscolumn —
isempty —
isequal —
isequaln —
isfinite —
isfloat —
isinf —
isinteger —
islogical —
ismatrix —
isnan —
isrow —
issparse —
isvector —

 Functions and Objects Supported for C and C++ Code Generation — Category List

25-213

Function Remarks and Limitations

kron —
length —
linspace —
logspace —
lu —
magic “Variable-Sizing Restrictions for Code Generation of Toolbox

Functions”.
max • If supplied, dim must be a constant.

• “Variable-Sizing Restrictions for Code Generation of Toolbox
Functions”.

• Does not support the nanflag argument.
• “Code Generation for Complex Data with Zero-Valued Imaginary

Parts”.
min • If supplied, dim must be a constant.

• “Variable-Sizing Restrictions for Code Generation of Toolbox
Functions”.

• Does not support the nanflag argument.
• “Code Generation for Complex Data with Zero-Valued Imaginary

Parts”.
ndgrid —
ndims —
nnz —
nonzeros —
norm —
normest —
numel —
ones • Dimensions must be real, nonnegative integers.

• The input optimfun must be a function supported for code
generation.

25 Functions, Classes, and System Objects Supported for Code Generation

25-214

Function Remarks and Limitations

pascal —
permute “Variable-Sizing Restrictions for Code Generation of Toolbox Functions”
pinv —
planerot “Variable-Sizing Restrictions for Code Generation of Toolbox Functions”
prod • If supplied, dim must be a constant.

• “Variable-Sizing Restrictions for Code Generation of Toolbox
Functions”

qr —
rand • classname must be a built-in MATLAB numeric type. Does not

invoke the static rand method for other classes. For example,
rand(sz,'myclass’) does not invoke myclass.rand(sz).

• “Variable-Sizing Restrictions for Code Generation of Toolbox
Functions”

randi • classname must be a built-in MATLAB numeric type. Does
not invoke the static randi method for other classes. For
example, randi(imax,sz,'myclass’) does not invoke
myclass.randi(imax,sz).

• “Variable-Sizing Restrictions for Code Generation of Toolbox
Functions”

randn • classname must be a built-in MATLAB numeric type. Does not
invoke the static randn method for other classes. For example,
randn(sz,'myclass’) does not invoke myclass.randn(sz).

• “Variable-Sizing Restrictions for Code Generation of Toolbox
Functions”

randperm —
rank —
rcond —
repmat —
reshape • “Variable-Sizing Restrictions for Code Generation of Toolbox

Functions”

 Functions and Objects Supported for C and C++ Code Generation — Category List

25-215

Function Remarks and Limitations

rng • For library code generation targets, executable code generation
targets, and MEX targets with extrinsic calls disabled:

• Does not support the 'shuffle' input.
• For the generator input, supports 'twister', 'v4', and

'v5normal'.

For these targets, the output of s=rng in the generated code differs
from the MATLAB output. You cannot return the output of s=rng
from the generated code and pass it to rng in MATLAB.

• For MEX targets, if extrinsic calls are enabled, you cannot access
the data in the structure returned by rng.

rosser —
rot90 —
shiftdim • Second argument must be a constant.

• “Variable-Sizing Restrictions for Code Generation of Toolbox
Functions”

sign —
size —
sort If the input is a complex type, sort orders the output according to

absolute value. When x is a complex type that has all zero imaginary
parts, use sort(real(x)) to compute the sort order for real types.
See “Code Generation for Complex Data with Zero-Valued Imaginary
Parts”.

sortrows If the input is a complex type, sortrows orders the output according
to absolute value. When x is a complex type that has all zero imaginary
parts, use sortrows(real(x)) to compute the sort order for real
types. See “Code Generation for Complex Data with Zero-Valued
Imaginary Parts”.

squeeze —

25 Functions, Classes, and System Objects Supported for Code Generation

25-216

Function Remarks and Limitations

sub2ind • The first argument must be a valid size vector. Size vectors for
arrays with more than intmax elements are not supported.

• “Variable-Sizing Restrictions for Code Generation of Toolbox
Functions”

subspace —
sum • Specify dim as a constant.

• “Variable-Sizing Restrictions for Code Generation of Toolbox
Functions”

• Does not support the nanflag argument.
toeplitz —
trace —
tril • If supplied, the argument representing the order of the diagonal

matrix must be a real and scalar integer value.
triu • If supplied, the argument representing the order of the diagonal

matrix must be a real and scalar integer value.
true • Dimensions must be real, nonnegative, integers.
vander —
wilkinson —
zeros • Dimensions must be real, nonnegative, integers.

Neural Network Toolbox

You can use genFunction in the Neural Network Toolbox™ to generate a standalone
MATLAB function for a trained neural network. You can generate C/C++ code from this
standalone MATLAB function. To generate Simulink blocks, use thegenSim function. See
“Deploy Neural Network Functions”.

 Functions and Objects Supported for C and C++ Code Generation — Category List

25-217

Nonlinear Numerical Methods in MATLAB

Function Remarks and Limitations

quad2d • Generates a warning if the size of the internal storage arrays is not
large enough. If a warning occurs, a possible workaround is to divide the
region of integration into pieces and sum the integrals over each piece.

quadgk —

Numerical Integration and Differentiation in MATLAB

Function Remarks and Limitations

cumtrapz —
del2 —
diff • If supplied, the arguments representing the number of times to apply

diff and the dimension along which to calculate the difference must be
constants.

gradient —
ode23 • All odeset option arguments must be constant.

• Does not support a constant mass matrix in the options structure.
Provide a mass matrix as a function .

• You must provide at least the two output arguments T and Y.
• Input types must be homogeneous—all double or all single.
• Variable-sizing support must be enabled. Requires dynamic memory

allocation when tspan has two elements or you use event functions.
ode45 • All odeset option arguments must be constant.

• Does not support a constant mass matrix in the options structure.
Provide a mass matrix as a function .

• You must provide at least the two output arguments T and Y.
• Input types must be homogeneous—all double or all single.
• Variable-sizing support must be enabled. Requires dynamic memory

allocation when tspan has two elements or you use event functions.
odeget The name argument must be constant.

25 Functions, Classes, and System Objects Supported for Code Generation

25-218

Function Remarks and Limitations

odeset All inputs must be constant.
trapz • If supplied, dim must be a constant.

• “Variable-Sizing Restrictions for Code Generation of Toolbox Functions”

Optimization Functions in MATLAB

Function Remarks and Limitations

fminsearch • Ignores the Display option. Does not print status information during
execution. Test the exitflag output for the exit condition.

• The output structure does not include the algorithm or message
fields.

• Ignores the OutputFcn and PlotFcns options.
fzero • The first argument must be a function handle. Does not support

structure, inline function, or string inputs for the first argument.
• Supports up to three output arguments. Does not support the fourth

output argument (the output structure).
optimget Input parameter names must be constant.
optimset • Does not support the syntax that has no input or output arguments:

optimset

• Functions specified in the options must be supported for code
generation.

• The fields of the options structure oldopts must be fixed-size fields.
• For code generation, optimization functions ignore the Display option.
• Does not support the additional options in an options structure created

by the Optimization Toolbox optimset function. If an input options
structure includes the additional Optimization Toolbox options, the
output structure does not include them.

Phased Array System Toolbox

C and C++ code generation for the following functions requires the Phased Array System
Toolbox software.

 Functions and Objects Supported for C and C++ Code Generation — Category List

25-219

Name Remarks and Limitations

Antenna and Microphone Elements
aperture2gain Does not support variable-size inputs.
azel2phithetapat Does not support variable-size inputs.
azel2uvpat Does not support variable-size inputs.
circpol2pol Does not support variable-size inputs.
gain2aperture Does not support variable-size inputs.
phased.CosineAntennaElement • pattern, patternAzimuth,

patternElevation, and plotResponse
methods are not supported.

• See “System Objects in MATLAB Code
Generation”.

phased.CrossedDipoleAntennaElement • pattern, patternAzimuth,
patternElevation, and plotResponse
methods are not supported.

• See “System Objects in MATLAB Code
Generation”.

phased.CustomAntennaElement • pattern, patternAzimuth,
patternElevation, and plotResponse
methods are not supported.

• See “System Objects in MATLAB Code
Generation”.

phased.CustomMicrophoneElement • pattern, patternAzimuth,
patternElevation, and plotResponse
methods are not supported.

• See “System Objects in MATLAB Code
Generation”.

phased.IsotropicAntennaElement • pattern, patternAzimuth,
patternElevation, and plotResponse
methods are not supported.

• See “System Objects in MATLAB Code
Generation”.

25 Functions, Classes, and System Objects Supported for Code Generation

25-220

Name Remarks and Limitations

phased.OmnidirectionalMicrophoneElement• pattern, patternAzimuth,
patternElevation, and plotResponse
methods are not supported.

• See “System Objects in MATLAB Code
Generation”.

phased.ShortDipoleAntennaElement • pattern, patternAzimuth,
patternElevation, and plotResponse
methods are not supported.

• See “System Objects in MATLAB Code
Generation”.

phitheta2azelpat Does not support variable-size inputs.
phitheta2uvpat Does not support variable-size inputs.
pol2circpol Does not support variable-size inputs.
polellip Does not support variable-size inputs.
polloss Does not support variable-size inputs.
polratio Does not support variable-size inputs.
polsignature • Does not support variable-size inputs.

• Supported only when output arguments are
specified.

stokes • Does not support variable-size inputs.
• Supported only when output arguments are

specified.
uv2azelpat Does not support variable-size inputs.
uv2phithetapat Does not support variable-size inputs.
Array Geometries and Analysis
az2broadside Does not support variable-size inputs.
broadside2az Does not support variable-size inputs.
pilotcalib Does not support variable-size inputs.

 Functions and Objects Supported for C and C++ Code Generation — Category List

25-221

Name Remarks and Limitations

phased.ArrayGain • Does not support arrays containing
polarized antenna elements, that is, the
phased.ShortDipoleAntennaElement or
phased.CrossedDipoleAntennaElement

antennas.
• See “System Objects in MATLAB Code

Generation”.
phased.ArrayResponse See “System Objects in MATLAB Code

Generation”.
phased.ConformalArray • pattern, patternAzimuth,

patternElevation, plotResponse, and
viewArray methods are not supported.

• See “System Objects in MATLAB Code
Generation”.

phased.ElementDelay See “System Objects in MATLAB Code
Generation”.

phased.PartitionedArray • pattern, patternAzimuth,
patternElevation, plotResponse, and
viewArray methods are not supported.

• See “System Objects in MATLAB Code
Generation”.

phased.ReplicatedSubarray • pattern, patternAzimuth,
patternElevation, plotResponse, and
viewArray methods are not supported.

• See “System Objects in MATLAB Code
Generation”.

phased.SteeringVector See “System Objects in MATLAB Code
Generation”.

phased.UCA • pattern, patternAzimuth,
patternElevation, plotResponse, and
viewArray methods are not supported.

• See “System Objects in MATLAB Code
Generation”.

25 Functions, Classes, and System Objects Supported for Code Generation

25-222

Name Remarks and Limitations

phased.ULA • pattern, patternAzimuth,
patternElevation, plotResponse, and
viewArray methods are not supported.

• See “System Objects in MATLAB Code
Generation”.

phased.URA • pattern, patternAzimuth,
patternElevation, plotResponse, and
viewArray methods are not supported.

• See “System Objects in MATLAB Code
Generation”.

Signal Radiation and Collection
phased.Collector See “System Objects in MATLAB Code

Generation”.
phased.Radiator See “System Objects in MATLAB Code

Generation”.
phased.WidebandCollector • Requires dynamic memory allocation. See

“Limitations for System Objects that Require
Dynamic Memory Allocation”.

• See “System Objects in MATLAB Code
Generation”.

sensorsig Does not support variable-size inputs.
Waveforms
ambgfun Does not support variable-size inputs.
phased.FMCWWaveform • plot method is not supported.

• See “System Objects in MATLAB Code
Generation”.

.
phased.LinearFMWaveform • plot method is not supported.

• See “System Objects in MATLAB Code
Generation”.

 Functions and Objects Supported for C and C++ Code Generation — Category List

25-223

Name Remarks and Limitations

phased.MFSKWaveform • plot method is not supported.
• See “System Objects in MATLAB Code

Generation”.
phased.PhaseCodedWaveform • plot method is not supported.

• See “System Objects in MATLAB Code
Generation”.

phased.RectangularWaveform • plot method is not supported.
• See “System Objects in MATLAB Code

Generation”.
phased.SteppedFMWaveform • plot method is not supported.

• See “System Objects in MATLAB Code
Generation”.

range2bw Does not support variable-size inputs.
range2time Does not support variable-size inputs.
time2range Does not support variable-size inputs.
unigrid Does not support variable-size inputs.
Transmitters and Receivers
delayseq Does not support variable-size inputs.
noisepow Does not support variable-size inputs.
phased.ReceiverPreamp See “System Objects in MATLAB Code

Generation”.
phased.Transmitter See “System Objects in MATLAB Code

Generation”.
systemp Does not support variable-size inputs.
Beamforming
cbfweights Does not support variable-size inputs.
lcmvweights Does not support variable-size inputs.
mvdrweights Does not support variable-size inputs.

25 Functions, Classes, and System Objects Supported for Code Generation

25-224

Name Remarks and Limitations

phased.FrostBeamformer • Requires dynamic memory allocation. See
“Limitations for System Objects that Require
Dynamic Memory Allocation”.

• See “System Objects in MATLAB Code
Generation”.

phased.LCMVBeamformer See “System Objects in MATLAB Code
Generation”.

phased.MVDRBeamformer See “System Objects in MATLAB Code
Generation”.

phased.PhaseShiftBeamformer See “System Objects in MATLAB Code
Generation”.

phased.SteeringVector See “System Objects in MATLAB Code
Generation”.

phased.SubbandPhaseShiftBeamformer See “System Objects in MATLAB Code
Generation”.

phased.TimeDelayBeamformer • Requires dynamic memory allocation. See
“Limitations for System Objects that Require
Dynamic Memory Allocation”.

• See “System Objects in MATLAB Code
Generation”.

phased.TimeDelayLCMVBeamformer • Requires dynamic memory allocation. See
“Limitations for System Objects that Require
Dynamic Memory Allocation”.

• See “System Objects in MATLAB Code
Generation”.

sensorcov Does not support variable-size inputs.
steervec Does not support variable-size inputs.
Direction of Arrival (DOA) Estimation
aictest Does not support variable-size inputs.
espritdoa Does not support variable-size inputs.
mdltest Does not support variable-size inputs.

 Functions and Objects Supported for C and C++ Code Generation — Category List

25-225

Name Remarks and Limitations

phased.BeamscanEstimator See “System Objects in MATLAB Code
Generation”.

phased.BeamscanEstimator2D See “System Objects in MATLAB Code
Generation”.

phased.BeamspaceESPRITEstimator See “System Objects in MATLAB Code
Generation”.

phased.ESPRITEstimator See “System Objects in MATLAB Code
Generation”.

phased.MVDREstimator See “System Objects in MATLAB Code
Generation”.

phased.MVDREstimator2D See “System Objects in MATLAB Code
Generation”.

phased.RootMUSICEstimator See “System Objects in MATLAB Code
Generation”.

phased.RootWSFEstimator See “System Objects in MATLAB Code
Generation”.

phased.SumDifferenceMonopulseTracker See “System Objects in MATLAB Code
Generation”.

phased.SumDifferenceMonopulseTracker2D See “System Objects in MATLAB Code
Generation”.

rootmusicdoa Does not support variable-size inputs.
spsmooth Does not support variable-size inputs.
Space-Time Adaptive Processing (STAP)
dopsteeringvec Does not support variable-size inputs.
phased.ADPCACanceller See “System Objects in MATLAB Code

Generation”.
phased.AngleDopplerResponse See “System Objects in MATLAB Code

Generation”.
phased.DPCACanceller See “System Objects in MATLAB Code

Generation”.
phased.STAPSMIBeamformer See “System Objects in MATLAB Code

Generation”.

25 Functions, Classes, and System Objects Supported for Code Generation

25-226

Name Remarks and Limitations

val2ind Does not support variable-size inputs.
Signal Propagation and Environment
billingsleyicm Does not support variable-size inputs.
depressionang Does not support variable-size inputs.
effearthradius Does not support variable-size inputs.
fspl Does not support variable-size inputs.
grazingang Does not support variable-size inputs.
horizonrange Does not support variable-size inputs.
phased.BarrageJammer See “System Objects in MATLAB Code

Generation”.
phased.ConstantGammaClutter See “System Objects in MATLAB Code

Generation”.
phased.FreeSpace • Requires dynamic memory allocation. See

“Limitations for System Objects that Require
Dynamic Memory Allocation”.

• See “System Objects in MATLAB Code
Generation”.

phased.RadarTarget See “System Objects in MATLAB Code
Generation”.

physconst Does not support variable-size inputs.
surfacegamma Does not support variable-size inputs.
surfclutterrcs Does not support variable-size inputs.
Detection and System Analysis
albersheim Does not support variable-size inputs.
beat2range Does not support variable-size inputs.
dechirp Does not support variable-size inputs.
npwgnthresh Does not support variable-size inputs.
phased.CFARDetector See “System Objects in MATLAB Code

Generation”.

 Functions and Objects Supported for C and C++ Code Generation — Category List

25-227

Name Remarks and Limitations

phased.MatchedFilter • The CustomSpectrumWindow property is
not supported.

• See “System Objects in MATLAB Code
Generation”.

phased.RangeDopplerResponse • The CustomRangeWindow and the
CustomDopplerWindow properties are not
supported.

• See “System Objects in MATLAB Code
Generation”.

phased.StretchProcessor See “System Objects in MATLAB Code
Generation”.

phased.TimeVaryingGain See “System Objects in MATLAB Code
Generation”.

pulsint Does not support variable-size inputs.
radareqpow Does not support variable-size inputs.
radareqrng Does not support variable-size inputs.
radareqsnr Does not support variable-size inputs.
radarvcd Does not support variable-size inputs.
range2beat Does not support variable-size inputs.
rdcoupling Does not support variable-size inputs.
rocpfa • Does not support variable-size inputs.

• The NonfluctuatingNoncoherent signal
type is not supported.

rocsnr • Does not support variable-size inputs.
• The NonfluctuatingNoncoherent signal

type is not supported.
shnidman Does not support variable-size inputs.
stretchfreq2rng Does not support variable-size inputs.
Motion Modeling and Coordinate Systems
azel2phitheta Does not support variable-size inputs.

25 Functions, Classes, and System Objects Supported for Code Generation

25-228

Name Remarks and Limitations

azel2uv Does not support variable-size inputs.
azelaxes Does not support variable-size inputs.
cart2sphvec Does not support variable-size inputs.
dop2speed Does not support variable-size inputs.
global2localcoord Does not support variable-size inputs.
local2globalcoord Does not support variable-size inputs.
phased.Platform See “System Objects in MATLAB Code

Generation”.
phitheta2azel Does not support variable-size inputs.
phitheta2uv Does not support variable-size inputs.
radialspeed Does not support variable-size inputs.
rangeangle Does not support variable-size inputs.
rotx Does not support variable-size inputs.
roty Does not support variable-size inputs
rotz Does not support variable-size inputs.
speed2dop Does not support variable-size inputs.
sph2cartvec Does not support variable-size inputs.
uv2azel Does not support variable-size inputs.
uv2phitheta Does not support variable-size inputs.

Polynomials in MATLAB

Function Remarks and Limitations

poly • Does not discard nonfinite input values
• Complex input produces complex output
• “Variable-Sizing Restrictions for Code Generation of Toolbox Functions”

polyder The output can contain fewer NaNs than the MATLAB output. However, if
the input contains a NaN, the output contains at least one NaN.

polyfit “Variable-Sizing Restrictions for Code Generation of Toolbox Functions”

 Functions and Objects Supported for C and C++ Code Generation — Category List

25-229

Function Remarks and Limitations

polyint —
polyval —
polyvalm —
roots • Output is variable size.

• Output is complex.
• Roots are not always in the same order as MATLAB.
• Roots of poorly conditioned polynomials do not always match MATLAB.

Programming Utilities in MATLAB

Function Remarks and Limitations

mfilename —

Relational Operators in MATLAB

Function Remarks and Limitations

eq —
ge —
gt —
le —
lt —
ne —

Rounding and Remainder Functions in MATLAB

Function Remarks and Limitations

ceil —
fix —
floor —
mod • Performs the arithmetic using the output class. Results might not match

MATLAB due to differences in rounding errors.

25 Functions, Classes, and System Objects Supported for Code Generation

25-230

Function Remarks and Limitations

If one of the inputs has type int64 or uint64, then both inputs must
have the same type.

rem • Performs the arithmetic using the output class. Results might not match
MATLAB due to differences in rounding errors.

• If one of the inputs has type int64 or uint64, then both inputs must
have the same type.

round Supports only the syntax Y = round(X).

Set Operations in MATLAB

Function Remarks and Limitations

intersect • When you do not specify the 'rows' option:

• Inputs A and B must be vectors. If you specify the 'legacy' option,
inputs A and B must be row vectors.

• The first dimension of a variable-size row vector must have fixed
length 1. The second dimension of a variable-size column vector must
have fixed length 1.

• The input [] is not supported. Use a 1-by-0 or 0-by-1 input, for
example, zeros(1,0), to represent the empty set.

• If you specify the 'legacy' option, empty outputs are row vectors,
1-by-0, never 0-by-0.

• When you specify both the 'legacy' option and the 'rows' option, the
outputs ia and ib are column vectors. If these outputs are empty, they
are 0-by-1, never 0-by-0, even if the output C is 0-by-0.

• When the setOrder is 'sorted' or when you specify the 'legacy'
option, the inputs must already be sorted in ascending order. The first
output, C, is sorted in ascending order.

• Complex inputs must be single or double.
• When one input is complex and the other input is real, do one of the

following:

• Set setOrder to 'stable'.

 Functions and Objects Supported for C and C++ Code Generation — Category List

25-231

Function Remarks and Limitations

• Sort the real input in complex ascending order (by absolute
value). Suppose the real input is x. Use sort(complex(x))or
sortrows(complex(x)).

• “Code Generation for Complex Data with Zero-Valued Imaginary Parts”.

ismember • The second input, B, must be sorted in ascending order.
• Complex inputs must be single or double.
• “Code Generation for Complex Data with Zero-Valued Imaginary Parts”.

issorted • “Variable-Sizing Restrictions for Code Generation of Toolbox Functions”.
• “Code Generation for Complex Data with Zero-Valued Imaginary Parts”.

25 Functions, Classes, and System Objects Supported for Code Generation

25-232

Function Remarks and Limitations

setdiff • When you do not specify the 'rows' option:

• Inputs A and B must be vectors. If you specify the 'legacy' option,
inputs A and B must be row vectors.

• The first dimension of a variable-size row vector must have fixed
length 1. The second dimension of a variable-size column vector must
have fixed length 1.

• Do not use [] to represent the empty set. Use a 1-by-0 or 0-by-1
input, for example, zeros(1,0), to represent the empty set.

• If you specify the 'legacy' option, empty outputs are row vectors,
1-by-0, never 0-by-0.

• When you specify both the 'legacy' and 'rows' options, the output
ia is a column vector. If ia is empty, it is 0-by-1, never 0-by-0, even if
the output C is 0-by-0.

• When the setOrder is 'sorted' or when you specify the 'legacy'
option, the inputs must already be sorted in ascending order. The first
output, C, is sorted in ascending order.

• Complex inputs must be single or double.
• When one input is complex and the other input is real, do one of the

following:

• Set setOrder to 'stable'.
• Sort the real input in complex ascending order (by absolute

value). Suppose the real input is x. Use sort(complex(x))or
sortrows(complex(x)).

• “Code Generation for Complex Data with Zero-Valued Imaginary Parts”.

 Functions and Objects Supported for C and C++ Code Generation — Category List

25-233

Function Remarks and Limitations

setxor • When you do not specify the 'rows' option:

• Inputs A and B must be vectors with the same orientation. If you
specify the 'legacy' option, inputs A and B must be row vectors.

• The first dimension of a variable-size row vector must have fixed
length 1. The second dimension of a variable-size column vector must
have fixed length 1.

• The input [] is not supported. Use a 1-by-0 or 0-by-1 input, for
example , zeros(1,0), to represent the empty set.

• If you specify the 'legacy' option, empty outputs are row vectors,
1-by-0, never 0-by-0.

• When you specify both the 'legacy' option and the 'rows' option, the
outputs ia and ib are column vectors. If these outputs are empty, they
are 0-by-1, never 0-by-0, even if the output C is 0-by-0.

• When the setOrder is 'sorted' or when you specify the 'legacy'
flag, the inputs must already be sorted in ascending order. The first
output, C, is sorted in ascending order.

• Complex inputs must be single or double.
• When one input is complex and the other input is real, do one of the

following:

• Set setOrder to 'stable'.
• Sort the real input in complex ascending order (by absolute

value). Suppose the real input is x. Use sort(complex(x))or
sortrows(complex(x)).

• “Code Generation for Complex Data with Zero-Valued Imaginary Parts”.

25 Functions, Classes, and System Objects Supported for Code Generation

25-234

Function Remarks and Limitations

union • When you do not specify the 'rows' option:

• Inputs A and B must be vectors with the same orientation. If you
specify the 'legacy' option, inputs A and B must be row vectors.

• The first dimension of a variable-size row vector must have fixed
length 1. The second dimension of a variable-size column vector must
have fixed length 1.

• The input [] is not supported. Use a 1-by-0 or 0-by-1 input, for
example , zeros(1,0), to represent the empty set.

• If you specify the 'legacy' option, empty outputs are row vectors,
1-by-0, never 0-by-0.

• When you specify both the 'legacy' option and the 'rows' option, the
outputs ia and ib are column vectors. If these outputs are empty, they
are 0-by-1, never 0-by-0, even if the output C is 0-by-0.

• When the setOrder is 'sorted' or when you specify the 'legacy'
option, the inputs must already be sorted in ascending order. The first
output, C, is sorted in ascending order.

• Complex inputs must be single or double.
• When one input is complex and the other input is real, do one of the

following:

• Set setOrder to 'stable'.
• Sort the real input in complex ascending order (by absolute

value). Suppose the real input is x. Use sort(complex(x))or
sortrows(complex(x)).

• “Code Generation for Complex Data with Zero-Valued Imaginary Parts”.

 Functions and Objects Supported for C and C++ Code Generation — Category List

25-235

Function Remarks and Limitations

unique • When you do not specify the'rows' option:

• The input A must be a vector. If you specify the 'legacy' option, the
input A must be a row vector.

• The first dimension of a variable-size row vector must have fixed
length 1. The second dimension of a variable-size column vector must
have fixed length 1.

• The input [] is not supported. Use a 1-by-0 or 0-by-1 input, for
example, zeros(1,0), to represent the empty set.

• If you specify the 'legacy' option, empty outputs are row vectors,
1-by-0, never 0-by-0.

• When you specify both the 'rows' option and the 'legacy'option,
outputs ia and ic are column vectors. If these outputs are empty, they
are 0-by-1, even if the output C is 0-by-0.

• When the setOrder is 'sorted' or when you specify the 'legacy'
option, the input A must already be sorted in ascending order. The first
output, C, is sorted in ascending order.

• Complex inputs must be single or double.

Signal Processing in MATLAB

Function Remarks and Limitations

chol —
conv —
fft • Length of input vector must be a power of 2.

• “Variable-Sizing Restrictions for Code Generation of Toolbox Functions”
fft2 • Length of input matrix dimensions must each be a power of 2.
fftn • Length of input matrix dimensions must each be a power of 2.
fftshift —
filter • If supplied, dim must be a constant.

• v
freqspace —

25 Functions, Classes, and System Objects Supported for Code Generation

25-236

Function Remarks and Limitations

ifft • Length of input vector must be a power of 2.
• Output of ifft block is complex.
• Does not support the 'symmetric' option.
• “Variable-Sizing Restrictions for Code Generation of Toolbox Functions”

ifft2 • Length of input matrix dimensions must each be a power of 2.
• Does not support the 'symmetric' option.

ifftn • Length of input matrix dimensions must each be a power of 2.
• Does not support the 'symmetric' option.

ifftshift —
svd Uses a different SVD implementation than MATLAB. Because the singular

value decomposition is not unique, left and right singular vectors might
differ from those computed by MATLAB.

zp2tf —

Signal Processing Toolbox

C and C++ code generation for the following functions requires the Signal Processing
Toolbox software. These functions do not support variable-size inputs, you must define
the size and type of the function inputs. For more information, see “Specifying Inputs in
Code Generation from MATLAB ”.

Note: Many Signal Processing Toolbox functions require constant inputs in generated
code. To specify a constant input for codegen, use coder.Constant.

Function Remarks/Limitations

barthannwin Window length must be a constant. Expressions or variables are allowed
if their values do not change.

bartlett Window length must be a constant. Expressions or variables are allowed
if their values do not change.

besselap Filter order must be a constant. Expressions or variables are allowed if
their values do not change.

 Functions and Objects Supported for C and C++ Code Generation — Category List

25-237

Function Remarks/Limitations

bitrevorder —
blackman Window length must be a constant. Expressions or variables are allowed

if their values do not change.
blackmanharris Window length must be a constant. Expressions or variables are allowed

if their values do not change.
bohmanwin Window length must be a constant. Expressions or variables are allowed

if their values do not change.
buttap Filter order must be a constant. Expressions or variables are allowed if

their values do not change.
butter Filter coefficients must be constants. Expressions or variables are allowed

if their values do not change.
buttord All inputs must be constants. Expressions or variables are allowed if their

values do not change.
cfirpm All inputs must be constants. Expressions or variables are allowed if their

values do not change.
cheb1ap All inputs must be constants. Expressions or variables are allowed if their

values do not change.
cheb2ap All inputs must be constants. Expressions or variables are allowed if their

values do not change.
cheb1ord All inputs must be constants. Expressions or variables are allowed if their

values do not change.
cheb2ord All inputs must be constants. Expressions or variables are allowed if their

values do not change.
chebwin All inputs must be constants. Expressions or variables are allowed if their

values do not change.
cheby1 All Inputs must be constants. Expressions or variables are allowed if

their values do not change.
cheby2 All inputs must be constants. Expressions or variables are allowed if their

values do not change.
db2pow —

25 Functions, Classes, and System Objects Supported for Code Generation

25-238

Function Remarks/Limitations

dct C and C++ code generation for dct requires DSP System Toolbox
software.

Length of transform dimension must be a power of two. If specified, the
pad or truncation value must be constant. Expressions or variables are
allowed if their values do not change.

downsample —
dpss All inputs must be constants. Expressions or variables are allowed if their

values do not change.
ellip Inputs must be constant. Expressions or variables are allowed if their

values do not change.
ellipap All inputs must be constants. Expressions or variables are allowed if their

values do not change.
ellipord All inputs must be constants. Expressions or variables are allowed if their

values do not change.
filtfilt Filter coefficients must be constants. Expressions or variables are allowed

if their values do not change.
findpeaks —
fir1 All inputs must be constants. Expressions or variables are allowed if their

values do not change.
fir2 All inputs must be constants. Expressions or variables are allowed if their

values do not change.
fircls All inputs must be constants. Expressions or variables are allowed if their

values do not change.
fircls1 All inputs must be constants. Expressions or variables are allowed if their

values do not change.
firls All inputs must be constants. Expressions or variables are allowed if their

values do not change.
firpm All inputs must be constants. Expressions or variables are allowed if their

values do not change.
firpmord All inputs must be constants. Expressions or variables are allowed if their

values do not change.

 Functions and Objects Supported for C and C++ Code Generation — Category List

25-239

Function Remarks/Limitations

flattopwin All inputs must be constants. Expressions or variables are allowed if their
values do not change.

freqz When called with no output arguments, and without a semicolon at the
end, freqz returns the complex frequency response of the input filter,
evaluated at 512 points.

If the semicolon is added, the function produces a plot of the magnitude
and phase response of the filter.

See “freqz With No Output Arguments”.
gausswin All inputs must be constant. Expressions or variables are allowed if their

values do not change.
hamming All inputs must be constant. Expressions or variables are allowed if their

values do not change.
hann All inputs must be constant. Expressions or variables are allowed if their

values do not change.
idct C and C++ code generation for idct requires DSP System Toolbox

software.

Length of transform dimension must be a power of two. If specified, the
pad or truncation value must be constant. Expressions or variables are
allowed if their values do not change.

intfilt All inputs must be constant. Expressions or variables are allowed if their
values do not change.

kaiser All inputs must be constant. Expressions or variables are allowed if their
values do not change.

kaiserord —
levinson C and C++ code generation for levinson requires DSP System Toolbox

software.

If specified, the order of recursion must be a constant. Expressions or
variables are allowed if their values do not change.

maxflat All inputs must be constant. Expressions or variables are allowed if their
values do not change.

25 Functions, Classes, and System Objects Supported for Code Generation

25-240

Function Remarks/Limitations

nuttallwin All inputs must be constant. Expressions or variables are allowed if their
values do not change.

parzenwin All inputs must be constant. Expressions or variables are allowed if their
values do not change.

pow2db —
rcosdesign All inputs must be constant. Expressions or variables are allowed if their

values do not change.
rectwin All inputs must be constant. Expressions or variables are allowed if their

values do not change.
resample The upsampling and downsampling factors must be specified as

constants. Expressions or variables are allowed if their values do not
change.

sgolay All inputs must be constant. Expressions or variables are allowed if their
values do not change.

sosfilt —
taylorwin All inputs must be constant. Expressions or variables are allowed if their

values do not change.
triang All inputs must be constant. Expressions or variables are allowed if their

values do not change.
tukeywin All inputs must be constant. Expressions or variables are allowed if their

values do not change.
upfirdn C and C++ code generation for upfirdn requires DSP System Toolbox

software.

Filter coefficients, upsampling factor, and downsampling factor must
be constants. Expressions or variables are allowed if their values do not
change.

Variable-size inputs are not supported.
upsample Either declare input n as constant, or use the assert function in the

calling function to set upper bounds for n. For example,

assert(n<10)

xcorr —

 Functions and Objects Supported for C and C++ Code Generation — Category List

25-241

Function Remarks/Limitations

yulewalk If specified, the order of recursion must be a constant. Expressions or
variables are allowed if their values do not change.

Special Values in MATLAB

Function Remarks and Limitations

eps • Supported for scalar fixed-point signals only.
• Supported for scalar, vector, and matrix, fi single and fi double

signals.
inf • Dimensions must be real, nonnegative, integers.
intmax —
intmin —
NaN or nan • Dimensions must be real, nonnegative, integers.
pi —
realmax —
realmin —

Specialized Math in MATLAB

Function Remarks and Limitations

beta —
betainc Always returns a complex result.
betaincinv Always returns a complex result.
betaln —
ellipke —
erf —
erfc —
erfcinv —
erfcx —
erfinv —

25 Functions, Classes, and System Objects Supported for Code Generation

25-242

Function Remarks and Limitations

expint —
gamma —
gammainc Output is always complex.
gammaincinv Output is always complex.
gammaln —
psi —

Statistics in MATLAB

Function Remarks and Limitations

corrcoef • Row-vector input is only supported when the first two inputs are vectors
and nonscalar.

cummin —
cummax —
mean • Does not support the 'native' output class option for integer types.

• If supplied, dim must be a constant.
• “Variable-Sizing Restrictions for Code Generation of Toolbox Functions”
• Does not support the nanflag argument.

median • If supplied, dim must be a constant.
• “Variable-Sizing Restrictions for Code Generation of Toolbox

Functions”“Variable-Sizing Restrictions for Code Generation of Toolbox
Functions”

• Does not support the nanflag argument.
• “Code Generation for Complex Data with Zero-Valued Imaginary Parts”.

mode • Does not support third output argument C (cell array).
• If supplied, dim must be a constant.
• “Variable-Sizing Restrictions for Code Generation of Toolbox Functions”

std • “Variable-Sizing Restrictions for Code Generation of Toolbox Functions”
• Does not support the nanflag argument.

var • If supplied, dim must be a constant.

 Functions and Objects Supported for C and C++ Code Generation — Category List

25-243

Function Remarks and Limitations

• “Variable-Sizing Restrictions for Code Generation of Toolbox Functions”
• Does not support the nanflag argument.

Statistics and Machine Learning Toolbox

C and C++ code generation for the following functions requires the Statistics and
Machine Learning Toolbox software.

Function Remarks and Limitations

betacdf —
betafit —
betainv —
betalike —
betapdf —
betarnd Can return a different sequence of numbers than MATLAB if either of

the following is true:

• The output is nonscalar.
• An input parameter is invalid for the distribution.

betastat —
binocdf —
binoinv —
binopdf —
binornd Can return a different sequence of numbers than MATLAB if either of

the following is true:

• The output is nonscalar.
• An input parameter is invalid for the distribution.

binostat —
cdf —
chi2cdf —
chi2inv —

25 Functions, Classes, and System Objects Supported for Code Generation

25-244

Function Remarks and Limitations

chi2pdf —
chi2rnd Can return a different sequence of numbers than MATLAB if either of

the following is true:

• The output is nonscalar.
• An input parameter is invalid for the distribution.

chi2stat —
evcdf —
evinv —
evpdf —
evrnd Can return a different sequence of numbers than MATLAB if either of

the following is true:

• The output is nonscalar.
• An input parameter is invalid for the distribution.

evstat —
expcdf —
expinv —
exppdf —
exprnd Can return a different sequence of numbers than MATLAB if either of

the following is true:

• The output is nonscalar.
• An input parameter is invalid for the distribution.

expstat —
fcdf —
finv —
fpdf —

 Functions and Objects Supported for C and C++ Code Generation — Category List

25-245

Function Remarks and Limitations

frnd Can return a different sequence of numbers than MATLAB if either of
the following is true:

• The output is nonscalar.
• An input parameter is invalid for the distribution.

fstat —
gamcdf —
gaminv —
gampdf —
gamrnd Can return a different sequence of numbers than MATLAB if either of

the following is true:

• The output is nonscalar.
• An input parameter is invalid for the distribution.

gamstat —
geocdf —
geoinv —
geomean —
geopdf —
geornd Can return a different sequence of numbers than MATLAB if either of

the following is true:

• The output is nonscalar.
• An input parameter is invalid for the distribution.

geostat —
gevcdf —
gevinv —
gevpdf —

25 Functions, Classes, and System Objects Supported for Code Generation

25-246

Function Remarks and Limitations

gevrnd Can return a different sequence of numbers than MATLAB if either of
the following is true:

• The output is nonscalar.
• An input parameter is invalid for the distribution.

gevstat —
gpcdf —
gpinv —
gppdf —
gprnd Can return a different sequence of numbers than MATLAB if either of

the following is true:

• The output is nonscalar.
• An input parameter is invalid for the distribution.

gpstat —
harmmean —
hygecdf —
hygeinv —
hygepdf —
hygernd Can return a different sequence of numbers than MATLAB if either of

the following is true:

• The output is nonscalar.
• An input parameter is invalid for the distribution.

hygestat —
icdf —
iqr —
kurtosis —
logncdf —
logninv —
lognpdf —

 Functions and Objects Supported for C and C++ Code Generation — Category List

25-247

Function Remarks and Limitations

lognrnd Can return a different sequence of numbers than MATLAB if either of
the following is true:

• The output is nonscalar.
• An input parameter is invalid for the distribution.

lognstat —
mad Input dim cannot be empty.
mnpdf Input dim cannot be empty.
moment If order is nonintegral and X is real, use moment(complex(X),

order).
nancov If the input is variable-size and is [] at run time, returns [] not NaN.
nanmax —
nanmean —
nanmedian —
nanmin —
nanstd —
nansum —
nanvar —
nbincdf —
nbininv —
nbinpdf —
nbinrnd Can return a different sequence of numbers than MATLAB if either of

the following is true:

• The output is nonscalar.
• An input parameter is invalid for the distribution.

nbinstat —
ncfcdf —
ncfinv —
ncfpdf —

25 Functions, Classes, and System Objects Supported for Code Generation

25-248

Function Remarks and Limitations

ncfrnd Can return a different sequence of numbers than MATLAB if either of
the following is true:

• The output is nonscalar.
• An input parameter is invalid for the distribution.

ncfstat —
nctcdf —
nctinv —
nctpdf —
nctrnd Can return a different sequence of numbers than MATLAB if either of

the following is true:

• The output is nonscalar.
• An input parameter is invalid for the distribution.

nctstat —
ncx2cdf —
ncx2rnd Can return a different sequence of numbers than MATLAB if either of

the following is true:

• The output is nonscalar.
• An input parameter is invalid for the distribution.

ncx2stat —
normcdf —
norminv —
normpdf —
normrnd Can return a different sequence of numbers than MATLAB if either of

the following is true:

• The output is nonscalar.
• An input parameter is invalid for the distribution.

normstat —

 Functions and Objects Supported for C and C++ Code Generation — Category List

25-249

Function Remarks and Limitations

pca • Ignores the 'Display' value for 'Options' when 'Algorithm' is
'als'.

• If supplied, 'Weights' and 'VariableWeights' must be real.
• Always returns the fifth output explained as a column vector.
• Always returns the sixth output mu as a row vector.
• If mu is empty, pca returns mu as a 1-by-0 array. pca does not

convert mu to a 0-by-0 empty array.
• Does not treat an input matrix X that has all NaN values as a special

case. The outputs have the sizes that they have when some of the
inputs are finite.

pdf —
pearsrnd Matches MATLAB only when generated output r is scalar.
poisscdf —
poissinv —
poisspdf —
poissrnd Can return a different sequence of numbers than MATLAB if either of

the following is true:

• The output is nonscalar.
• An input parameter is invalid for the distribution.

poisstat —

25 Functions, Classes, and System Objects Supported for Code Generation

25-250

Function Remarks and Limitations

prctile • “Automatic dimension restriction”
• If the output Y is a vector, the orientation of Y differs from MATLAB

when all of the following are true:

• You do not supply the dim input.
• X is a variable-size array.
• X is not a variable-length vector.
• X is a vector at run time.
• The orientation of the vector X does not match the orientation of

the vector p.

In this case, the output Y matches the orientation of X not the
orientation of p.

quantile —
randg —
random —
raylcdf —
raylinv —
raylpdf —
raylrnd Can return a different sequence of numbers than MATLAB if either of

the following is true:

• The output is nonscalar.
• An input parameter is invalid for the distribution.

raylstat —
skewness —
tcdf —
tinv —
tpdf —

 Functions and Objects Supported for C and C++ Code Generation — Category List

25-251

Function Remarks and Limitations

trnd Can return a different sequence of numbers than MATLAB if either of
the following is true:

• The output is nonscalar.
• An input parameter is invalid for the distribution.

tstat —
unidcdf —
unidinv —
unidpdf —
unidrnd Can return a different sequence of numbers than MATLAB if either of

the following is true:

• The output is nonscalar.
• An input parameter is invalid for the distribution.

unidstat —
unifcdf —
unifinv —
unifpdf —
unifrnd Can return a different sequence of numbers than MATLAB if either of

the following is true:

• The output is nonscalar.
• An input parameter is invalid for the distribution.

unifstat —
wblcdf —
wblinv —
wblpdf —
wblrnd Can return a different sequence of numbers than MATLAB if either of

the following is true:

• The output is nonscalar.
• An input parameter is invalid for the distribution.

25 Functions, Classes, and System Objects Supported for Code Generation

25-252

Function Remarks and Limitations

wblstat —
zscore —

String Functions in MATLAB

Function Remarks and Limitations

bin2dec • Does not match MATLAB when the input is empty.
blanks —
char —
deblank • Supports only inputs from the char class.

• Input values must be in the range 0-127.
dec2bin • If input d is double, d must be less than 2^52.

• If input d is single, d must be less than 2^23.
• Unless you specify input n to be constant and n is large enough that the

output has a fixed number of columns regardless of the input values,
this function requires variable-sizing support. Without variable-sizing
support, n must be at least 52 for double, 23 for single, 16 for char,
32 for int32, 16 for int16, and so on.

dec2hex • If input d is double, d must be less than 2^52.
• If input d is single, d must be less than 2^23.
• Unless you specify input n to be constant and n is large enough that the

output has a fixed number of columns regardless of the input values,
this function requires variable-sizing support. Without variable-sizing
support, n must be at least 13 for double, 6 for single, 4 for char, 8
for int32, 4 for int16, and so on.

hex2dec —
hex2num • For n = hex2num(S), size(S,2) <= length(num2hex(0))
ischar —
isletter • Input values from the char class must be in the range 0-127
isspace • Input values from the char class must be in the range 0–127.
isstrprop • Supports only inputs from char and integer classes.

 Functions and Objects Supported for C and C++ Code Generation — Category List

25-253

Function Remarks and Limitations

• Input values must be in the range 0-127.
lower • Supports only char inputs.

• Input values must be in the range 0-127.
num2hex —
str2double • Does not support cell arrays.

• Always returns a complex result.
strcmp —
strcmpi Input values from the char class must be in the range 0-127.
strfind • Does not support cell arrays.

• If pattern does not exist in str, returns zeros(1,0) not []. To check
for an empty return, use isempty.

• Inputs must be character row vectors.
strjust —
strncmp —
strncmpi • Input values from the char class must be in the range 0-127.
strrep • Does not support cell arrays.

• If oldSubstr does not exist in origStr, returns blanks(0). To check
for an empty return, use isempty.

• Inputs must be character row vectors.
strtok —
strtrim • Supports only inputs from the char class.

• Input values must be in the range 0-127.
upper • Supports only char inputs.

• Input values must be in the range 0-127.

Structures in MATLAB

Function Remarks and Limitations

isfield • Does not support cell input for second argument

25 Functions, Classes, and System Objects Supported for Code Generation

25-254

Function Remarks and Limitations

isstruct —
struct —

Trigonometry in MATLAB

Function Remarks and Limitations

acos • Generates an error during simulation and returns NaN in generated
code when the input value x is real, but the output should be complex.
To get the complex result, make the input value complex by passing in
complex(x).

acosd —
acosh • Generates an error during simulation and returns NaN in generated

code when the input value x is real, but the output should be complex.
To get the complex result, make the input value complex by passing in
complex(x).

acot —
acotd —
acoth —
acsc —
acscd —
acsch —
asec —
asecd —
asech —
asin • Generates an error during simulation and returns NaN in generated

code when the input value x is real, but the output should be complex.
To get the complex result, make the input value complex by passing in
complex(x).

asind —
asinh —
atan —

 Functions and Objects Supported for C and C++ Code Generation — Category List

25-255

Function Remarks and Limitations

atan2 —
atan2d —
atand —
atanh Generates an error during simulation and returns NaN in generated code

when the input value x is real, but the output should be complex. To get the
complex result, make the input value complex by passing in complex(x).

cos —
cosd —
cosh —
cot —
cotd • In some cases, returns -Inf when MATLAB returns Inf.

• In some cases, returns Inf when MATLAB returns -Inf.
coth —
csc —
cscd • In some cases, returns -Inf when MATLAB returns Inf.

• In some cases, returns Inf when MATLAB returns -Inf.
csch —
hypot —
sec —
secd • In some cases, returns -Inf when MATLAB returns Inf.

• In some cases, returns Inf when MATLAB returns -Inf.
sech —
sin —
sind —
sinh —
tan —
tand • In some cases, returns -Inf when MATLAB returns Inf.

• In some cases, returns Inf when MATLAB returns -Inf.

25 Functions, Classes, and System Objects Supported for Code Generation

25-256

Function Remarks and Limitations

tanh —

26

Code Generation for Variable-Size
Data

• “What Is Variable-Size Data?” on page 26-2
• “Variable-Size Data Definition for Code Generation” on page 26-3
• “Bounded Versus Unbounded Variable-Size Data” on page 26-4
• “Control Memory Allocation of Variable-Size Data” on page 26-5
• “Specify Variable-Size Data Without Dynamic Memory Allocation” on page 26-6
• “Variable-Size Data in Code Generation Reports” on page 26-9
• “Define Variable-Size Data for Code Generation” on page 26-11
• “C Code Interface for Arrays” on page 26-17
• “Diagnose and Fix Variable-Size Data Errors” on page 26-22
• “Incompatibilities with MATLAB in Variable-Size Support for Code Generation” on

page 26-26
• “Variable-Sizing Restrictions for Code Generation of Toolbox Functions” on page

26-34

26 Code Generation for Variable-Size Data

26-2

What Is Variable-Size Data?

Variable-size data is data whose size can change at run time. By contrast, fixed-size data
is data whose size is known and locked at compile time and, therefore, cannot change at
run time.

For example, in the following MATLAB function nway, B is a variable-size array; its
length is not known at compile time.

function B = nway(A,n)

% Compute average of every N elements of A and put them in B.

if ((mod(numel(A),n) == 0) && (n >= 1 && n <= numel(A)))

 B = ones(1,numel(A)/n);

 k = 1;

 for i = 1 : numel(A)/n

 B(i) = mean(A(k + (0:n-1)));

 k = k + n;

 end

else

 error('n <= 0 or does not divide number of elements evenly');

end

 Variable-Size Data Definition for Code Generation

26-3

Variable-Size Data Definition for Code Generation

In the MATLAB language, data can vary in size. By contrast, the semantics of generated
code constrains the class, complexity, and shape of every expression, variable, and
structure field. Therefore, for code generation, you must use each variable consistently.
Each variable must:

• Be either complex or real (determined at first assignment)
• Have a consistent shape

For fixed-size data, the shape is the same as the size returned in MATLAB. For
example, if size(A) == [4 5], the shape of variable A is 4 x 5. For variable-size
data, the shape can be abstract. That is, one or more dimensions can be unknown
(such as 4x? or ?x?).

By default, the compiler detects code logic that attempts to change these fixed attributes
after initial assignments, and flags these occurrences as errors during code generation.
However, you can override this behavior by defining variables or structure fields as
variable-size data.

For more information, see “Bounded Versus Unbounded Variable-Size Data” on page
26-4

26 Code Generation for Variable-Size Data

26-4

Bounded Versus Unbounded Variable-Size Data

You can generate code for bounded and unbounded variable-size data. Bounded variable-
size data has fixed upper bounds; this data can be allocated statically on the stack
or dynamically on the heap. Unbounded variable-size data does not have fixed upper
bounds; this data must be allocated on the heap. If you use unbounded data, you must
use dynamic memory allocation so that the compiler:

• Does not check for upper bounds
• Allocates memory on the heap instead of the stack

You can control the memory allocation of variable-size data. For more information, see
“Control Memory Allocation of Variable-Size Data” on page 26-5.

 Control Memory Allocation of Variable-Size Data

26-5

Control Memory Allocation of Variable-Size Data

Data whose size (in bytes) is greater than or equal to the dynamic memory allocation
threshold is allocated on the heap. The default dynamic memory allocation threshold is
64 kilobytes. Data whose size is less than this threshold is allocated on the stack.

Dynamic memory allocation is an expensive operation; the performance cost might be
too high for small data sets. If you use small variable-size data sets or data that does
not change size at run time, disable dynamic memory allocation. See “Control Dynamic
Memory Allocation”.

. You can control memory allocation for individual variables by specifying upper bounds.
See “Specifying Upper Bounds for Variable-Size Data” on page 26-6.

26 Code Generation for Variable-Size Data

26-6

Specify Variable-Size Data Without Dynamic Memory Allocation

In this section...

“Fixing Upper Bounds Errors” on page 26-6
“Specifying Upper Bounds for Variable-Size Data” on page 26-6

Fixing Upper Bounds Errors

If MATLAB cannot determine or compute the upper bound, you must specify an upper
bound. See “Specifying Upper Bounds for Variable-Size Data” on page 26-6 and
“Diagnosing and Fixing Errors in Detecting Upper Bounds” on page 26-24

Specifying Upper Bounds for Variable-Size Data

• “When to Specify Upper Bounds for Variable-Size Data” on page 26-6
• “Specifying Upper Bounds on the Command Line for Variable-Size Inputs” on page

26-6
• “Specifying Unknown Upper Bounds for Variable-Size Inputs” on page 26-7
• “Specifying Upper Bounds for Local Variable-Size Data” on page 26-7
• “Using a Matrix Constructor with Nonconstant Dimensions” on page 26-8

When to Specify Upper Bounds for Variable-Size Data

When using static allocation on the stack during code generation, MATLAB must be able
to determine upper bounds for variable-size data. Specify the upper bounds explicitly for
variable-size data from external sources, such as inputs and outputs.

Specifying Upper Bounds on the Command Line for Variable-Size Inputs

Use the coder.typeof construct with the -args option on the codegen command line
(requires a MATLAB Coder license). For example:

codegen foo -args {coder.typeof(double(0),[3 100],1)}

This command specifies that the input to function foo is a matrix of real doubles
with two variable dimensions. The upper bound for the first dimension is 3; the upper
bound for the second dimension is 100. For a detailed explanation of this syntax, see
coder.typeof.

 Specify Variable-Size Data Without Dynamic Memory Allocation

26-7

Specifying Unknown Upper Bounds for Variable-Size Inputs

If you use dynamic memory allocation, you can specify that you don't know the upper
bounds of inputs. To specify an unknown upper bound, use the infinity constant Inf in
place of a numeric value. For example:

codegen foo -args {coder.typeof(double(0), [1 Inf])}

In this example, the input to function foo is a vector of real doubles without an upper
bound.

Specifying Upper Bounds for Local Variable-Size Data

When using static allocation, MATLAB uses a sophisticated analysis to calculate the
upper bounds of local data at compile time. However, when the analysis fails to detect an
upper bound or calculates an upper bound that is not precise enough for your application,
you need to specify upper bounds explicitly for local variables.

You do not need to specify upper bounds when using dynamic allocation on the heap. In
this case, MATLAB assumes variable-size data is unbounded and does not attempt to
determine upper bounds.

Constraining the Value of a Variable That Specifies Dimensions of Variable-Size Data

Use the assert function with relational operators to constrain the value of variables
that specify the dimensions of variable-size data. For example:

function y = dim_need_bound(n) %#codegen

assert (n <= 5);

L= ones(n,n);

M = zeros(n,n);

M = [L; M];

y = M;

This assert statement constrains input n to a maximum size of 5, defining L and M as
variable-sized matrices with upper bounds of 5 for each dimension.

Specifying the Upper Bounds for All Instances of a Local Variable

Use the coder.varsize function to specify the upper bounds for all instances of a local
variable in a function. For example:

function Y = example_bounds1(u) %#codegen

Y = [1 2 3 4 5];

26 Code Generation for Variable-Size Data

26-8

coder.varsize('Y',[1 10]);

if (u > 0)

 Y = [Y Y+u];

else

 Y = [Y Y*u];

end

The second argument of coder.varsize specifies the upper bound for each instance
of the variable specified in the first argument. In this example, the argument [1 10]
indicates that for every instance of Y:

• First dimension is fixed at size 1
• Second dimension can grow to an upper bound of 10

By default, coder.varsize assumes dimensions of 1 are fixed size. For more
information, see the coder.varsize reference page.

Using a Matrix Constructor with Nonconstant Dimensions

You can define a variable-size matrix by using a constructor with nonconstant
dimensions. For example:

function y = var_by_assign(u) %#codegen

if (u > 0)

 y = ones(3,u);

else

 y = zeros(3,1);

end

If you are not using dynamic memory allocation, you must also add an assert statement
to provide upper bounds for the dimensions. For example:

function y = var_by_assign(u) %#codegen

assert (u < 20);

if (u > 0)

 y = ones(3,u);

else

 y = zeros(3,1);

end

 Variable-Size Data in Code Generation Reports

26-9

Variable-Size Data in Code Generation Reports

In this section...

“What Reports Tell You About Size” on page 26-9
“How Size Appears in Code Generation Reports” on page 26-10
“How to Generate a Code Generation Report” on page 26-10

What Reports Tell You About Size

Code generation reports:

• Differentiate fixed-size from variable-size data
• Identify variable-size data with unknown upper bounds
• Identify variable-size data with fixed dimensions

If you define a variable-size array and then subsequently fix the dimensions of this
array in the code, the report appends * to the size of the variable. In the generated C
code, this variable appears as a variable-size array, but the size of its dimensions does
not change during execution.

• Provide guidance on how to fix size mismatch and upper bounds errors.

26 Code Generation for Variable-Size Data

26-10

How Size Appears in Code Generation Reports

:? means variable size,
unknown upper bound

No colon prefix (:)
 means fixed size

:100 means variable size,
upper bound = 100

* means that you declared y as variable size,
but subsequently fixed its dimensions

How to Generate a Code Generation Report

Add the -report option to your fiaccel command.

 Define Variable-Size Data for Code Generation

26-11

Define Variable-Size Data for Code Generation

In this section...

“When to Define Variable-Size Data Explicitly” on page 26-11
“Using a Matrix Constructor with Nonconstant Dimensions” on page 26-11
“Inferring Variable Size from Multiple Assignments” on page 26-12
“Defining Variable-Size Data Explicitly Using coder.varsize” on page 26-13

When to Define Variable-Size Data Explicitly

For code generation, you must assign variables to have a specific class, size, and
complexity before using them in operations or returning them as outputs. Generally, you
cannot reassign variable properties after the initial assignment. Therefore, attempts to
grow a variable or structure field after assigning it a fixed size might cause a compilation
error. In these cases, you must explicitly define the data as variable sized using one of
these methods:

Method See

Assign the data from a variable-size matrix
constructor such as

• ones

• zeros

• repmat

“Using a Matrix Constructor with
Nonconstant Dimensions” on page
26-11

Assign multiple, constant sizes to the
same variable before using (reading) the
variable.

“Inferring Variable Size from Multiple
Assignments” on page 26-12

Define all instances of a variable to be
variable sized

“Defining Variable-Size Data Explicitly
Using coder.varsize” on page 26-13

Using a Matrix Constructor with Nonconstant Dimensions

You can define a variable-size matrix by using a constructor with nonconstant
dimensions. For example:

26 Code Generation for Variable-Size Data

26-12

function y = var_by_assign(u) %#codegen

if (u > 0)

 y = ones(3,u);

else

 y = zeros(3,1);

end

If you are not using dynamic memory allocation, you must also add an assert statement
to provide upper bounds for the dimensions. For example:

function y = var_by_assign(u) %#codegen

assert (u < 20);

if (u > 0)

 y = ones(3,u);

else

 y = zeros(3,1);

end

Inferring Variable Size from Multiple Assignments

You can define variable-size data by assigning multiple, constant sizes to the same
variable before you use (read) the variable in your code. When MATLAB uses static
allocation on the stack for code generation, it infers the upper bounds from the largest
size specified for each dimension. When you assign the same size to a given dimension
across all assignments, MATLAB assumes that the dimension is fixed at that size. The
assignments can specify different shapes as well as sizes.

When dynamic memory allocation is used, MATLAB does not check for upper bounds; it
assumes variable-size data is unbounded.

Inferring Upper Bounds from Multiple Definitions with Different Shapes

function y = var_by_multiassign(u) %#codegen

if (u > 0)

 y = ones(3,4,5);

else

 y = zeros(3,1);

end

When static allocation is used, this function infers that y is a matrix with three
dimensions, where:

• First dimension is fixed at size 3

 Define Variable-Size Data for Code Generation

26-13

• Second dimension is variable with an upper bound of 4
• Third dimension is variable with an upper bound of 5

The code generation report represents the size of matrix y like this:

When dynamic allocation is used, the function analyzes the dimensions of y differently:

• First dimension is fixed at size 3
• Second and third dimensions are unbounded

In this case, the code generation report represents the size of matrix y like this:

Defining Variable-Size Data Explicitly Using coder.varsize

Use the function coder.varsize to define one or more variables or structure fields as
variable-size data. Optionally, you can also specify which dimensions vary along with
their upper bounds (see “Specifying Which Dimensions Vary” on page 26-14). For
example:

• Define B as a variable-size 2-by-2 matrix, where each dimension has an upper bound
of 64:

coder.varsize('B', [64 64]);

• Define B as a variable-size matrix:

coder.varsize('B');

When you supply only the first argument, coder.varsize assumes all dimensions of
B can vary and that the upper bound is size(B).

26 Code Generation for Variable-Size Data

26-14

For more information, see the coder.varsize reference page.

Specifying Which Dimensions Vary

You can use the function coder.varsize to specify which dimensions vary. For
example, the following statement defines B as a row vector whose first dimension is fixed
at 2, but whose second dimension can grow to an upper bound of 16:

coder.varsize('B',[2, 16],[0 1])

The third argument specifies which dimensions vary. This argument must be a logical
vector or a double vector containing only zeros and ones. Dimensions that correspond to
zeros or false have fixed size; dimensions that correspond to ones or true vary in size.
coder.varsize usually treats dimensions of size 1 as fixed (see “Defining Variable-Size
Matrices with Singleton Dimensions” on page 26-14).

For more information about the syntax, see the coder.varsize reference page.

Allowing a Variable to Grow After Defining Fixed Dimensions

Function var_by_if defines matrix Y with fixed 2-by-2 dimensions before first use
(where the statement Y = Y + u reads from Y). However, coder.varsize defines Y
as a variable-size matrix, allowing it to change size based on decision logic in the else
clause:

function Y = var_by_if(u) %#codegen

if (u > 0)

 Y = zeros(2,2);

 coder.varsize('Y');

 if (u < 10)

 Y = Y + u;

 end

else

 Y = zeros(5,5);

end

Without coder.varsize, MATLAB infers Y to be a fixed-size, 2-by-2 matrix and
generates a size mismatch error during code generation.

Defining Variable-Size Matrices with Singleton Dimensions

A singleton dimension is a dimension for which size(A,dim) = 1. Singleton dimensions
are fixed in size when:

 Define Variable-Size Data for Code Generation

26-15

• You specify a dimension with an upper bound of 1 in coder.varsize expressions.

For example, in this function, Y behaves like a vector with one variable-size
dimension:

function Y = dim_singleton(u) %#codegen

Y = [1 2];

coder.varsize('Y', [1 10]);

if (u > 0)

 Y = [Y 3];

else

 Y = [Y u];

end

• You initialize variable-size data with singleton dimensions using matrix constructor
expressions or matrix functions.

For example, in this function, both X and Y behave like vectors where only their
second dimensions are variable sized:

function [X,Y] = dim_singleton_vects(u) %#codegen

Y = ones(1,3);

X = [1 4];

coder.varsize('Y','X');

if (u > 0)

 Y = [Y u];

else

 X = [X u];

end

You can override this behavior by using coder.varsize to specify explicitly that
singleton dimensions vary. For example:

function Y = dim_singleton_vary(u) %#codegen

Y = [1 2];

coder.varsize('Y', [1 10], [1 1]);

if (u > 0)

 Y = [Y Y+u];

else

 Y = [Y Y*u];

end

In this example, the third argument of coder.varsize is a vector of ones, indicating
that each dimension of Y varies in size. For more information, see the coder.varsize
reference page.

26 Code Generation for Variable-Size Data

26-16

Defining Variable-Size Structure Fields

To define structure fields as variable-size arrays, use colon (:) as the index expression.
The colon (:) indicates that all elements of the array are variable sized. For example:

function y=struct_example() %#codegen

d = struct('values', zeros(1,0), 'color', 0);

data = repmat(d, [3 3]);

coder.varsize('data(:).values');

for i = 1:numel(data)

 data(i).color = rand-0.5;

 data(i).values = 1:i;

end

y = 0;

for i = 1:numel(data)

 if data(i).color > 0

 y = y + sum(data(i).values);

 end;

end

The expression coder.varsize('data(:).values') defines the field values inside
each element of matrix data to be variable sized.

Here are other examples:

• coder.varsize('data.A(:).B')

In this example, data is a scalar variable that contains matrix A. Each element of
matrix A contains a variable-size field B.

• coder.varsize('data(:).A(:).B')

This expression defines field B inside each element of matrix A inside each element of
matrix data to be variable sized.

 C Code Interface for Arrays

26-17

C Code Interface for Arrays

In this section...

“C Code Interface for Statically Allocated Arrays” on page 26-17
“C Code Interface for Dynamically Allocated Arrays” on page 26-18
“Utility Functions for Creating emxArray Data Structures” on page 26-19

C Code Interface for Statically Allocated Arrays

In generated code, MATLAB contains two pieces of information about statically allocated
arrays: the maximum size of the array and its actual size.

For example, consider the MATLAB function uniquetol:

function B = uniquetol(A, tol) %#codegen

A = sort(A);

coder.varsize('B');

B = A(1);

k = 1;

for i = 2:length(A)

 if abs(A(k) - A(i)) > tol

 B = [B A(i)];

 k = i;

 end

end

Generate code for uniquetol specifying that input A is a variable-size real double vector
whose first dimension is fixed at 1 and second dimension can vary up to 100 elements.

codegen -config:lib -report uniquetol -args {coder.typeof(0,[1 100],1),coder.typeof(0)}

In the generated code, the function declaration is:

extern void uniquetol(const double A_data[100], const int A_size[2],...

 double tol, emxArray_real_T *B);

There are two pieces of information about A:

• double A_data[100]: the maximum size of input A (where 100 is the maximum
size specified using coder.typeof).

• int A_size[2]: the actual size of the input.

26 Code Generation for Variable-Size Data

26-18

C Code Interface for Dynamically Allocated Arrays

In generated code, MATLAB represents dynamically allocated data as a structure type
called emxArray. An embeddable version of the MATLAB mxArray, the emxArray is a
family of data types, specialized for all base types.

emxArray Structure Definition

typedef struct emxArray_<baseTypedef>

{

 <baseType> *data;

 int *size;

 int allocatedSize;

 int numDimensions;

 boolean_T canFreeData;

} emxArray_<baseTypedef>;

baseTypedef is the predefined type in rtwtypes.h corresponding to baseType. For
example, here is the definition for an emxArray of base type double with unknown
upper bounds:

typedef struct emxArray_real_T

{

 double *data;

 int *size;

 int allocatedSize;

 int numDimensions;

 boolean_T canFreeData;

} emxArray_real_T;

The predefined type corresponding to double is real_T. For more information on the
correspondence between built-in data types and predefined types in rtwtypes.h, see
“How MATLAB Coder Infers C/C++ Data Types”.

To define two variables, in1 and in2, of this type, use this statement:

emxArray_real_T *in1, *in2;

C Code Interface for Structure Fields

Field Description

*data Pointer to data of type <baseType>.
*size Pointer to first element of size vector. Length of

the vector equals the number of dimensions.

 C Code Interface for Arrays

26-19

Field Description

allocatedSize Number of elements currently allocated for the
array. If the size changes, MATLAB reallocates
memory based on the new size.

numDimensions Number of dimensions of the size vector, that
is, the number of dimensions you can access
without crossing into unallocated or unused
memory.

canFreeData Boolean flag indicating how to deallocate
memory:

• true – MATLAB deallocates memory
automatically

• false – Calling program determines when to
deallocate memory

Utility Functions for Creating emxArray Data Structures

When you generate code that uses variable-size data, the code generation software
exports a set of utility functions that you can use to create and interact with emxArrays
in your generated code. To call these functions in your main C function, include the
generated header file. For example, when you generate code for function foo, include
foo_emxAPI.h in your main C function. .

Note: The code generation software exports emxArray utility functions only for variable-
size arrays that are entry-point function arguments or that are used by functions called
by coder.ceval.

Function Arguments Description

emxArray_<baseType>

*emxCreateWrapper_<baseType>

(...)

*data

num_rows

num_cols

Creates a new 2-
dimensional emxArray,
but does not allocate
it on the heap. Instead
uses memory provided
by the user and sets
canFreeData to

26 Code Generation for Variable-Size Data

26-20

Function Arguments Description

false so it does not
inadvertently free user
memory, such as the
stack.

emxArray_<baseType>

*emxCreateWrapperND_<baseType>

(...)

*data

numDimensions

*size

Same as
emxCreateWrapper_<baseType>,
except it creates a
new N-dimensional
emxArray.

emxArray_<baseType>

*emxCreate_<baseType> (...)

num_rows

num_cols

Creates a new two-
dimensional emxArray
on the heap, initialized
to zero. All data
elements have the
data type specified by
<baseType>.

emxArray_<baseType>

*emxCreateND_<baseType> (...)

numDimensions

*size

Same as
emxCreate_<baseType>,
except it creates a
new N-dimensional
emxArray on the heap.

void emxInitArray_<baseType>

(...)

**emxArray

numDimensions

Creates a new empty
emxArray on the heap.
All data elements have
the data type specified
by <baseType>.

void emxInitArray_<structType>

(...)

*structure Creates empty
emxArrays in a
structure.

void emxDestroyArray_<baseType>

(...)

*emxArray Frees dynamic
memory allocated by
emxCreate_<baseType>,
emxCreateND_<baseType>,
and
emxInitArray_baseType

functions.

 C Code Interface for Arrays

26-21

Function Arguments Description

void emxDestroyArray_<structType>

(...)

*structure Frees dynamic
memory allocated by
emxInitArray_<structType>

functions.

By default, when you generate C/C++ source code, static libraries, dynamic libraries, and
executables, MATLAB Coder generates an example C/C++ main function. The example
main function is a template that can help you to incorporate generated C/C++ code into
your application. If you generate code that uses dynamically allocated data, the example
main function includes calls to emxArray utility functions that create emxArrays
required for this data. The example main function also initializes emxArray data to zero
values. For more information, see “Incorporate Generated Code Using an Example Main
Function”.

26 Code Generation for Variable-Size Data

26-22

Diagnose and Fix Variable-Size Data Errors

In this section...

“Diagnosing and Fixing Size Mismatch Errors” on page 26-22
“Diagnosing and Fixing Errors in Detecting Upper Bounds” on page 26-24

Diagnosing and Fixing Size Mismatch Errors

Check your code for these issues:

Assigning Variable-Size Matrices to Fixed-Size Matrices

You cannot assign variable-size matrices to fixed-size matrices in generated code.
Consider this example:

function Y = example_mismatch1(n) %#codegen

assert(n < 10);

B = ones(n,n);

A = magic(3);

A(1) = mean(A(:));

if (n == 3)

 A = B;

end

Y = A;

Compiling this function produces this error:

??? Dimension 1 is fixed on the left-hand side

but varies on the right ...

There are several ways to fix this error:

• Allow matrix A to grow by adding the coder.varsize construct:

function Y = example_mismatch1_fix1(n) %#codegen

coder.varsize('A');

assert(n < 10);

B = ones(n,n);

A = magic(3);

A(1) = mean(A(:));

if (n == 3)

 Diagnose and Fix Variable-Size Data Errors

26-23

 A = B;

end

Y = A;

• Explicitly restrict the size of matrix B to 3-by-3 by modifying the assert statement:

function Y = example_mismatch1_fix2(n) %#codegen

coder.varsize('A');

assert(n == 3)

B = ones(n,n);

A = magic(3);

A(1) = mean(A(:));

if (n == 3)

 A = B;

end

Y = A;

• Use explicit indexing to make B the same size as A:

function Y = example_mismatch1_fix3(n) %#codegen

assert(n < 10);

B = ones(n,n);

A = magic(3);

A(1) = mean(A(:));

if (n == 3)

 A = B(1:3, 1:3);

end

Y = A;

Empty Matrix Reshaped to Match Variable-Size Specification

If you assign an empty matrix [] to variable-size data, MATLAB might silently reshape
the data in generated code to match a coder.varsize specification. For example:

function Y = test(u) %#codegen

Y = [];

coder.varsize(‘Y’, [1 10]);

if u < 0

 Y = [Y u];

end

In this example, coder.varsize defines Y as a column vector of up to 10 elements,
so its first dimension is fixed at size 1. The statement Y = [] designates the first
dimension of Y as 0, creating a mismatch. The right hand side of the assignment is an
empty matrix and the left hand side is a variable-size vector. In this case, MATLAB

26 Code Generation for Variable-Size Data

26-24

reshapes the empty matrix Y = [] in generated code to Y = zeros(1,0) so it matches
the coder.varsize specification.

Performing Binary Operations on Fixed and Variable-Size Operands

You cannot perform binary operations on operands of different sizes. Operands have
different sizes if one has fixed dimensions and the other has variable dimensions. For
example:

function z = mismatch_operands(n) %#codegen

assert(n >= 3 && n < 10);

x = ones(n,n);

y = magic(3);

z = x + y;

When you compile this function, you get an error because y has fixed dimensions (3 x 3),
but x has variable dimensions. Fix this problem by using explicit indexing to make x the
same size as y:

function z = mismatch_operands_fix(n) %#codegen

assert(n >= 3 && n < 10);

x = ones(n,n);

y = magic(3);

z = x(1:3,1:3) + y;

Diagnosing and Fixing Errors in Detecting Upper Bounds

Check your code for these issues:

Using Nonconstant Dimensions in a Matrix Constructor

You can define variable-size data by assigning a variable to a matrix with nonconstant
dimensions. For example:

function y = dims_vary(u) %#codegen

if (u > 0)

 y = ones(3,u);

else

 y = zeros(3,1);

end

However, compiling this function generates an error because you did not specify an upper
bound for u.

 Diagnose and Fix Variable-Size Data Errors

26-25

There are several ways to fix the problem:

• Enable dynamic memory allocation and recompile. During code generation, MATLAB
does not check for upper bounds when it uses dynamic memory allocation for variable-
size data.

• If you do not want to use dynamic memory allocation, add an assert statement
before the first use of u:

function y = dims_vary_fix(u) %#codegen

assert (u < 20);

if (u > 0)

 y = ones(3,u);

else

 y = zeros(3,1);

end

26 Code Generation for Variable-Size Data

26-26

Incompatibilities with MATLAB in Variable-Size Support for Code
Generation

In this section...

“Incompatibility with MATLAB for Scalar Expansion” on page 26-26
“Incompatibility with MATLAB in Determining Size of Variable-Size N-D Arrays” on
page 26-28
“Incompatibility with MATLAB in Determining Size of Empty Arrays” on page 26-29
“Incompatibility with MATLAB in Determining Class of Empty Arrays” on page
26-30
“Incompatibility with MATLAB in Vector-Vector Indexing” on page 26-31
“Incompatibility with MATLAB in Matrix Indexing Operations for Code Generation” on
page 26-31
“Incompatibility with MATLAB in Concatenating Variable-Size Matrices” on page
26-32
“Dynamic Memory Allocation Not Supported for MATLAB Function Blocks” on page
26-33

Incompatibility with MATLAB for Scalar Expansion

Scalar expansion is a method of converting scalar data to match the dimensions of vector
or matrix data. Except for some matrix operators, MATLAB arithmetic operators work
on corresponding elements of arrays with equal dimensions. For vectors and rectangular
arrays, both operands must be the same size unless one is a scalar. If one operand is a
scalar and the other is not, MATLAB applies the scalar to every element of the other
operand—this property is known as scalar expansion.

During code generation, the standard MATLAB scalar expansion rules apply except
when operating on two variable-size expressions. In this case, both operands must be
the same size. The generated code does not perform scalar expansion even if one of the
variable-size expressions turns out to be scalar at run time. Instead, it generates a size
mismatch error at run time for MEX functions. Run-time error checking does not occur
for non-MEX builds; the generated code will have unspecified behavior.

For example, in the following function, z is scalar for the switch statement case 0 and
case 1. MATLAB applies scalar expansion when evaluating y(:) = z; for these two
cases.

 Incompatibilities with MATLAB in Variable-Size Support for Code Generation

26-27

function y = scalar_exp_test_err1(u) %#codegen

y = ones(3);

switch u

 case 0

 z = 0;

 case 1

 z = 1;

 otherwise

 z = zeros(3);

end

y(:) = z;

When you generate code for this function, the code generation software determines that z
is variable size with an upper bound of 3.

If you run the MEX function with u equal to zero or one, even though z is scalar at run
time, the generated code does not perform scalar expansion and a run-time error occurs.

scalar_exp_test_err1_mex(0)

Sizes mismatch: 9 ~= 1.

Error in scalar_exp_test_err1 (line 11)

y(:) = z;

Workaround

Use indexing to force z to be a scalar value:

26 Code Generation for Variable-Size Data

26-28

function y = scalar_exp_test_err1(u) %#codegen

y = ones(3);

switch u

 case 0

 z = 0;

 case 1

 z = 1;

 otherwise

 z = zeros(3);

end

y(:) = z(1);

Incompatibility with MATLAB in Determining Size of Variable-Size N-D
Arrays

For variable-size N-D arrays, the size function can return a different result in generated
code than in MATLAB. In generated code, size(A) returns a fixed-length output
because it does not drop trailing singleton dimensions of variable-size N-D arrays. By
contrast, size(A) in MATLAB returns a variable-length output because it drops trailing
singleton dimensions.

For example, if the shape of array A is :?x:?x:? and size(A,3)==1, size(A) returns:

• Three-element vector in generated code
• Two-element vector in MATLAB code

Workarounds

If your application requires generated code to return the same size of variable-size N-D
arrays as MATLAB code, consider one of these workarounds:

• Use the two-argument form of size.

For example, size(A,n) returns the same answer in generated code and MATLAB
code.

• Rewrite size(A):

B = size(A);

X = B(1:ndims(A));

 Incompatibilities with MATLAB in Variable-Size Support for Code Generation

26-29

This version returns X with a variable-length output. However, you cannot pass
a variable-size X to matrix constructors such as zeros that require a fixed-size
argument.

Incompatibility with MATLAB in Determining Size of Empty Arrays

The size of an empty array in generated code might be different from its size in MATLAB
source code. The size might be 1x0 or 0x1 in generated code, but 0x0 in MATLAB.
Therefore, you should not write code that relies on the specific size of empty matrices.

For example, consider the following code:

function y = foo(n) %#codegen

x = [];

i = 0;

while (i < 10)

 x = [5 x];

 i = i + 1;

end

if n > 0

 x = [];

end

y = size(x);

end

Concatenation requires its operands to match on the size of the dimension that is not
being concatenated. In the preceding concatenation the scalar value has size 1x1 and x
has size 0x0. To support this use case, the code generation software determines the size
for x as [1 x :?]. Because there is another assignment x = [] after the concatenation,
the size of x in the generated code is 1x0 instead of 0x0.

Workaround

If your application checks whether a matrix is empty, use one of these workarounds:

• Rewrite your code to use the isempty function instead of the size function.
• Instead of using x=[] to create empty arrays, create empty arrays of a specific size

using zeros. For example:

function y = test_empty(n) %#codegen

x = zeros(1,0);

26 Code Generation for Variable-Size Data

26-30

i=0;

while (i < 10)

 x = [5 x];

 i = i + 1;

end

if n > 0

 x = zeros(1,0);

end

y=size(x);

end

Incompatibility with MATLAB in Determining Class of Empty Arrays

The class of an empty array in generated code can be different from its class in MATLAB
source code. Therefore, do not write code that relies on the class of empty matrices.

For example, consider the following code:

function y = fun(n)

x = [];

if n > 1

 x = ['a' x];

end

y=class(x);

end

fun(0) returns double in MATLAB, but char in the generated code. When the
statement n > 1 is false, MATLAB does not execute x = ['a' x]. The class of x is
double, the class of the empty array. However, the code generation software considers
all execution paths. It determines that based on the statement x = ['a' x], the class of
x is char.

Workaround

Instead of using x=[] to create an empty array, create an empty array of a specific class.
For example, use blanks(0) to create an empty array of characters.

function y = fun(n)

x = blanks(0);

if n > 1

 x = ['a' x];

end

y=class(x);

end

 Incompatibilities with MATLAB in Variable-Size Support for Code Generation

26-31

Incompatibility with MATLAB in Vector-Vector Indexing

In vector-vector indexing, you use one vector as an index into another vector. When
either vector is variable sized, you might get a run-time error during code generation.
Consider the index expression A(B). The general rule for indexing is that size(A(B))
== size(B). However, when both A and B are vectors, MATLAB applies a special rule:
use the orientation of A as the orientation of the output. For example, if size(A) == [1
5] and size(B) == [3 1], then size(A(B)) == [1 3].

In this situation, if the code generation software detects that both A and B are vectors
at compile time, it applies the special rule and gives the same result as MATLAB.
However, if either A or B is a variable-size matrix (has shape ?x?) at compile time, the
code generation software applies only the general indexing rule. Then, if both A and B
become vectors at run time, the code generation software reports a run-time error when
you run the MEX function. Run-time error checking does not occur for non-MEX builds;
the generated code will have unspecified behavior. It is best practice to generate and test
a MEX function before generating C code.

Workaround

Force your data to be a vector by using the colon operator for indexing: A(B(:)). For
example, suppose your code intentionally toggles between vectors and regular matrices at
run time. You can do an explicit check for vector-vector indexing:

...

if isvector(A) && isvector(B)

 C = A(:);

 D = C(B(:));

else

 D = A(B);

end

...

The indexing in the first branch specifies that C and B(:) are compile-time vectors. As a
result, the code generation software applies the standard vector-vector indexing rule.

Incompatibility with MATLAB in Matrix Indexing Operations for Code
Generation

The following limitation applies to matrix indexing operations for code generation:

26 Code Generation for Variable-Size Data

26-32

• Initialization of the following style:

for i = 1:10

 M(i) = 5;

end

In this case, the size of M changes as the loop is executed. Code generation does not
support increasing the size of an array over time.

For code generation, preallocate M as highlighted in the following code.

M = zeros(1,10);

for i = 1:10

 M(i) = 5;

end

The following limitation applies to matrix indexing operations for code generation when
dynamic memory allocation is disabled:

• M(i:j) where i and j change in a loop

During code generation, memory is not dynamically allocated for the size of the
expressions that change as the program executes. To implement this behavior, use
for-loops as shown in the following example:

...

M = ones(10,10);

for i=1:10

 for j = i:10

 M(i,j) = 2*M(i,j);

 end

end

...

Note: The matrix M must be defined before entering the loop, as shown in the
highlighted code.

Incompatibility with MATLAB in Concatenating Variable-Size Matrices

For code generation, when you concatenate variable-sized arrays, the dimensions that
are not being concatenated must match exactly.

 Incompatibilities with MATLAB in Variable-Size Support for Code Generation

26-33

Dynamic Memory Allocation Not Supported for MATLAB Function Blocks

You cannot use dynamic memory allocation for variable-size data in MATLAB Function
blocks. Use bounded instead of unbounded variable-size data.

26 Code Generation for Variable-Size Data

26-34

Variable-Sizing Restrictions for Code Generation of Toolbox
Functions

In this section...

“Common Restrictions” on page 26-34
“Toolbox Functions with Variable Sizing Restrictions” on page 26-35

Common Restrictions

The following common restrictions apply to multiple toolbox functions, but only for code
generation. To determine which of these restrictions apply to specific library functions,
see the table in “Toolbox Functions with Variable Sizing Restrictions” on page 26-35.

Variable-length vector restriction

Inputs to the library function must be variable-length vectors or fixed-size vectors.
A variable-length vector is a variable-size array that has the shape 1x:n or :nx1
(one dimension is variable sized and the other is fixed at size 1). Other shapes are not
permitted, even if they are vectors at run time.

Automatic dimension restriction

When the function selects the working dimension automatically, it bases the selection
on the upper bounds for the dimension sizes. In the case of the sum function, sum(X)
selects its working dimension automatically, while sum(X, dim) uses dim as the explicit
working dimension.

For example, if X is a variable-size matrix with dimensions 1x:3x:5, sum(x) behaves
like sum(X,2) in generated code. In MATLAB, it behaves like sum(X,2) provided
size(X,2) is not 1. In MATLAB, when size(X,2) is 1, sum(X) behaves like
sum(X,3). Consequently, you get a run-time error if an automatically selected working
dimension assumes a length of 1 at run time.

To avoid the issue, specify the intended working dimension explicitly as a constant value.

Array-to-vector restriction

The function issues an error when a variable-size array that is not a variable-length
vector assumes the shape of a vector at run time. To avoid the issue, specify the input
explicitly as a variable-length vector instead of a variable-size array.

 Variable-Sizing Restrictions for Code Generation of Toolbox Functions

26-35

Array-to-scalar restriction

The function issues an error if a variable-size array assumes a scalar value at run time.
To avoid this issue, specify scalars as fixed size.

Toolbox Functions with Variable Sizing Restrictions

The following restrictions apply to specific toolbox functions, but only for code generation.

Function Restrictions with Variable-Size Data

all • See “Automatic dimension restriction” on page
26-34.

• An error occurs if you pass the first argument a
variable-size matrix that is 0-by-0 at run time.

any • See “Automatic dimension restriction” on page
26-34.

• An error occurs if you pass the first argument a
variable-size matrix that is 0-by-0 at run time.

bsxfun • Dimensions expand only where one input array or the
other has a fixed length of 1.

cat • Dimension argument must be a constant.
• An error occurs if variable-size inputs are empty at run

time.
conv • See “Variable-length vector restriction” on page

26-34.
• Input vectors must have the same orientation, either

both row vectors or both column vectors.
cov • For cov(X), see“Array-to-vector restriction” on page

26-34.
cross • Variable-size array inputs that become vectors at run

time must have the same orientation.
deconv • For both arguments, see“Variable-length vector

restriction” on page 26-34.
detrend • For first argument for row vectors only, see “Array-to-

vector restriction” on page 26-34 .

26 Code Generation for Variable-Size Data

26-36

Function Restrictions with Variable-Size Data

diag • See “Array-to-vector restriction” on page 26-34 .
diff • See “Automatic dimension restriction” on page

26-34.
• Length of the working dimension must be greater than

the difference order input when the input is variable
sized. For example, if the input is a variable-size matrix
that is 3-by-5 at run time, diff(x,2,1) works but
diff(x,5,1) generates a run-time error.

fft • See “Automatic dimension restriction” on page
26-34.

filter • For first and second arguments, see “Variable-length
vector restriction” on page 26-34.

• See “Automatic dimension restriction” on page
26-34.

hist • For second argument, see “Variable-length vector
restriction” on page 26-34.

• For second input argument, see“Array-to-scalar
restriction” on page 26-35.

histc • See “Automatic dimension restriction” on page
26-34.

ifft • See “Automatic dimension restriction” on page
26-34.

ind2sub • First input (the size vector input) must be fixed size.
interp1 • For the Y input and xi input, see“Array-to-vector

restriction” on page 26-34.
• Y input can become a column vector dynamically.
• A run-time error occurs if Y input is not a variable-

length vector and becomes a row vector at run time.
ipermute • Order input must be fixed size.
issorted • For optional rows input, see “Variable-length vector

restriction” on page 26-34.

 Variable-Sizing Restrictions for Code Generation of Toolbox Functions

26-37

Function Restrictions with Variable-Size Data

magic • Argument must be a constant.
• Output can be fixed-size matrices only.

max • See “Automatic dimension restriction” on page
26-34.

mean • See “Automatic dimension restriction” on page
26-34.

• An error occurs if you pass as the first argument a
variable-size matrix that is 0-by-0 at run time.

median • See “Automatic dimension restriction” on page
26-34.

• An error occurs if you pass as the first argument a
variable-size matrix that is 0-by-0 at run time.

min • See “Automatic dimension restriction” on page
26-34.

mode • See “Automatic dimension restriction” on page
26-34.

• An error occurs if you pass as the first argument a
variable-size matrix that is 0-by-0 at run time.

mtimes • When an input is variable-size, MATLAB determines
whether to generate code for a general matrix*matrix
multiplication or a scalar*matrix multiplication, based
on whether one of the arguments is a fixed-size scalar.
If neither argument is a fixed-size scalar, the inner
dimensions of the two arguments must agree even if a
variable-size matrix input is a scalar at run time.

nchoosek • The second input, k, must be a fixed-size scalar.
• The second input, k, must be a constant for static

allocation. If you enable dynamic allocation, the second
input can be a variable.

• You cannot create a variable-size array by passing in a
variable, k, unless you enable dynamic allocation.

permute • Order input must be fixed-size.

26 Code Generation for Variable-Size Data

26-38

Function Restrictions with Variable-Size Data

planerot • Input must be a fixed-size, two-element column vector.
It cannot be a variable-size array that takes on the size
2-by-1 at run time.

poly • See “Variable-length vector restriction” on page
26-34.

polyfit • For first and second arguments, see “Variable-length
vector restriction” on page 26-34.

prod • See “Automatic dimension restriction” on page
26-34.

• An error occurs if you pass as the first argument a
variable-size matrix that is 0-by-0 at run time.

rand • For an upper-bounded variable N, rand(1,N) produces
a variable-length vector of 1x:M where M is the upper
bound on N.

• For an upper-bounded variable N, rand([1 N]) may
produce a variable-length vector of :1x:M where M is the
upper bound on N.

Generated fixed-point code
enhancements

• For an upper-bounded variable N, randn(1,N) produces
a variable-length vector of 1x:M where M is the upper
bound on N.

• For an upper-bounded variable N, randn([1 N]) may
produce a variable-length vector of :1x:M where M is the
upper bound on N.

Generated fixed-point code
enhancements

• For an upper-bounded variable N, randn(1,N) produces
a variable-length vector of 1x:M where M is the upper
bound on N.

• For an upper-bounded variable N, randn([1 N]) may
produce a variable-length vector of :1x:M where M is the
upper bound on N.

 Variable-Sizing Restrictions for Code Generation of Toolbox Functions

26-39

Function Restrictions with Variable-Size Data

reshape • If the input is a variable-size array and the output
array has at least one fixed-length dimension, do not
specify the output dimension sizes in a size vector sz.
Instead, specify the output dimension sizes as scalar
values, sz1,...,szN. Specify fixed-size dimensions as
constants.

• When the input is a variable-size empty array, the
maximum dimension size of the output array (also
empty) cannot be larger than that of the input.

roots • See “Variable-length vector restriction” on page
26-34.

shiftdim • If you do not supply the second argument, the number
of shifts is determined at compilation time by the upper
bounds of the dimension sizes. Consequently, at run
time the number of shifts is constant.

• An error occurs if the dimension that is shifted to the
first dimension has length 1 at run time. To avoid the
error, supply the number of shifts as the second input
argument (must be a constant).

• First input argument must have the same number of
dimensions when you supply a positive number of shifts.

std • See “Automatic dimension restriction” on page
26-34.

• An error occurs if you pass a variable-size matrix with
0-by-0 dimensions at run time.

sub2ind • First input (the size vector input) must be fixed size.
sum • See “Automatic dimension restriction” on page

26-34.
• An error occurs if you pass as the first argument a

variable-size matrix that is 0-by-0 at run time.
trapz • See “Automatic dimension restriction” on page

26-34.
• An error occurs if you pass as the first argument a

variable-size matrix that is 0-by-0 at run time.

26 Code Generation for Variable-Size Data

26-40

Function Restrictions with Variable-Size Data

typecast • See “Variable-length vector restriction” on page
26-34 on first argument.

var • See “Automatic dimension restriction” on page
26-34.

• An error occurs if you pass a variable-size matrix with
0-by-0 dimensions at run time.

27

Primary Functions

27 Primary Functions

27-2

Primary Function Input Specification

In this section...

“Why You Must Specify Input Properties” on page 27-2
“Properties to Specify” on page 27-2
“Rules for Specifying Properties of Primary Inputs” on page 27-4
“Methods for Defining Properties of Primary Inputs” on page 27-4
“Define Input Properties by Example at the Command Line” on page 27-5
“Specify Constant Inputs at the Command Line” on page 27-7
“Specify Variable-Size Inputs at the Command Line” on page 27-9

Why You Must Specify Input Properties

Fixed-Point Designer must determine the properties of all variables in the MATLAB
files at compile time. To infer variable properties in MATLAB files, Fixed-Point Designer
must be able to identify the properties of the inputs to the primary function, also known
as the top-level or entry-point function. Therefore, if your primary function has inputs,
you must specify the properties of these inputs, to Fixed-Point Designer. If your primary
function has no input parameters, Fixed-Point Designer can compile your MATLAB file
without modification. You do not need to specify properties of inputs to local functions or
external functions called by the primary function.

Properties to Specify

If your primary function has inputs, you must specify the following properties for each
input.

For Specify properties

 Class Size Complexity numerictype fimath
Fixed-point
inputs
Each field in
a structure
input

Specify properties for each field according to its class

When a primary input is a structure, the code generation software treats each
field as a separate input. Therefore, you must specify properties for allfields of a
primary structure input in the order that they appear in the structure definition:

 Primary Function Input Specification

27-3

For Specify properties

• For each field of input structures, specify class, size, and complexity.
• For each field that is fixed-point class, also specify numerictype, and fimath.

Other inputs

Default Property Values

Fixed-Point Designer assigns the following default values for properties of primary
function inputs.

Property Default

class double

size scalar

complexity real

numerictype No default
fimath MATLAB default fimath object

Supported Classes

The following table presents the class names supported by Fixed-Point Designer.

Class Name Description

logical Logical array of true and false values
char Character array
int8 8-bit signed integer array
uint8 8-bit unsigned integer array
int16 16-bit signed integer array
uint16 16-bit unsigned integer array
int32 32-bit signed integer array
uint32 32-bit unsigned integer array
int64 64-bit signed integer array
uint64 64–bit unsigned integer array

27 Primary Functions

27-4

Class Name Description

single Single-precision floating-point or fixed-point
number array

double Double-precision floating-point or fixed-point
number array

struct Structure array
embedded.fi Fixed-point number array

Rules for Specifying Properties of Primary Inputs

When specifying the properties of primary inputs, follow these rules.

• You must specify the class of all primary inputs. If you do not specify the size or
complexity of primary inputs, they default to real scalars.

• For each primary function input whose class is fixed point (fi), you must specify the
input numerictype and fimath properties.

• For each primary function input whose class is struct, you must specify the
properties of each of its fields in the order that they appear in the structure definition.

Methods for Defining Properties of Primary Inputs

Method Advantages Disadvantages

 • If you are working in a project,
easy to use

• Does not alter original MATLAB
code

• saves the definitions in the
project file

• Not efficient for specifying
memory-intensive inputs such as
large structures and arrays

“Define Input
Properties by Example
at the Command Line”
on page 27-5

• Easy to use
• Does not alter original MATLAB

code
• Designed for prototyping a

function that has a few primary
inputs

• Must be specified at the
command line every time you
invoke fiaccel (unless you use
a script)

• Not efficient for specifying
memory-intensive inputs such as
large structures and arrays

 Primary Function Input Specification

27-5

Method Advantages Disadvantages

Note: If you define
input properties
programmatically
in the MATLAB file,
you cannot use this
method
“Define Input
Properties
Programmatically in
the MATLAB File”

• Integrated with MATLAB code;
no need to redefine properties
each time you invoke

• Provides documentation of
property specifications in the
MATLAB code

• Efficient for specifying memory-
intensive inputs such as large
structures

• Uses complex syntax
• project files do not currently

recognize properties defined
programmatically. If you are
using a project, you must reenter
the input types in the project.

Define Input Properties by Example at the Command Line

• “Command-Line Option -args” on page 27-5
• “Rules for Using the -args Option” on page 27-5
• “Specifying Properties of Primary Inputs by Example” on page 27-6
• “Specifying Properties of Primary Fixed-Point Inputs by Example” on page 27-6

Command-Line Option -args

The fiaccel function provides a command-line option -args for specifying the
properties of primary (entry-point) function inputs as a cell array of example values. The
cell array can be a variable or literal array of constant values. Using this option, you
specify the properties of inputs at the same time as you generate code for the MATLAB
function with fiaccel.

Rules for Using the -args Option

When using the -args command-line option to define properties by example, follow these
rules:

• The cell array of sample values must contain the same number of elements as
primary function inputs.

27 Primary Functions

27-6

• The order of elements in the cell array must correspond to the order in which inputs
appear in the primary function signature — for example, the first element in the cell
array defines the properties of the first primary function input.

Note: If you specify an empty cell array with the -args option, fiaccel interprets this
to mean that the function takes no inputs; a compile-time error occurs if the function
does have inputs.

Specifying Properties of Primary Inputs by Example

Consider a function that adds its two inputs:

function y = emcf(u,v) %#codegen

% The directive %#codegen indicates that you

% intend to generate code for this algorithm

y = u + v;

The following examples show how to specify different properties of the primary inputs u
and v by example at the command line:

• Use a literal cell array of constants to specify that both inputs are real, scalar, fixed-
point values:

fiaccel -o emcfx emcf ...

 -args {fi(0,1,16,15),fi(0,1,16,15)}

• Use a literal cell array of constants to specify that input u is an unsigned 16-bit, 1-
by-4 vector and input v is a scalar, fixed-point value:

fiaccel -o emcfx emcf ...

 -args {zeros(1,4,'uint16'),fi(0,1,16,15)}

• Assign sample values to a cell array variable to specify that both inputs are real,
unsigned 8-bit integer vectors:

a = fi([1;2;3;4],0,8,0)

b = fi([5;6;7;8],0,8,0)

ex = {a,b}

fiaccel -o emcfx emcf -args ex

Specifying Properties of Primary Fixed-Point Inputs by Example

Consider a function that calculates the square root of a fixed-point number:

 Primary Function Input Specification

27-7

function y = sqrtfi(x) %#codegen

y = sqrt(x);

To specify the properties of the primary fixed-point input x by example on the MATLAB
command line, follow these steps:

1 Define the numerictype properties for x, as in this example:

T = numerictype('WordLength',32,...

 'FractionLength',23,'Signed',true);

2 Define the fimath properties for x, as in this example:

F = fimath('SumMode','SpecifyPrecision',...

 'SumWordLength',32,'SumFractionLength',23,...

 'ProductMode','SpecifyPrecision', ...

 ProductWordLength',32,'ProductFractionLength',23);

3 Create a fixed-point variable with the numerictype and fimath properties you
defined, as in this example:

myeg = { fi(4.0,T,F) };

4 Compile the function sqrtfi using the fiaccel command, passing the variable
myeg as the argument to the-args option, as in this example:

fiaccel sqrtfi -args myeg;

Specify Constant Inputs at the Command Line

If you know that your primary inputs do not change at run time, you can reduce overhead
in the generated code by specifying that the primary inputs are constant values.
Constant inputs are commonly used for flags that control how an algorithm executes and
values that specify the sizes or types of data.

To specify that inputs are constants, use the -args command-line option with a
coder.Constant object. To specify that an input is a constant with the size, class,
complexity, and value of constant_input, use the following syntax:

-args {coder.Constant(constant_input)}

Calling Functions with Constant Inputs

fiaccel compiles constant function inputs into the generated code. As a result, the MEX
function signature differs from the MATLAB function signature. At run time, you supply
the constant argument to the MATLAB function, but not to the MEX function.

27 Primary Functions

27-8

For example, consider the following function identity which copies its input to its
output:

function y = identity(u) %#codegen

y = u;

To generate a MEX function identity_mex with a constant input, type the following
command at the MATLAB prompt:

fiaccel -o identity_mex identity...

 -args {coder.Constant(fi(0.1,1,16,15))}

To run the MATLAB function, supply the constant argument as follows:

identity(fi(0.1,1,16,15))

You get the following result:

ans =

 0.1000

Now, try running the MEX function with this command:

identity_mex

You should get the same answer.

Specifying a Structure as a Constant Input

Suppose that you define a structure tmp in the MATLAB workspace to specify the
dimensions of a matrix, as follows:

tmp = struct('rows', 2, 'cols', 3);

The following MATLAB function rowcol accepts a structure input p to define matrix y:

function y = rowcol(u,p) %#codegen

y = fi(zeros(p.rows,p.cols),1,16,15) + u;

The following example shows how to specify that primary input u is a double scalar
variable and primary input p is a constant structure:

fiaccel rowcol ...

 -args {fi(0,1,16,15),coder.Constant(tmp)}

 Primary Function Input Specification

27-9

To run this code, use

u = fi(0.5,1,16,15)

y_m = rowcol(u,tmp)

y_mex = rowcol_mex(u)

Specify Variable-Size Inputs at the Command Line

Variable-size data is data whose size might change at run time. MATLAB supports
bounded and unbounded variable-size data for code generation. Bounded variable-
size data has fixed upper bounds. This data can be allocated statically on the stack
or dynamically on the heap. Unbounded variable-size data does not have fixed upper
bounds. This data must be allocated on the heap. You can define inputs to have one or
more variable-size dimensions — and specify their upper bounds — using the -args
option and coder.typeof function:

-args {coder.typeof(example_value, size_vector, variable_dims}

Specifies a variable-size input with:

• Same class and complexity as example_value
• Same size and upper bounds as size_vector
• Variable dimensions specified by variable_dims

When you enable dynamic memory allocation, you can specify Inf in the size vector for
dimensions with unknown upper bounds at compile time.

When variable_dims is a scalar, it is applied to all the dimensions, with the following
exceptions:

• If the dimension is 1 or 0, which are fixed.
• If the dimension is unbounded, which is always variable size.

Specifying a Variable-Size Vector Input

1 Write a function that computes the sum of every n elements of a vector A and stores
them in a vector B:

function B = nway(A,n) %#codegen

% Compute sum of every N elements of A and put them in B.

27 Primary Functions

27-10

coder.extrinsic('error');

Tb = numerictype(1,32,24);

if ((mod(numel(A),n) == 0) && ...

 (n>=1 && n<=numel(A)))

 B = fi(zeros(1,numel(A)/n),Tb);

 k = 1;

 for i = 1 : numel(A)/n

 B(i) = sum(A(k + (0:n-1)));

 k = k + n;

 end

else

 B = fi(zeros(1,0),Tb);

 error('n<=0 or does not divide evenly');

end

2 Specify the first input A as a fi object. Its first dimension stays fixed in size and its
second dimension can grow to an upper bound of 100. Specify the second input n as a
double scalar.

fiaccel nway ...

-args {coder.typeof(fi(0,1,16,15,'SumMode','KeepLSB'),[1 100],1),0}...

-report

3 As an alternative, assign the coder.typeof expression to a MATLAB variable, then
pass the variable as an argument to -args:

vareg = coder.typeof(fi(0,1,16,15,'SumMode','KeepLSB'),[1 100],1)

fiaccel nway -args {vareg, double(0)} -report

 Define Input Properties Programmatically in the MATLAB File

27-11

Define Input Properties Programmatically in the MATLAB File

With MATLAB Coder, you use the MATLAB assert function to define properties of
primary function inputs directly in your MATLAB file.

In this section...

“How to Use assert with MATLAB Coder” on page 27-11
“Rules for Using assert Function” on page 27-17
“Specifying General Properties of Primary Inputs” on page 27-17
“Specifying Properties of Primary Fixed-Point Inputs” on page 27-18
“Specifying Class and Size of Scalar Structure” on page 27-19
“Specifying Class and Size of Structure Array” on page 27-20

How to Use assert with MATLAB Coder

Use the assert function to invoke standard MATLAB functions for specifying the class,
size, and complexity of primary function inputs.

You must use one of the following methods when specifying input properties using the
assert function. Use the exact syntax that is provided; do not modify it.

• “Specify Any Class” on page 27-12
• “Specify fi Class” on page 27-12
• “Specify Structure Class” on page 27-13
• “Specify Fixed Size” on page 27-13
• “Specify Scalar Size” on page 27-13
• “Specify Upper Bounds for Variable-Size Inputs” on page 27-14
• “Specify Inputs with Fixed- and Variable-Size Dimensions” on page 27-14
• “Specify Size of Individual Dimensions” on page 27-14
• “Specify Real Input” on page 27-15
• “Specify Complex Input” on page 27-15
• “Specify numerictype of Fixed-Point Input” on page 27-15
• “Specify fimath of Fixed-Point Input” on page 27-16

27 Primary Functions

27-12

• “Specify Multiple Properties of Input” on page 27-16

Specify Any Class

assert (isa (param, 'class_name'))

Sets the input parameter param to the MATLAB class class_name. For example, to set
the class of input U to a 32-bit signed integer, call:

...

assert(isa(U,'int32'));

...

If you set the class of an input parameter to fi, you must also set its numerictype,
see “Specify numerictype of Fixed-Point Input” on page 27-15. You can also set its
fimath properties, see “Specify fimath of Fixed-Point Input” on page 27-16. If you do
not set the fimath properties, codegen uses the MATLAB default fimath value.

If you set the class of an input parameter to struct, you must specify the properties of
all fields in the order that they appear in the structure definition.

Specify fi Class

assert (isfi (param))

assert (isa (param, 'embedded.fi'))

Sets the input parameter param to the MATLAB class fi (fixed-point numeric object).
For example, to set the class of input U to fi, call:

...

assert(isfi(U));

...

or

...

assert(isa(U,'embedded.fi'));

...

If you set the class of an input parameter to fi, you must also set its numerictype,
see “Specify numerictype of Fixed-Point Input” on page 27-15. You can also set its
fimath properties, see “Specify fimath of Fixed-Point Input” on page 27-16. If you do
not set the fimath properties, codegen uses the MATLAB default fimath value.

 Define Input Properties Programmatically in the MATLAB File

27-13

Specify Structure Class

assert (isstruct (param))

assert (isa (param, 'struct'))

Sets the input parameter param to the MATLAB class struct (structure). For example,
to set the class of input U to a struct, call:

...

assert(isstruct(U));

...

or

...

assert(isa(U, 'struct'));

...

If you set the class of an input parameter to struct, you must specify the properties of
all fields in the order they appear in the structure definition.

Specify Fixed Size

assert (all (size (param) == [dims]))

Sets the input parameter param to the size specified by dimensions dims. For example,
to set the size of input U to a 3-by-2 matrix, call:

...

assert(all(size(U)== [3 2]));

...

Specify Scalar Size

assert (isscalar (param))

assert (all (size (param) == [1]))

Sets the size of input parameter param to scalar. To set the size of input U to scalar, call:

...

assert(isscalar(U));

...

or

...

27 Primary Functions

27-14

assert(all(size(U)== [1]));

...

Specify Upper Bounds for Variable-Size Inputs

assert (all(size(param)<=[N0 N1 ...]));

assert (all(size(param)<[N0 N1 ...]));

Sets the upper-bound size of each dimension of input parameter param. To set the upper-
bound size of input U to be less than or equal to a 3-by-2 matrix, call:

assert(all(size(U)<=[3 2]));

Note: You can also specify upper bounds for variable-size inputs using coder.varsize.

Specify Inputs with Fixed- and Variable-Size Dimensions

assert (all(size(param)>=[M0 M1 ...]));

assert (all(size(param)<=[N0 N1 ...]));

When you use assert(all(size(param)>=[M0 M1 ...])) to specify the lower-bound
size of each dimension of an input parameter:

• You must also specify an upper-bound size for each dimension of the input parameter.
• For each dimension, k, the lower-bound Mk must be less than or equal to the upper-

bound Nk.
• To specify a fixed-size dimension, set the lower and upper bound of a dimension to the

same value.
• Bounds must be non-negative.

To fix the size of the first dimension of input U to 3 and set the second dimension as
variable size with upper-bound of 2, call:

assert(all(size(U)>=[3 0]));

assert(all(size(U)<=[3 2]));

Specify Size of Individual Dimensions

assert (size(param, k)==Nk);

assert (size(param, k)<=Nk);

assert (size(param, k)<Nk);

 Define Input Properties Programmatically in the MATLAB File

27-15

You can specify individual dimensions as well as specifying all dimensions
simultaneously or instead of specifying all dimensions simultaneously. The following
rules apply:

• You must specify the size of each dimension at least once.
• The last dimension specification takes precedence over earlier specifications.

Sets the upper-bound size of dimension k of input parameter param. To set the upper-
bound size of the first dimension of input U to 3, call:

assert(size(U,1)<=3)

To fix the size of the second dimension of input U to 2, call:

assert(size(U,2)==2)

Specify Real Input

assert (isreal (param))

Specifies that the input parameter param is real. To specify that input U is real, call:

...

assert(isreal(U));

...

Specify Complex Input

assert (~isreal (param))

Specifies that the input parameter param is complex. To specify that input U is complex,
call:

...

assert(~isreal(U));

...

Specify numerictype of Fixed-Point Input

assert (isequal (numerictype (fiparam), T))

Sets the numerictype properties of fi input parameter fiparam to the numerictype
object T. For example, to specify the numerictype property of fixed-point input U as a
signed numerictype object T with 32-bit word length and 30-bit fraction length, use the
following code:

27 Primary Functions

27-16

%#codegen

...

% Define the numerictype object.

T = numerictype(1, 32, 30);

% Set the numerictype property of input U to T.

assert(isequal(numerictype(U),T));

...

Specify fimath of Fixed-Point Input

assert (isequal (fimath (fiparam), F))

Sets the fimath properties of fi input parameter fiparam to the fimath object F. For
example, to specify the fimath property of fixed-point input U so that it saturates on
integer overflow, use the following code:

%#codegen

...

% Define the fimath object.

F = fimath('OverflowMode','saturate');

% Set the fimath property of input U to F.

assert(isequal(fimath(U),F));

...

If you do not specify the fimath properties using assert, codegen uses the MATLAB
default fimath value.

Specify Multiple Properties of Input

assert (function1 (params) &&

 function2 (params) &&

 function3 (params) && ...)

Specifies the class, size, and complexity of one or more inputs using a single assert
function call. For example, the following code specifies that input U is a double, complex,
3-by-3 matrix, and input V is a 16-bit unsigned integer:

%#codegen

...

assert(isa(U,'double') &&

 ~isreal(U) &&

 all(size(U) == [3 3]) &&

 isa(V,'uint16'));

...

 Define Input Properties Programmatically in the MATLAB File

27-17

Rules for Using assert Function

When using the assert function to specify the properties of primary function inputs,
follow these rules:

• Call assert functions at the beginning of the primary function, before control-flow
operations such as if statements or subroutine calls.

• Do not call assert functions inside conditional constructs, such as if, for, while,
and switch statements.

• Use the assert function with MATLAB Coder only for specifying properties of
primary function inputs before converting your MATLAB code to C/C++ code.

• If you set the class of an input parameter to fi, you must also set its numerictype.
See “Specify numerictype of Fixed-Point Input” on page 27-15. You can also set its
fimath properties. See “Specify fimath of Fixed-Point Input” on page 27-16. If you
do not set the fimath properties, codegen uses the MATLAB default fimath value.

• If you set the class of an input parameter to struct, you must specify the class, size,
and complexity of all fields in the order that they appear in the structure definition.

• When you use assert(all(size(param)>=[M0 M1 ...])) to specify the lower-
bound size of each dimension of an input parameter:

• You must also specify an upper-bound size for each dimension of the input
parameter.

• For each dimension, k, the lower-bound Mk must be less than or equal to the
upper-bound Nk.

• To specify a fixed-size dimension, set the lower and upper bound of a dimension to
the same value.

• Bounds must be non-negative.
• If you specify individual dimensions, the following rules apply:

• You must specify the size of each dimension at least once.
• The last dimension specification takes precedence over earlier specifications.

Specifying General Properties of Primary Inputs

In the following code excerpt, a primary MATLAB function mcspecgram takes two
inputs: pennywhistle and win. The code specifies the following properties for these
inputs:

27 Primary Functions

27-18

Input Property Value

class int16

size 220500-by-1 vector
pennywhistle

complexity real (by default)
class double

size 1024-by-1 vector
win

complexity real (by default)

%#codegen

function y = mcspecgram(pennywhistle,win)

nx = 220500;

nfft = 1024;

assert(isa(pennywhistle,'int16'));

assert(all(size(pennywhistle) == [nx 1]));

assert(isa(win, 'double'));

assert(all(size(win) == [nfft 1]));

...

Alternatively, you can combine property specifications for one or more inputs inside
assert commands:

%#codegen

function y = mcspecgram(pennywhistle,win)

nx = 220500;

nfft = 1024;

assert(isa(pennywhistle,'int16') && all(size(pennywhistle) == [nx 1]));

assert(isa(win, 'double') && all(size(win) == [nfft 1]));

...

Specifying Properties of Primary Fixed-Point Inputs

To specify fixed-point inputs, you must install Fixed-Point Designer software.

In the following example, the primary MATLAB function mcsqrtfi takes one fixed-point
input x. The code specifies the following properties for this input.

Property Value

class fi

 Define Input Properties Programmatically in the MATLAB File

27-19

Property Value

numerictype numerictype object T, as specified in the primary
function

fimath fimath object F, as specified in the primary function
size scalar

complexity real (by default)

function y = mcsqrtfi(x) %#codegen

T = numerictype('WordLength',32,'FractionLength',23,...

 'Signed',true);

F = fimath('SumMode','SpecifyPrecision',...

 'SumWordLength',32,'SumFractionLength',23,...

 'ProductMode','SpecifyPrecision',...

 'ProductWordLength',32,'ProductFractionLength',23);

assert(isfi(x));

assert(isequal(numerictype(x),T));

assert(isequal(fimath(x),F));

y = sqrt(x);

Specifying Class and Size of Scalar Structure

Assume you have defined S as the following scalar MATLAB structure:

S = struct('r',double(1),'i',int8(4));

Here is code that specifies the class and size of S and its fields when passed as an input
to your MATLAB function:

function y = fcn(S) %#codegen

% Specify the class of the input as struct.

assert(isstruct(S));

% Specify the class and size of the fields r and i

% in the order in which you defined them.

assert(isa(S.r,'double'));

assert(isa(S.i,'int8');

...

In most cases, when you don't explicitly specify values for properties, MATLAB Coder
uses defaults — except for structure fields. The only way to name a field in a structure

27 Primary Functions

27-20

is to set at least one of its properties. As a minimum, you must specify the class of a
structure field

Specifying Class and Size of Structure Array

For structure arrays, you must choose a representative element of the array for
specifying the properties of each field. For example, assume you have defined S as the
following 1-by-2 array of MATLAB structures:

S = struct('r',{double(1), double(2)},'i',{int8(4), int8(5)});

The following code specifies the class and size of each field of structure input S using the
first element of the array:

%#codegen

function y = fcn(S)

% Specify the class of the input S as struct.

assert(isstruct(S));

% Specify the size of the fields r and i

% based on the first element of the array.

assert(all(size(S) == [1 2]));

assert(isa(S(1).r,'double'));

assert(isa(S(1).i,'int8'));

The only way to name a field in a structure is to set at least one of its properties. As a
minimum, you must specify the class of all fields.

28

System Objects Supported for Code
Generation

28 System Objects Supported for Code Generation

28-2

Code Generation for System Objects

You can generate C and C++ code for a subset of System objects provided by the following
toolboxes.

Toolbox Name See

Communications System Toolbox “System Objects in MATLAB Code
Generation” in the DSP System Toolbox
documentation.

Computer Vision System Toolbox “System Objects in MATLAB Code
Generation” in the Computer Vision
System Toolbox documentation.

DSP System Toolbox “System Objects in MATLAB Code
Generation” in the DSP System Toolbox
documentation.

Image Acquisition Toolbox • imaq.VideoDevice.
• “Code Generation with VideoDevice

System Object” in the Image Acquisition
Toolbox documentation.

Phased Array System Toolbox “Code Generation” in the Phased Array
System Toolbox documentation.

To use these System objects, you need to install the requisite toolbox. For a list of System
objects supported for C and C++ code generation, see “Functions and Objects Supported
for C and C++ Code Generation — Alphabetical List” and “Functions and Objects
Supported for C and C++ Code Generation — Category List”.

System objects are MATLAB object-oriented implementations of algorithms. They
extend MATLAB by enabling you to model dynamic systems represented by time-varying
algorithms. System objects are well integrated into the MATLAB language, regardless of
whether you are writing simple functions, working interactively in the command window,
or creating large applications.

In contrast to MATLAB functions, System objects automatically manage state
information, data indexing, and buffering, which is particularly useful for iterative
computations or stream data processing. This enables efficient processing of long data
sets. For general information about MATLAB objects, see “Begin Using Object-Oriented
Programming”.

29

System Objects

• “What Are System Objects?” on page 29-2
• “System Objects in MATLAB Code Generation” on page 29-3
• “System Objects in Simulink” on page 29-10
• “System Object Methods” on page 29-11

29 System Objects

29-2

What Are System Objects?

A System object is a specialized kind of MATLAB object. System Toolboxes include
System objects and most System Toolboxes also have MATLAB functions and Simulink
blocks. System objects are designed specifically for implementing and simulating
dynamic systems with inputs that change over time. Many signal processing,
communications, and controls systems are dynamic. In a dynamic system, the values
of the output signals depend on both the instantaneous values of the input signals and
on the past behavior of the system. System objects use internal states to store that past
behavior, which is used in the next computational step. As a result, System objects are
optimized for iterative computations that process large streams of data, such as video
and audio processing systems.

For example, you could use System objects in a system that reads data from a file,
filters that data and then writes the filtered output to another file. Typically, a specified
amount of data is passed to the filter in each loop iteration. The file reader object uses
a state to keep track of where in the file to begin the next data read. Likewise, the file
writer object keeps tracks of where it last wrote data to the output file so that data is not
overwritten. The filter object maintains its own internal states to assure that the filtering
is performed correctly. This diagram represents a single loop of the system.

Many System objects support:

• Fixed-point arithmetic (requires a Fixed-Point Designer license)
• C code generation (requires a MATLAB Coder or Simulink Coder license)
• HDL code generation (requires an HDL Coder license)
• Executable files or shared libraries generation (requires a MATLAB Compiler license)

Note: Check your product documentation to confirm fixed-point, code generation, and
MATLAB Compiler support for the specific System objects you want to use.

 System Objects in MATLAB Code Generation

29-3

System Objects in MATLAB Code Generation

In this section...

“System Objects in Generated Code” on page 29-3
“System Objects in codegen” on page 29-8
“System Objects in the MATLAB Function Block” on page 29-8
“System Objects in the MATLAB System Block” on page 29-8
“System Objects and MATLAB Compiler Software” on page 29-9

System Objects in Generated Code

You can generate C/C++ code in MATLAB from your system that contains System objects
by using the MATLAB Coder product. Using this product, you can generate efficient
and compact code for deployment in desktop and embedded systems and accelerate
fixed-point algorithms. You do not need the MATLAB Coder product to generate code in
Simulink.

Note: Most, but not all, System objects support code generation. Refer to the particular
object’s reference page for information.

System Objects Code with Persistent Objects for Code Generation

This example shows how to use System objects to make MATLAB code suitable for code
generation. The example highlights key factors to consider, such as passing property
values and using extrinsic functions. It also shows that by using persistent objects, the
object states are maintained between calls.

function w = lmssystem(x, d)

% LMSSYSTEMIDENTIFICATION System identification using

% LMS adaptive filter

% #codegen

 % Declare System objects as persistent

 persistent hlms;

 % Initialize persistent System objects only once.

 % Do this with 'if isempty(persistent variable).'

 % This condition will be false after the first time.

29 System Objects

29-4

 if isempty(hlms)

 % Create LMS adaptive filter used for system

 % identification. Pass property value arguments

 % as constructor arguments. Property values must

 % be constants during compile time.

 hlms = dsp.LMSFilter(11,'StepSize',0.01);

 end

 [~,~,w] = step(hlms,x,d); % Filter weights

end

This example shows how to compile the lmssystem function and produce a MEX file
with the same name in the current directory.

% LMSSYSTEMIDENTIFICATION System identification using

% LMS adaptive filter

coefs = fir1(10,.25);

hfilt = dsp.FIRFilter('Numerator', coefs);

x = randn(1000,1); % Input signal

hSrc = dsp.SignalSource(x,100); % Use x as input-signal with

 % 100 samples per frame

% Generate code for lmssystem

codegen lmssystem -args {ones(100,1),ones(100,1)}

while ~isDone(hSrc)

 in = step(hSrc);

 d = step(hfilt,in) + 0.01*randn(100,1); % Desired signal

 w = lmssystem_mex(in,d); % Call generated mex file

 stem([coefs.',w]);

end

For another detailed code generation example, see “Generate Code for MATLAB Handle
Classes and System Objects” in the MATLAB Coder product documentation.

System Objects Code Without Persistent Objects for Code Generation

The following example, using System objects, does not use the persistent keyword
because calling a persistent object with different data types causes a data type mismatch
error. This example filters the input and then performs a discrete cosine transform on

 System Objects in MATLAB Code Generation

29-5

the filtered output. Each call to the FilterAndDCTLib function is independent and state
information is not retained between calls.

function [out] = FilterAndDCTLib(in)

 hFIR = dsp.FIRFilter('Numerator',fir1(10,0.5));

 DCT = dsp.DCT;

 % Run the objects to get the filtered spectrum

 firOut = hFIR.step(in);

 out = hDCT.step(firOut);

function [out1, out2] = CompareRealInt(in1)

 % Call the library function, FilterAndDCTLib, which can

 % generate code for multiple calls each with a different data type.

 % Convert input data from double to int16

 in2 = int16(in1);

 % Call the library function for both data types, double and int16

 out1 = FilterAndDCTLib(in1);

 out2 = FilterAndDCTLib(in2);

function RunDCTExample

 % Execute everything needed at the command line to run the example

 warnState = warning('off','SimulinkFixedPoint:util:fxpParameterUnderflow');

 % Create vector, length 256, of data containing noise and sinusoids

 dataLength = 256;

 sampleData = rand(dataLength,1) + 3*sin(2*pi*[1:dataLength]*.085)' ...

 + 2*cos(2*pi*[1:dataLength]*.02)';

 % Generate code and run generated file

 codegen CompareRealInt -args {sampleData}

 [out1,out2] = CompareRealInt_mex(sampleData);

 % Compare the the floating point results, in blue

 % with the int16 results, in red

 plot(out1,'b')

 hold on

 plot(out2,'r')

 hold off

29 System Objects

29-6

 warning(warnState.state,warnState.identifier);

end

Usage Rules and Limitations for System Objects in Generated MATLAB Code

The following usage rules and limitations apply to using System objects in code
generated from MATLAB.

Object Construction and Initialization

• If objects are stored in persistent variables, initialize System objects once by
embedding the object handles in an if statement with a call to isempty().

• Set arguments to System object constructors as compile-time constants.
• You cannot initialize System objects properties with other MATLAB class objects

as default values in code generation. You must initialize these properties in the
constructor.

Inputs and Outputs

• System objects accept a maximum of 32 inputs. A maximum of 8 dimensions per input
is supported.

• The data type of the inputs should not change.
• If you want the size of inputs to change, verify that variable-size is enabled. Code

generation support for variable-size data also requires that the Enable variable
sizing option is enabled, which is the default in MATLAB.

Note: Variable-size properties in MATLAB Function block in Simulink are not
supported. System objects predefined in the software do not support variable-size if
their data exceeds the DynamicMemoryAllocationThreshold value.

• Do not set System objects to become outputs from the MATLAB Function block.
• Do not use the Save and Restore Simulation State as SimState option for any System

object in a MATLAB Function block.
• Do not pass a System object as an example input argument to a function being

compiled with codegen.
• Do not pass a System object to functions declared as extrinsic (functions called in

interpreted mode) using the coder.extrinsic function. System objects returned
from extrinsic functions and scope System objects that automatically become extrinsic
can be used as inputs to another extrinsic function, but do not generate code.

 System Objects in MATLAB Code Generation

29-7

Tunable and Nontunable Properties

• The value assigned to a nontunable property must be a constant and there can be at
most one assignment to that property (including the assignment in the constructor).

• For most System objects, the only time you can set their nontunable properties during
code generation is when you construct the objects.

• For System objects that are predefined in the software, you can set their tunable
properties at construction time or using dot notation after the object is locked.

• For System objects that you define, you can change their tunable properties
at construction time or using dot notation during code generation. For
getNumInputsImpl and getNumOutputsImpl methods, if you set the
return argument from an object property, that object property must have the
Nontunable attribute.

• Objects cannot be used as default values for properties.
• In MATLAB simulations, default values are shared across all instances of an object.

Two instances of a class can access the same default value if that property has not
been overwritten by either instance.

Cell Arrays and Global Variables

• Do not use cell arrays.
• Global variables are not supported. To avoid syncing global variables between a MEX

file and the workspace, use a coder configuration object. For example:

f = coder.MEXConfig;

f.GlobalSyncMethod = 'NoSync'

Then, include '-config f' in your codegen command.

Methods

• Code generation support is available only for these System object methods:

• get

• getNumInputs

• getNumOutputs

• isDone (for sources only)
• release

29 System Objects

29-8

• reset

• set (for tunable properties)
• step

• Code generation support for using dot notation depends on whether the System object
is predefined in the software or is one that you defined.

• For System objects that are predefined in the software, you cannot use dot
notation to call methods.

• For System objects that you define, you can use dot notation or function call
notation, with the System object as first argument, to call methods.

System Objects in codegen

You can include System objects in MATLAB code in the same way you include any
other elements. You can then compile a MEX file from your MATLAB code by using
the codegen command, which is available if you have a MATLAB Coder license. This
compilation process, which involves a number of optimizations, is useful for accelerating
simulations. See “Getting Started with MATLAB Coder” and “MATLAB Classes” for
more information.

Note: Most, but not all, System objects support code generation. Refer to the particular
object’s reference page for information.

System Objects in the MATLAB Function Block

Using the MATLAB Function block, you can include any System object and any MATLAB
language function in a Simulink model. This model can then generate embeddable
code. System objects provide higher-level algorithms for code generation than do most
associated blocks. For more information, see “What Is a MATLAB Function Block?” in the
Simulink documentation.

System Objects in the MATLAB System Block

Using the MATLAB System block, you can include in a Simulink model individual
System objects that you create with a class definition file . The model can then generate
embeddable code. For more information, see “What Is the MATLAB System Block?” in
the Simulink documentation.

 System Objects in MATLAB Code Generation

29-9

System Objects and MATLAB Compiler Software

MATLAB Compiler software supports System objects for use inside MATLAB functions.
The compiler product does not support System objects for use in MATLAB scripts.

29 System Objects

29-10

System Objects in Simulink

System Objects in the MATLAB Function Block

You can include System object code in Simulink models using the MATLAB Function
block. Your function can include one or more System objects. Portions of your system may
be easier to implement in the MATLAB environment than directly in Simulink. Many
System objects have Simulink block counterparts with equivalent functionality. Before
writing MATLAB code to include in a Simulink model, check for existing blocks that
perform the desired operation.

 System Object Methods

29-11

System Object Methods

In this section...

“What Are System Object Methods?” on page 29-11
“The Step Method” on page 29-11
“Common Methods” on page 29-12

What Are System Object Methods?

After you create a System object, you use various object methods to process data or
obtain information from or about the object. All methods that are applicable to an object
are described in the reference pages for that object. System object method names begin
with a lowercase letter and class and property names begin with an uppercase letter.
The syntax for using methods is <method>(<handle>), such as step(H), plus possible
extra input arguments.

System objects use a minimum of two commands to process data—a constructor to
create the object and the step method to run data through the object. This separation
of declaration from execution lets you create multiple, persistent, reusable objects,
each with different settings. Using this approach avoids repeated input validation
and verification, allows for easy use within a programming loop, and improves overall
performance. In contrast, MATLAB functions must validate parameters every time you
call the function.

These advantages make System objects particularly well suited for processing streaming
data, where segments of a continuous data stream are processed iteratively. This ability
to process streaming data provides the advantage of not having to hold large amounts of
data in memory. Use of streaming data also allows you to use simplified programs that
use loops efficiently.

The Step Method

The step method is the key System object method. You use step to process data using
the algorithm defined by that object. The step method performs other important tasks
related to data processing, such as initialization and handling object states. Every
System object has its own customized step method, which is described in detail on the
step reference page for that object. For more information about the step method and
other available methods, see the descriptions in “Common Methods” on page 29-12.

29 System Objects

29-12

Common Methods

All System objects support the following methods, each of which is described in a method
reference page associated with the particular object. In cases where a method is not
applicable to a particular object, calling that method has no effect on the object.

Method Description

step Processes data using the algorithm defined by the object. As
part of this processing, it initializes needed resources, returns
outputs, and updates the object states. After you call the
step method, you cannot change any input specifications (i.e.,
dimensions, data type, complexity). During execution, you can
change only tunable properties. The step method returns
regular MATLAB variables.

Example: Y = step(H,X)
release Releases any special resources allocated by the object, such

as file handles and device drivers, and unlocks the object.
For System objects, use the release method instead of a
destructor.

reset Resets the internal states of a locked object to the initial values
for that object and leaves the object locked

getNumInputs Returns the number of inputs (excluding the object itself)
expected by the step method. This number varies for an object
depending on whether any properties enable additional inputs.

getNumOutputs Returns the number of outputs expected from the step
method. This number varies for an object depending on
whether any properties enable additional outputs.

getDiscreteState Returns the discrete states of the object in a structure. If the
object is unlocked (when the object is first created and before
you have run the step method on it or after you have released
the object), the states are empty. If the object has no discrete
states, getDiscreteState returns an empty structure.

clone Creates another object of the same type with the same property
values

isLocked Returns a logical value indicating whether the object is locked.

 System Object Methods

29-13

Method Description

isDone Applies to source objects only. Returns a logical value
indicating whether the step method has reached the end of
the data file. If a particular object does not have end-of-data
capability, this method value returns false.

info Returns a structure containing characteristic information
about the object. The fields of this structure vary depending on
the object. If a particular object does not have characteristic
information, the structure is empty.

Fixed-Point Designer for Simulink Models

30

Getting Started

• “Product Description” on page 30-2
• “What You Need to Get Started” on page 30-3
• “Physical Quantities and Measurement Scales” on page 30-5
• “Why Use Fixed-Point Hardware?” on page 30-13
• “Why Use the Fixed-Point Designer Software?” on page 30-14
• “Developing and Testing Fixed-Point Systems” on page 30-15
• “Supported Data Types” on page 30-18
• “Configure Blocks with Fixed-Point Output” on page 30-19
• “Configure Blocks with Fixed-Point Parameters” on page 30-29
• “Pass Fixed-Point Data Between Simulink Models and MATLAB” on page 30-32
• “Cast from Doubles to Fixed Point” on page 30-36

30 Getting Started

30-2

Product Description
Design and simulate fixed-point systems

Fixed-Point Designer enables the fixed-point capabilities of the Simulink product family,
letting you use those products to design, simulate, and implement fixed-point control and
signal processing algorithms.

With Fixed-Point Designer, you specify fixed-point data attributes, including word
length and scaling for signals and parameters, in your model. You can perform bit-true
simulations to observe the effects of limited range and precision on designs built with
Simulink, Stateflow, DSP System Toolbox, and other Simulink products. Automated
fixed-point advisors guide you through the steps of converting floating-point models to
fixed point. Additional tools analyze your model or use simulation results to recommend
data types and scaling.

Fixed-Point Designer supports C, HDL, and PLC code generation with Simulink code-
generation products.

Key Features

• Fixed-point modeling and simulation in Simulink, Stateflow, and other Simulink
products

• Bit-true, fixed-point arithmetic for code generated by Simulink C, HDL, and PLC code
generation products

• Automated advisors that convert models from floating- to fixed-point data types
• Analysis tools for deriving ranges for all signals based on design information
• Data type tools that use range data to recommend word length and scaling
• Control of fixed-point data type and of scaling from 1- to 128-bit word sizes
• Customizable fixed-point operators and math functions for embedded code generation

 What You Need to Get Started

30-3

What You Need to Get Started

In this section...

“Installation” on page 30-3
“Sharing Fixed-Point Models” on page 30-3

Installation

To determine if the Fixed-Point Designer software is installed on your system, type

ver

at the MATLAB command line. When you enter this command, the MATLAB Command
Window displays information about the version of MATLAB software you are running,
including a list of installed add-on products and their version numbers. Check the list to
see if the Fixed-Point Designer software appears.

For information about installing this product, refer to the installation documentation.

If you experience installation difficulties and have Web access, look for the installation
and license information at the MathWorks Web site (http://www.mathworks.com/
support).

Sharing Fixed-Point Models

You can edit a model containing fixed-point blocks without the Fixed-Point Designer
software. However, you must have a Fixed-Point Designer software license to

• Update a Simulink diagram (Ctrl+D) containing fixed-point data types
• Run a model containing fixed-point data types
• Generate code from a model containing fixed-point data types
• Log the minimum and maximum values produced by a simulation
• Automatically scale the output of a model

If you do not have the Fixed-Point Designer software, you can work with a model
containing Simulink blocks with fixed-point settings as follows:

1 In the Model Hierarchy pane, select the root model.

http://www.mathworks.com/support
http://www.mathworks.com/support

30 Getting Started

30-4

2 From the Simulink model Analysis menu, select Fixed-Point Tool.

In the Fixed-Point Tool:

• Set the Fixed-point instrumentation mode parameter to Force Off.
• Set the Data type override parameter to Double or Single.
• Set the Data type override applies to parameter to All numeric types.

3 If you use fi objects or embedded numeric data types in your model, set the fipref
DataTypeOverride property to TrueDoubles and the DataTypeOverride
property to All numeric types.

At the MATLAB command line, enter:

 p = fipref('DataTypeOverride', 'TrueDoubles', ...

 'DataTypeOverrideAppliesTo', 'AllNumericTypes');

Note: If you use fi objects or embedded numeric data types in your model or workspace,
you might introduce fixed-point data types into your model. You can set fipref to
prevent the checkout of a Fixed-Point Designer license.

 Physical Quantities and Measurement Scales

30-5

Physical Quantities and Measurement Scales

In this section...

“Introduction” on page 30-5
“Selecting a Measurement Scale” on page 30-6
“Select a Measurement Scale for Temperature” on page 30-7

Introduction

The decision to use fixed-point hardware is simply a choice to represent numbers in
a particular form. This representation often offers advantages in terms of the power
consumption, size, memory usage, speed, and cost of the final product.

A measurement of a physical quantity can take many numerical forms. For example,
the boiling point of water is 100 degrees Celsius, 212 degrees Fahrenheit, 373 kelvin, or
671.4 degrees Rankine. No matter what number is given, the physical quantity is exactly
the same. The numbers are different because four different scales are used.

Well known standard scales like Celsius are very convenient for the exchange of
information. However, there are situations where it makes sense to create and use
unique nonstandard scales. These situations usually involve making the most of a
limited resource.

For example, nonstandard scales allow map makers to get the maximum detail on a
fixed size sheet of paper. A typical road atlas of the USA will show each state on a two-
page display. The scale of inches to miles will be unique for most states. By using a large
ratio of miles to inches, all of Texas can fit on two pages. Using the same scale for Rhode
Island would make poor use of the page. Using a much smaller ratio of miles to inches
would allow Rhode Island to be shown with the maximum possible detail.

Fitting measurements of a variable inside an embedded processor is similar to fitting
a state map on a piece of paper. The map scale should allow all the boundaries of the
state to fit on the page. Similarly, the binary scale for a measurement should allow
the maximum and minimum possible values to fit. The map scale should also make
the most of the paper in order to get maximum detail. Similarly, the binary scale for a
measurement should make the most of the processor in order to get maximum precision.

Use of standard scales for measurements has definite compatibility advantages.
However, there are times when it is worthwhile to break convention and use a unique

30 Getting Started

30-6

nonstandard scale. There are also occasions when a mix of uniqueness and compatibility
makes sense. See the sections that follow for more information.

Selecting a Measurement Scale

Suppose that you want to make measurements of the temperature of liquid water,
and that you want to represent these measurements using 8-bit unsigned integers.
Fortunately, the temperature range of liquid water is limited. No matter what scale
you use, liquid water can only go from the freezing point to the boiling point. Therefore,
this is the range of temperatures that you must capture using just the 256 possible 8-bit
values: 0,1,2,...,255.

One approach to representing the temperatures is to use a standard scale. For example,
the units for the integers could be Celsius. Hence, the integers 0 and 100 represent water
at the freezing point and at the boiling point, respectively. On the upside, this scale gives
a trivial conversion from the integers to degrees Celsius. On the downside, the numbers
101 to 255 are unused. By using this standard scale, more than 60% of the number range
has been wasted.

A second approach is to use a nonstandard scale. In this scale, the integers 0 and 255
represent water at the freezing point and at the boiling point, respectively. On the
upside, this scale gives maximum precision since there are 254 values between freezing
and boiling instead of just 99. On the downside, the units are roughly 0.3921568 degree
Celsius per bit so the conversion to Celsius requires division by 2.55, which is a relatively
expensive operation on most fixed-point processors.

A third approach is to use a “semistandard” scale. For example, the integers 0 and 200
could represent water at the freezing point and at the boiling point, respectively. The
units for this scale are 0.5 degrees Celsius per bit. On the downside, this scale doesn't
use the numbers from 201 to 255, which represents a waste of more than 21%. On the
upside, this scale permits relatively easy conversion to a standard scale. The conversion
to Celsius involves division by 2, which is a very easy shift operation on most processors.

Measurement Scales: Beyond Multiplication

One of the key operations in converting from one scale to another is multiplication. The
preceding case study gave three examples of conversions from a quantized integer value
Q to a real-world Celsius value V that involved only multiplication:

 Physical Quantities and Measurement Scales

30-7

V

Q

Q

Q

=

100

100
1

100

255
2

100

200

1

2

o

o

o

C

Conversion

C

Conversion

C

33

3Conversion

Ï

Ì

Ô
Ô
ÔÔ

Ó

Ô
Ô
Ô
Ô

Graphically, the conversion is a line with slope S, which must pass through the origin.
A line through the origin is called a purely linear conversion. Restricting yourself to a
purely linear conversion can be very wasteful and it is often better to use the general
equation of a line:
V = SQ + B.

By adding a bias term B, you can obtain greater precision when quantizing to a limited
number of bits.

The general equation of a line gives a very useful conversion to a quantized scale.
However, like all quantization methods, the precision is limited and errors can be
introduced by the conversion. The general equation of a line with quantization error is
given by

V SQ B Error= + ± .

If the quantized value Q is rounded to the nearest representable number, then

- £ £
S

Error
S

2 2
.

That is, the amount of quantization error is determined by both the number of bits and
by the scale. This scenario represents the best-case error. For other rounding schemes,
the error can be twice as large.

Select a Measurement Scale for Temperature

On typical electronically controlled internal combustion engines, the flow of fuel
is regulated to obtain the desired ratio of air to fuel in the cylinders just prior to

30 Getting Started

30-8

combustion. Therefore, knowledge of the current air flow rate is required. Some
manufacturers use sensors that directly measure air flow, while other manufacturers
calculate air flow from measurements of related signals. The relationship of these
variables is derived from the ideal gas equation. The ideal gas equation involves division
by air temperature. For proper results, an absolute temperature scale such as kelvin or
Rankine must be used in the equation. However, quantization directly to an absolute
temperature scale would cause needlessly large quantization errors.

The temperature of the air flowing into the engine has a limited range. On a typical
engine, the radiator is designed to keep the block below the boiling point of the cooling
fluid. Assume a maximum of 225oF (380 K). As the air flows through the intake manifold,
it can be heated to this maximum temperature. For a cold start in an extreme climate,
the temperature can be as low as -60oF (222 K). Therefore, using the absolute kelvin
scale, the range of interest is 222 K to 380 K.

The air temperature needs to be quantized for processing by the embedded control
system. Assuming an unrealistic quantization to 3-bit unsigned numbers: 0,1,2,...,7, the
purely linear conversion with maximum precision is

V Q=

380

7 5

 K

 bit.
.

The quantized conversion and range of interest are shown in the following figure.

 Physical Quantities and Measurement Scales

30-9

Notice that there are 7.5 possible quantization values. This is because only half of the
first bit corresponds to temperatures (real-world values) greater than zero.

The quantization error is –25.33 K/bit ≤ Error ≤ 25.33 K/bit.

The range of interest of the quantized conversion and the absolute value of the quantized
error are shown in the following figure.

30 Getting Started

30-10

As an alternative to the purely linear conversion, consider the general linear conversion
with maximum precision:

V Q=
-Ê

ËÁ
ˆ
¯̃

+ +
-Ê

ËÁ
ˆ
¯̃

380 222

8
222 0 5

380 222

8

 K K
 K

 K K
.

The quantized conversion and range of interest are shown in the following figure.

 Physical Quantities and Measurement Scales

30-11

The quantization error is -9.875 K/bit ≤ Error ≤ 9.875 K/bit, which is approximately 2.5
times smaller than the error associated with the purely linear conversion.

The range of interest of the quantized conversion and the absolute value of the quantized
error are shown in the following figure.

30 Getting Started

30-12

Clearly, the general linear scale gives much better precision than the purely linear scale
over the range of interest.

 Why Use Fixed-Point Hardware?

30-13

Why Use Fixed-Point Hardware?

Digital hardware is becoming the primary means by which control systems and signal
processing filters are implemented. Digital hardware can be classified as either off-
the-shelf hardware (for example, microcontrollers, microprocessors, general-purpose
processors, and digital signal processors) or custom hardware. Within these two types
of hardware, there are many architecture designs. These designs range from systems
with a single instruction, single data stream processing unit to systems with multiple
instruction, multiple data stream processing units.

Within digital hardware, numbers are represented as either fixed-point or floating-
point data types. For both these data types, word sizes are fixed at a set number of
bits. However, the dynamic range of fixed-point values is much less than floating-point
values with equivalent word sizes. Therefore, in order to avoid overflow or unreasonable
quantization errors, fixed-point values must be scaled. Since floating-point processors
can greatly simplify the real-time implementation of a control law or digital filter, and
floating-point numbers can effectively approximate real-world numbers, then why use a
microcontroller or processor with fixed-point hardware support?

• Size and Power Consumption — The logic circuits of fixed-point hardware are
much less complicated than those of floating-point hardware. This means that the
fixed-point chip size is smaller with less power consumption when compared with
floating-point hardware. For example, consider a portable telephone where one of the
product design goals is to make it as portable (small and light) as possible. If one of
today's high-end floating-point, general-purpose processors is used, a large heat sink
and battery would also be needed, resulting in a costly, large, and heavy portable
phone.

• Memory Usage and Speed — In general fixed-point calculations require less
memory and less processor time to perform.

• Cost — Fixed-point hardware is more cost effective where price/cost is an important
consideration. When digital hardware is used in a product, especially mass-produced
products, fixed-point hardware costs much less than floating-point hardware and can
result in significant savings.

After making the decision to use fixed-point hardware, the next step is to choose a
method for implementing the dynamic system (for example, control system or digital
filter). Floating-point software emulation libraries are generally ruled out because of
timing or memory size constraints. Therefore, you are left with fixed-point math where
binary integer values are scaled.

30 Getting Started

30-14

Why Use the Fixed-Point Designer Software?

The Fixed-Point Designer software allows you to efficiently design control systems and
digital filters that you will implement using fixed-point arithmetic. With the Fixed-
Point Designer software, you can construct Simulink and Stateflow models that contain
detailed fixed-point information about your systems. You can then perform bit-true
simulations with the models to observe the effects of limited range and precision on your
designs.

You can configure the Fixed-Point Tool to automatically log the overflows, saturations,
and signal extremes of your simulations. You can also use it to automate data typing and
scaling decisions and to compare your fixed-point implementations against idealized,
floating-point benchmarks.

You can use the Fixed-Point Designer software with the Simulink Coder product to
automatically generate efficient, integer-only C code representations of your designs. You
can use this C code in a production target or for rapid prototyping. In addition, you can
use the Fixed-Point Designer software with the Embedded Coder product to generate
real-time C code for use on an integer production, embedded target. You can also use
Fixed-Point Designer with HDL Coder to generate portable, synthesizable VHDL and
Verilog code from Simulink models and Stateflow charts.

 Developing and Testing Fixed-Point Systems

30-15

Developing and Testing Fixed-Point Systems

The Fixed-Point Designer software provides tools that aid in the development and
testing of fixed-point dynamic systems. You directly design dynamic system models in
the Simulink software that are ready for implementation on fixed-point hardware. The
development cycle is illustrated below.

30 Getting Started

30-16

 Developing and Testing Fixed-Point Systems

30-17

Using the MATLAB, Simulink, and Fixed-Point Designer software, you follow these steps
of the development cycle:

1 Model the system (plant or signal source) within the Simulink software using double-
precision numbers. Typically, the model will contain nonlinear elements.

2 Design and simulate a fixed-point dynamic system (for example, a control system or
digital filter) with fixed-point Simulink blocks that meets the design, performance,
and other constraints.

3 Analyze the results and go back to step 1 if needed.

When you have met the design requirements, you can use the model as a specification
for creating production code using the Simulink Coder product or generating HDL code
using the HDL Coder product.

The above steps interact strongly. In steps 1 and 2, there is a significant amount of
freedom to select different solutions. Generally, you fine-tune the model based upon
feedback from the results of the current implementation (step 3). There is no specific
modeling approach. For example, you may obtain models from first principles such
as equations of motion, or from a frequency response such as a sine sweep. There are
many controllers that meet the same frequency-domain or time-domain specifications.
Additionally, for each controller there are an infinite number of realizations.

The Fixed-Point Designer software helps expedite the design cycle by allowing you to
simulate the effects of various fixed-point controller and digital filter structures.

30 Getting Started

30-18

Supported Data Types

The Fixed-Point Designer software supports the following integer and fixed-point data
types for simulation and code generation:

• Unsigned data types from 1 to 128 bits
• Signed data types from 2 to 128 bits
• Boolean, double, and single
• Scaled doubles

The software supports all scaling choices including pure integer, binary point, and slope
bias. For slope bias scaling, it does not support complex fixed-point types that have non-
zero bias or non-trivial slope.

The save data type support extends to signals, parameters, and states.

 Configure Blocks with Fixed-Point Output

30-19

Configure Blocks with Fixed-Point Output

To create a fixed-point model, configure Simulink blocks to output fixed-point signals.
Simulink blocks that support fixed-point output provide parameters that allow you to
specify whether a block should output fixed-point signals and, if so, the size, scaling,
and other attributes of the fixed-point output. These parameters typically appear on the
Signal Attributes pane of the block's parameter dialog box.

The following sections explain how to use these parameters to configure a block for fixed-
point output.

In this section...

“Specify the Output Data Type and Scaling” on page 30-20

30 Getting Started

30-20

In this section...

“Specify Fixed-Point Data Types with the Data Type Assistant” on page 30-22
“Rounding” on page 30-25
“Overflow Handling” on page 30-25
“Lock the Output Data Type Setting” on page 30-26
“Real-World Values Versus Stored Integer Values” on page 30-26

Specify the Output Data Type and Scaling

Many Simulink blocks allow you to specify an output data type and scaling using a
parameter that appears on the block dialog box. This parameter (typically named
Output data type) provides a pull-down menu that lists the data types a particular
block supports. In general, you can specify the output data type as a rule that inherits a
data type, a built-in data type, an expression that evaluates to a data type, or a Simulink
data type object. For more information, see “Specify Block Output Data Types”.

The Fixed-Point Designer software enables you to configure Simulink blocks with:

• Fixed-point data types

Fixed-point data types are characterized by their word size in bits and by their binary
point—the means by which fixed-point values are scaled. See for more information.

• Floating-point data types

Floating-point data types are characterized by their sign bit, fraction (mantissa)
field, and exponent field. See “Floating-Point Numbers” on page 31-26 for more
information.

To configure blocks with Fixed-Point Designer data types, specify the data type
parameter on a block dialog box as an expression that evaluates to a data type.
Alternatively, you can use an assistant that simplifies the task of entering data type
expressions (see “Specify Fixed-Point Data Types with the Data Type Assistant” on page
30-22). The sections that follow describe varieties of fixed-point and floating-point
data types, and the corresponding functions that you use to specify them.

Integers

To specify unsigned and signed integers, use the uint and sint functions, respectively.

 Configure Blocks with Fixed-Point Output

30-21

For example, to configure a 16-bit unsigned integer via the block dialog box, specify the
Output data type parameter as uint(16). To configure a 16-bit signed integer, specify
the Output data type parameter as sint(16).

For integer data types, the default binary point is assumed to lie to the right of all bits.

Fractional Numbers

To specify unsigned and signed fractional numbers, use the ufrac and sfrac functions,
respectively.

For example, to configure the output as a 16-bit unsigned fractional number via the block
dialog box, specify the Output data type parameter to be ufrac(16). To configure a
16-bit signed fractional number, specify Output data type to be sfrac(16).

Fractional numbers are distinguished from integers by their default scaling. Whereas
signed and unsigned integer data types have a default binary point to the right of all bits,
unsigned fractional data types have a default binary point to the left of all bits, while
signed fractional data types have a default binary point to the right of the sign bit.

Both unsigned and signed fractional data types support guard bits, which act to guard
against overflow. For example, sfrac(16,4) specifies a 16-bit signed fractional number
with 4 guard bits. The guard bits lie to the left of the default binary point.

Generalized Fixed-Point Numbers

You can specify unsigned and signed generalized fixed-point numbers with the ufix and
sfix functions, respectively.

For example, to configure the output as a 16-bit unsigned generalized fixed-point number
via the block dialog box, specify the Output data type parameter to be ufix(16). To
configure a 16-bit signed generalized fixed-point number, specify Output data type to
be sfix(16).

Generalized fixed-point numbers are distinguished from integers and fractionals by the
absence of a default scaling. For these data types, a block typically inherits its scaling
from another block.

Note: Alternatively, you can use the fixdt function to create integer, fractional, and
generalized fixed-point objects. The fixdt function also allows you to specify scaling for
fixed-point data types.

30 Getting Started

30-22

Floating-Point Numbers

The Fixed-Point Designer software supports single-precision and double-precision
floating-point numbers as defined by the IEEE® Standard 754-1985 for Binary Floating-
Point Arithmetic. You can specify floating-point numbers with the Simulink float
function.

For example, to configure the output as a single-precision floating-point number via
the block dialog box, specify the Output data type parameter as float('single').
To configure a double-precision floating-point number, specify Output data type as
float('double').

Specify Fixed-Point Data Types with the Data Type Assistant

The Data Type Assistant is an interactive graphical tool that simplifies the task of
specifying data types for Simulink blocks and data objects. The assistant appears on
block and object dialog boxes, adjacent to parameters that provide data type control,
such as the Output data type parameter. For more information about accessing and
interacting with the assistant, see “Specify Data Types Using Data Type Assistant”.

You can use the Data Type Assistant to specify a fixed-point data type. When you select
Fixed point in the Mode field, the assistant displays fields for describing additional
attributes of a fixed-point data type, as shown in this example:

 Configure Blocks with Fixed-Point Output

30-23

You can set the following fixed-point attributes:

Signedness

Select whether you want the fixed-point data to be Signed or Unsigned. Signed data
can represent positive and negative quantities. Unsigned data represents positive values
only.

Word length

Specify the size (in bits) of the word that will hold the quantized integer. Large word
sizes represent large quantities with greater precision than small word sizes. Fixed-point
word sizes up to 128 bits are supported for simulation.

30 Getting Started

30-24

Scaling

Specify the method for scaling your fixed-point data to avoid overflow conditions and
minimize quantization errors. You can select the following scaling modes:

Scaling Mode Description

Binary

point

If you select this mode, the assistant displays the Fraction length field,
specifying the binary point location.

Binary points can be positive or negative integers. A positive integer moves the
binary point left of the rightmost bit by that amount. For example, an entry of 2
sets the binary point in front of the second bit from the right. A negative integer
moves the binary point further right of the rightmost bit by that amount, as in this
example:

See “Binary-Point-Only Scaling” on page 31-8 for more information.
Slope and

bias

If you select this mode, the assistant displays fields for entering the Slope and
Bias.

• Slope can be any positive real number.
• Bias can be any real number.

See “Slope and Bias Scaling” on page 31-8 for more information.
Best

precision

If you select this mode, the block scales a constant vector or matrix such that the
precision of its elements is maximized. This mode is available only for particular
blocks.

See “Constant Scaling for Best Precision” on page 31-15 for more information.

Calculate Best-Precision Scaling

The Fixed-Point Designer software can automatically calculate “best-precision” values
for both Binary point and Slope and bias scaling, based on the values that you

 Configure Blocks with Fixed-Point Output

30-25

specify for other parameters on the dialog box. To calculate best-precision-scaling values
automatically, enter values for the block's Output minimum and Output maximum
parameters. Afterward, click the Calculate Best-Precision Scaling button in the
assistant.

Rounding

You specify how fixed-point numbers are rounded with the Integer rounding mode
parameter. The following rounding modes are supported:

• Ceiling — This mode rounds toward positive infinity and is equivalent to the
MATLAB ceil function.

• Convergent — This mode rounds toward the nearest representable number, with
ties rounding to the nearest even integer. Convergent rounding is equivalent to the
Fixed-Point Designer convergent function.

• Floor — This mode rounds toward negative infinity and is equivalent to the
MATLAB floor function.

• Nearest — This mode rounds toward the nearest representable number, with
the exact midpoint rounded toward positive infinity. Rounding toward nearest is
equivalent to the Fixed-Point Designer nearest function.

• Round — This mode rounds to the nearest representable number, with ties for
positive numbers rounding in the direction of positive infinity and ties for negative
numbers rounding in the direction of negative infinity. This mode is equivalent to the
Fixed-Point Designer round function.

• Simplest — This mode automatically chooses between round toward floor and round
toward zero to produce generated code that is as efficient as possible.

• Zero — This mode rounds toward zero and is equivalent to the MATLAB fix
function.

For more information about each of these rounding modes, see “Rounding” on page
32-5.

Overflow Handling

To control how overflow conditions are handled for fixed-point operations, use the
Saturate on integer overflow check box.

30 Getting Started

30-26

If this box is selected, overflows saturate to either the maximum or minimum value
represented by the data type. For example, an overflow associated with a signed 8-bit
integer can saturate to -128 or 127.

If this box is not selected, overflows wrap to the appropriate value that is representable
by the data type. For example, the number 130 does not fit in a signed 8-bit integer, and
would wrap to -126.

Lock the Output Data Type Setting

If the output data type is a generalized fixed-point number, you have the option of
locking its output data type setting by selecting the Lock output data type setting
against changes by the fixed-point tools check box.

When locked, the Fixed-Point Tool and automatic scaling script autofixexp do not
change the output data type setting. Otherwise, the Fixed-Point Tool and autofixexp
script are free to adjust the output data type setting.

Real-World Values Versus Stored Integer Values

You can configure Data Type Conversion blocks to treat signals as real-world values or as
stored integers with the Input and output to have equal parameter.

 Configure Blocks with Fixed-Point Output

30-27

The possible values are Real World Value (RWV) and Stored Integer (SI).

30 Getting Started

30-28

In terms of the variables defined in “Scaling” on page 31-7, the real-world value is
given by V and the stored integer value is given by Q. You may want to treat numbers as
stored integer values if you are modeling hardware that produces integers as output.

 Configure Blocks with Fixed-Point Parameters

30-29

Configure Blocks with Fixed-Point Parameters

Certain Simulink blocks allow you to specify fixed-point numbers as the values of
parameters used to compute the block's output, e.g., the Gain parameter of a Gain block.

Note: S-functions and the Stateflow Chart block do not support fixed-point parameters.

You can specify a fixed-point parameter value either directly by setting the value
of the parameter to an expression that evaluates to a fi object, or indirectly by
setting the value of the parameter to an expression that refers to a fixed-point
Simulink.Parameter object.

In this section...

“Specify Fixed-Point Values Directly” on page 30-29
“Specify Fixed-Point Values Via Parameter Objects” on page 30-30

Note: Simulating or performing data type override on a model with fi objects requires a
Fixed-Point Designer software license. See “Sharing Fixed-Point Models” on page 30-3 for
more information.

Specify Fixed-Point Values Directly

You can specify fixed-point values for block parameters using fi objects. In the block
dialog's parameter field, simply enter the name of a fi object or an expression that
includes the fi constructor function.

For example, entering the expression

fi(3.3,1,8,3)

as the Constant value parameter for the Constant block specifies a signed fixed-point
value of 3.3, with a word length of 8 bits and a fraction length of 3 bits.

30 Getting Started

30-30

Specify Fixed-Point Values Via Parameter Objects

You can specify fixed-point parameter objects for block parameters using instances of the
Simulink.Parameter class. To create a fixed-point parameter object, either specify a
fi object as the parameter object's Value property, or specify the relevant fixed-point
data type for the parameter object's DataType property.

For example, suppose you want to create a fixed-point constant in your model. You could
do this using a fixed-point parameter object and a Constant block as follows:

1 Enter the following command at the MATLAB prompt to create an instance of the
Simulink.Parameter class:

my_fixpt_param = Simulink.Parameter

2 Specify either the name of a fi object or an expression that includes the fi
constructor function as the parameter object's Value property:

my_fixpt_param.Value = fi(3.3,1,8,3)

 Configure Blocks with Fixed-Point Parameters

30-31

Alternatively, you can set the parameter object's Value and DataType properties
separately. In this case, specify the relevant fixed-point data type using a
Simulink.AliasType object, a Simulink.NumericType object, or a fixdt
expression. For example, the following commands independently set the parameter
object's value and data type, using a fixdt expression as the DataType string:

my_fixpt_param.Value = 3.3;

my_fixpt_param.DataType = 'fixdt(1,8,2^-3,0)'

3 Specify the parameter object as the value of a block's parameter. For example,
my_fixpt_param specifies the Constant value parameter for the Constant block in
the following model:

Consequently, the Constant block outputs a signed fixed-point value of 3.3, with a
word length of 8 bits and a fraction length of 3 bits.

30 Getting Started

30-32

Pass Fixed-Point Data Between Simulink Models and MATLAB

You can read fixed-point data from the MATLAB software into your Simulink models,
and there are a number of ways in which you can log fixed-point information from your
models and simulations to the workspace.

Read Fixed-Point Data from the Workspace

Use the From Workspace block to read fixed-point data from the MATLAB workspace
into a Simulink model. To do this, the data must be in structure format with a Fixed-
Point Designer fi object in the values field. In array format, the From Workspace block
only accepts real, double-precision data.

To read in fi data, the Interpolate data parameter of the From Workspace block must
not be selected, and the Form output after final data value by parameter must be set
to anything other than Extrapolation.

Write Fixed-Point Data to the Workspace

You can write fixed-point output from a model to the MATLAB workspace via the To
Workspace block in either array or structure format. Fixed-point data written by a To
Workspace block to the workspace in structure format can be read back into a Simulink
model in structure format by a From Workspace block.

Note: To write fixed-point data to the workspace as a fi object, select the Log fixed-
point data as a fi object check box on the To Workspace block dialog. Otherwise, fixed-
point data is converted to double and written to the workspace as double.

For example, you can use the following code to create a structure in the MATLAB
workspace with a fi object in the values field. You can then use the From Workspace
block to bring the data into a Simulink model.

 a = fi([sin(0:10)' sin(10:-1:0)'])

a =

 0 -0.5440

 0.8415 0.4121

 Pass Fixed-Point Data Between Simulink Models and MATLAB

30-33

 0.9093 0.9893

 0.1411 0.6570

 -0.7568 -0.2794

 -0.9589 -0.9589

 -0.2794 -0.7568

 0.6570 0.1411

 0.9893 0.9093

 0.4121 0.8415

 -0.5440 0

 DataTypeMode: Fixed-point: binary point scaling

 Signedness: Signed

 WordLength: 16

 FractionLength: 15

s.signals.values = a

s =

 signals: [1x1 struct]

s.signals.dimensions = 2

s =

 signals: [1x1 struct]

s.time = [0:10]'

s =

 signals: [1x1 struct]

 time: [11x1 double]

The From Workspace block in the following model has the fi structure s in the
Data parameter. In the model, the following parameters in the Solver pane of the
Configuration Parameters dialog box have the indicated settings:

• Start time — 0.0
• Stop time — 10.0
• Type — Fixed-step
• Solver — Discrete (no continuous states)
• Fixed-step size (fundamental sample time) — 1.0

30 Getting Started

30-34

The To Workspace block writes the result of the simulation to the MATLAB workspace as
a fi structure.

simout.signals.values

ans =

 0 -8.7041

 13.4634 6.5938

 14.5488 15.8296

 2.2578 10.5117

 -12.1089 -4.4707

 -15.3428 -15.3428

 -4.4707 -12.1089

 10.5117 2.2578

 15.8296 14.5488

 6.5938 13.4634

 -8.7041 0

 Pass Fixed-Point Data Between Simulink Models and MATLAB

30-35

Log Fixed-Point Signals

When fixed-point signals are logged to the MATLAB workspace via signal logging, they
are always logged as Fixed-Point Designer fi objects.

To enable signal logging for a signal:

1 Select the signal.
2 Click the Simulation Data Inspector button arrow.
3 Select Log Selected Signals to Workspace.

For more information, refer to “Signal Logging”.

When you log signals from a referenced model or Stateflow chart in your model, the word
lengths of fi objects may be larger than you expect. The word lengths of fixed-point
signals in referenced models and Stateflow charts are logged as the next larger data
storage container size.

Access Fixed-Point Block Data During Simulation

Simulink provides an application programming interface (API) that enables
programmatic access to block data, such as block inputs and outputs, parameters, states,
and work vectors, while a simulation is running. You can use this interface to develop
MATLAB programs capable of accessing block data while a simulation is running or
to access the data from the MATLAB command line. Fixed-point signal information is
returned to you via this API as fi objects. For more information about the API, refer to
“Access Block Data During Simulation”.

30 Getting Started

30-36

Cast from Doubles to Fixed Point

In this section...

“About This Example” on page 30-36
“Block Descriptions” on page 30-37
“Simulations” on page 30-38

About This Example

The purpose of this example is to show you how to simulate a continuous real-world
doubles signal using a generalized fixed-point data type. Although simple in design, the
model gives you an opportunity to explore many of the important features of the Fixed-
Point Designer software, including

• Data types
• Scaling
• Rounding
• Logging minimum and maximum simulation values to the workspace
• Overflow handling

This example uses the fxpdemo_dbl2fix model. Open the model:

fxpdemo_dbl2fix

 Cast from Doubles to Fixed Point

30-37

The sections that follow describe the model and its simulation results.

Block Descriptions

In this example, you configure the Signal Generator block to output a sine wave signal
with an amplitude defined on the interval [-5 5]. The Signal Generator block always
outputs double-precision numbers.

The Data Type Conversion (Dbl-to-FixPt) block converts the double-precision numbers
from the Signal Generator block into one of the Fixed-Point Designer data types. For
simplicity, the size of the output signal is 5 bits in this example.

The Data Type Conversion (FixPt-to-Dbl) block converts one of the Fixed-Point Designer
data types into a Simulink data type. In this example, it outputs double-precision
numbers.

30 Getting Started

30-38

Simulations

The following sections describe how to simulate the model using binary-point-only scaling
and [Slope Bias] scaling.

Binary-Point-Only Scaling

When using binary-point-only scaling, your goal is to find the optimal power-of-two
exponent E, as defined in “Scaling” on page 31-7. For this scaling mode, the
fractional slope F is 1 and there is no bias.

To run the simulation:

1 Configure the Signal Generator block to output a sine wave signal with an amplitude
defined on the interval [-5 5].

a Double-click the Signal Generator block to open the Block Parameters dialog.
b Set the Wave form parameter to sine.
c Set the Amplitude parameter to 5.
d Click OK.

2 Configure the Data Type Conversion (Dbl-to-FixPt) block.

a Double-click the Dbl-to-FixPt block to open the Block Parameters dialog.
b Verify that the Output data type parameter is fixdt(1,5,2).

fixdt(1,5,2) specifies a 5-bit, signed, fixed-point number with scaling 2^-2,
which puts the binary point two places to the left of the rightmost bit. Hence the
maximum value is 011.11 = 3.75, a minimum value of 100.00 = -4.00, and the
precision is (1/2)2 = 0.25.

c Verify that the Integer rounding mode parameter is Floor. Floor rounds
the fixed-point result toward negative infinity.

d Select the Saturate on integer overflow checkbox to prevent the block from
wrapping on overflow.

e Click OK.
3 Select Simulation > Run in your Simulink model window.

The Scope displays the real-world and fixed-point simulation results.

 Cast from Doubles to Fixed Point

30-39

The simulation shows the quantization effects of fixed-point arithmetic. Using a 5-bit
word with a precision of (1/2)2 = 0.25 produces a discretized output that does not span the
full range of the input signal.

If you want to span the complete range of the input signal with 5 bits using binary-point-
only scaling, then your only option is to sacrifice precision. Hence, the output scaling
is 2^-1, which puts the binary point one place to the left of the rightmost bit. This
scaling gives a maximum value of 0111.1 = 7.5, a minimum value of 1000.0 = -8.0, and a
precision of (1/2)1 = 0.5.

To simulate using a precision of 0.5, set the Output data type parameter of the Data
Type Conversion (Dbl-to-FixPt) block to fixdt(1,5,1) and rerun the simulation.

30 Getting Started

30-40

[Slope Bias] Scaling

When using [Slope Bias] scaling, your goal is to find the optimal fractional slope F and
fixed power-of-two exponent E, as defined in “Scaling” on page 31-7. There is no bias
for this example because the sine wave is on the interval [-5 5].

To arrive at a value for the slope, you begin by assuming a fixed power-of-two exponent
of -2. To find the fractional slope, you divide the maximum value of the sine wave by the
maximum value of the scaled 5-bit number. The result is 5.00/3.75 = 1.3333. The slope
(and precision) is 1.3333.(0.25) = 0.3333. You specify the [Slope Bias] scaling as [0.3333
0] by entering the expression fixdt(1,5,0.3333,0) as the value of the Output data
type parameter.

You could also specify a fixed power-of-two exponent of -1 and a corresponding fractional
slope of 0.6667. The resulting slope is the same since E is reduced by 1 bit but F is
increased by 1 bit. The Fixed-Point Designer software would automatically store F as
1.3332 and E as -2 because of the normalization condition of 1 ≤ F < 2.

To run the simulation:

1 Configure the Signal Generator block to output a sine wave signal with an amplitude
defined on the interval [-5 5].

a Double-click the Signal Generator block to open the Block Parameters dialog.
b Set the Wave form parameter to sine.
c Set the Amplitude parameter to 5.
d Click OK.

2 Configure the Data Type Conversion (Dbl-to-FixPt) block.

a Double-click the Dbl-to-FixPt block to open the Block Parameters dialog.
b Set the Output data type parameter to fixdt(1,5,0.3333,0) to specify

[Slope Bias] scaling as [0.3333 0].
c Verify that the Integer rounding mode parameter is Floor. Floor rounds

the fixed-point result toward negative infinity.
d Select the Saturate on integer overflow checkbox to prevent the block from

wrapping on overflow.
e Click OK.

3 Select Simulation > Run in your Simulink model window.

 Cast from Doubles to Fixed Point

30-41

The Scope displays the real-world and fixed-point simulation results.

You do not need to find the slope using this method. You need only the range of the data
you are simulating and the size of the fixed-point word used in the simulation. You can
achieve reasonable simulation results by selecting your scaling based on the formula

max value min value

ws

_ _
,

-()

-2 1

where

• max_value is the maximum value to be simulated.
• min_value is the minimum value to be simulated.
• ws is the word size in bits.

30 Getting Started

30-42

• 2ws - 1 is the largest value of a word with size ws.

For this example, the formula produces a slope of 0.32258.

31

Data Types and Scaling

• “Data Types and Scaling in Digital Hardware” on page 31-2
• “Fixed-Point Numbers” on page 31-3
• “Signed Fixed-Point Numbers” on page 31-4
• “Binary Point Interpretation” on page 31-5
• “Scaling” on page 31-7
• “Quantization” on page 31-10
• “Range and Precision” on page 31-12
• “Fixed-Point Numbers in Simulink” on page 31-15
• “Display Port Data Types” on page 31-20
• “Scaled Doubles” on page 31-22
• “Use Scaled Doubles to Avoid Precision Loss” on page 31-24
• “Floating-Point Numbers” on page 31-26

31 Data Types and Scaling

31-2

Data Types and Scaling in Digital Hardware

In digital hardware, numbers are stored in binary words. A binary word is a fixed-
length sequence of binary digits (1's and 0's). The way in which hardware components or
software functions interpret this sequence of 1's and 0's is described by a data type.

Binary numbers are represented as either fixed-point or floating-point data types. A
fixed-point data type is characterized by the word size in bits, the binary point, and
whether it is signed or unsigned. The binary point is the means by which fixed-point
values are scaled. With the Fixed-Point Designer software, fixed-point data types can be
integers, fractionals, or generalized fixed-point numbers. The main difference between
these data types is their default binary point.

Floating-point data types are characterized by a sign bit, a fraction (or mantissa) field,
and an exponent field. The blockset adheres to the IEEE Standard 754-1985 for Binary
Floating-Point Arithmetic (referred to simply as the IEEE Standard 754 throughout this
guide) and supports singles, doubles, and a nonstandard IEEE-style floating-point data
type.

When choosing a data type, you must consider these factors:

• The numerical range of the result
• The precision required of the result
• The associated quantization error (i.e., the rounding mode)
• The method for dealing with exceptional arithmetic conditions

These choices depend on your specific application, the computer architecture used, and
the cost of development, among others.

With the Fixed-Point Designer software, you can explore the relationship between
data types, range, precision, and quantization error in the modeling of dynamic digital
systems. With the Simulink Coder product, you can generate production code based
on that model. With HDL Coder, you can generate portable, synthesizable VHDL and
Verilog code from Simulink models and Stateflow charts.

 Fixed-Point Numbers

31-3

Fixed-Point Numbers

Fixed-point numbers and their data types are characterized by their word size in bits,
binary point, and whether they are signed or unsigned. The Fixed-Point Designer
software supports integers and fixed-point numbers. The main difference among these
data types is their binary point.

Note: Fixed-point numbers can have a word size up to 128 bits.

A common representation of a binary fixed-point number , either signed or unsigned, is
shown in the following figure.

where

• b
i are the binary digits (bits)

• ws is the word length in bits
• The most significant bit (MSB) is the leftmost bit, and is represented by location b

ws-1

• The least significant bit (LSB) is the rightmost bit, and is represented by location b
0

• The binary point is shown four places to the left of the LSB

31 Data Types and Scaling

31-4

Signed Fixed-Point Numbers

Computer hardware typically represents the negation of a binary fixed-point number in
three different ways: sign/magnitude, one's complement, and two's complement. Two's
complement is the preferred representation of signed fixed-point numbers and supported
by the Fixed-Point Designer software.

Negation using two's complement consists of a bit inversion (translation into one's
complement) followed by the addition of a one. For example, the two's complement of
000101 is 111011.

Whether a fixed-point value is signed or unsigned is usually not encoded explicitly within
the binary word; that is, there is no sign bit. Instead, the sign information is implicitly
defined within the computer architecture.

 Binary Point Interpretation

31-5

Binary Point Interpretation

The binary point is the means by which fixed-point numbers are scaled. It is usually the
software that determines the binary point. When performing basic math functions such
as addition or subtraction, the hardware uses the same logic circuits regardless of the
value of the scale factor. In essence, the logic circuits have no knowledge of a scale factor.
They are performing signed or unsigned fixed-point binary algebra as if the binary point
is to the right of b0.

Fixed-Point Designer supports the general binary point scaling V Q E= * ^2 . V is the real-
world value, Q is the stored integer value, and E is equal to -FractionLength. In other
words, RealWorldValue = StoredInteger * 2 ^ -FractionLength.

FractionLength defines the scaling of the stored integer value. The word length
limits the values that the stored integer can take, but it does not limit the values
FractionLength can take. The software does not restrict the value of exponent E based
on the word length of the stored integer Q. Because E is equal to -FractionLength,
restricting the binary point to being contiguous with the fraction is unnecessary; the
fraction length can be negative or greater than the word length.

For example, a word consisting of three unsigned bits is usually represented in scientific
notation in one of the following ways.

bbb bbb

bbb bbb

b bb bbb

bbb bbb

. .

. .

. .

. .

= ¥

= ¥

= ¥

= ¥

-

-

-

2

2

2

2

0

1

2

3

If the exponent were greater than 0 or less than -3, then the representation would
involve lots of zeros.

bbb bbb

bbb bbb

bbb bbb

bbb bb

00000 2

00 2

00 2

00000

5

2

5

. .

. .

. .

.

= ¥

= ¥

= ¥

=

-

bb.¥
-

2
8

31 Data Types and Scaling

31-6

These extra zeros never change to ones, however, so they don't show up in the hardware.
Furthermore, unlike floating-point exponents, a fixed-point exponent never shows up in
the hardware, so fixed-point exponents are not limited by a finite number of bits.

Consider a signed value with a word length of 8, a fraction length of 10, and a stored
integer value of 5 (binary value 00000101). The real-word value is calculated using the
formula
RealWorldValue = StoredInteger * 2 ^ -FractionLength. In this case,
RealWorldValue = 5 * 2 ^ -10 = 0.0048828125. Because the fraction length is 2
bits longer than the word length, the binary value of the stored integer is x.xx00000101
, where x is a placeholder for implicit zeros. 0.0000000101 (binary) is equivalent to
0.0048828125 (decimal). For an example using a fi object, see “Create a fi Object With
Fraction Length Greater Than Word Length”.

 Scaling

31-7

Scaling

The dynamic range of fixed-point numbers is much less than floating-point numbers with
equivalent word sizes. To avoid overflow conditions and minimize quantization errors,
fixed-point numbers must be scaled.

With the Fixed-Point Designer software, you can select a fixed-point data type whose
scaling is defined by its binary point, or you can select an arbitrary linear scaling that
suits your needs. This section presents the scaling choices available for fixed-point data
types.

You can represent a fixed-point number by a general slope and bias encoding scheme

V V SQ Bª = +

~

,

where

• V is an arbitrarily precise real-world value.
•

V

~

 is the approximate real-world value.

• Q, the stored value, is an integer that encodes V.
•

S F
E

= 2 is the slope.
• B is the bias.

The slope is partitioned into two components:

•
2

E specifies the binary point. E is the fixed power-of-two exponent.
• F is the slope adjustment factor. It is normalized such that 1 2£ <F .

Note: S and B are constants and do not show up in the computer hardware directly.
Only the quantization value Q is stored in computer memory.

The scaling modes available to you within this encoding scheme are described in the
sections that follow. For detailed information about how the supported scaling modes
effect fixed-point operations, refer to “Recommendations for Arithmetic and Scaling” on
page 32-40.

31 Data Types and Scaling

31-8

Binary-Point-Only Scaling

Binary-point-only or power-of-two scaling involves moving the binary point within the
fixed-point word. The advantage of this scaling mode is to minimize the number of
processor arithmetic operations.

With binary-point-only scaling, the components of the general slope and bias formula
have the following values:

• F = 1
•

S F
E E

= =2 2

• B = 0

The scaling of a quantized real-world number is defined by the slope S, which is
restricted to a power of two. The negative of the power-of-two exponent is called the
fraction length. The fraction length is the number of bits to the right of the binary point.
For Binary-Point-Only scaling, specify fixed-point data types as

• signed types — fixdt(1, WordLength, FractionLength)
• unsigned types — fixdt(0, WordLength, FractionLength)

Integers are a special case of fixed-point data types. Integers have a trivial scaling with
slope 1 and bias 0, or equivalently with fraction length 0. Specify integers as

• signed integer — fixdt(1, WordLength, 0)
• unsigned integer — fixdt(0, WordLength, 0)

Slope and Bias Scaling

When you scale by slope and bias, the slope S and bias B of the quantized real-world
number can take on any value. The slope must be a positive number. Using slope and
bias, specify fixed-point data types as

• fixdt(Signed, WordLength, Slope, Bias)

Unspecified Scaling

Specify fixed-point data types with an unspecified scaling as

 Scaling

31-9

• fixdt(Signed, WordLength)

Simulink signals, parameters, and states must never have unspecified scaling. When
scaling is unspecified, you must use some other mechanism such as automatic best
precision scaling to determine the scaling that the Simulink software uses.

31 Data Types and Scaling

31-10

Quantization

The quantization Q of a real-world value V is represented by a weighted sum of bits.
Within the context of the general slope and bias encoding scheme, the value of an
unsigned fixed-point quantity is given by

V S b Bi
i

i

ws~

. ,=
È

Î
Í
Í

˘

˚
˙
˙

+
=

-

Â 2

0

1

while the value of a signed fixed-point quantity is given by

V S b b Bws
ws

i
i

i

ws~

. ,= - +
È

Î
Í
Í

˘

˚
˙
˙

+-
-

=

-

Â1
1

0

2

2 2

where

• b
i are binary digits, with b

i
=1 0, , for i ws= -0 1 1, ,...,

• The word size in bits is given by ws, with ws = 1, 2, 3,..., 128.
• S is given by F

E
= 2 , where the scaling is unrestricted because the binary point does

not have to be contiguous with the word.

b
i are called bit multipliers and 2

i are called the weights.

Fixed-Point Format

Formats for 8-bit signed and unsigned fixed-point values are shown in the following
figure.

 Quantization

31-11

Note that you cannot discern whether these numbers are signed or unsigned data types
merely by inspection since this information is not explicitly encoded within the word.

The binary number 0011.0101 yields the same value for the unsigned and two's
complement representation because the MSB = 0. Setting B = 0 and using the
appropriate weights, bit multipliers, and scaling, the value is

V F Q b
E E

i
i

i

ws~

= () =
È

Î
Í
Í

˘

˚
˙
˙

= ¥ + ¥ + ¥ + ¥ + ¥

=

-

-

Â2 2 2

2 0 2 0 2 1 2 1 2 0

0

1

4 7 6 5 4
22 1 2 0 2 1 2

3 3125

3 2 1 0+ ¥ + ¥ + ¥()
= . .

Conversely, the binary number 1011.0101 yields different values for the unsigned and
two's complement representation since the MSB = 1.

Setting B = 0 and using the appropriate weights, bit multipliers, and scaling, the
unsigned value is

V F Q b
E E

i
i

i

ws~

= () =
È

Î
Í
Í

˘

˚
˙
˙

= ¥ + ¥ + ¥ + ¥ + ¥

=

-

-

Â2 2 2

2 1 2 0 2 1 2 1 2 0

0

1

4 7 6 5 4
22 1 2 0 2 1 2

11 3125

3 2 1 0+ ¥ + ¥ + ¥()
= . ,

while the two's complement value is

V F Q b b
E E

ws
ws

i
i

i

ws~

= () = - +
È

Î
Í
Í

˘

˚
˙
˙

= - ¥ + ¥

-
-

=

-

-

Â2 2 2 2

2 1 2 0 2

1

1

0

2

4 7 6 ++ ¥ + ¥ + ¥ + ¥ + ¥ + ¥()
= -

1 2 1 2 0 2 1 2 0 2 1 2

4 6875

5 4 3 2 1 0

. .

31 Data Types and Scaling

31-12

Range and Precision

The range of a number gives the limits of the representation, while the precision gives
the distance between successive numbers in the representation. The range and precision
of a fixed-point number depend on the length of the word and the scaling.

Range

The following figure illustrates the range of representable numbers for an unsigned
fixed-point number of size ws, scaling S, and bias B.

The following figure illustrates the range of representable numbers for a two's
complement fixed-point number of size ws, scaling S, and bias B where the values of ws,
scaling S, and bias B allow for both negative and positive numbers.

For both the signed and unsigned fixed-point numbers of any data type, the number of
different bit patterns is 2ws.

For example, if the fixed-point data type is an integer with scaling defined as S =1 and

B = 0, then the maximum unsigned value is 2
1ws- , because zero must be represented.

In two's complement, negative numbers must be represented as well as zero, so the
maximum value is 2 1

1ws-

- . Additionally, since there is only one representation for zero,
there must be an unequal number of positive and negative numbers. This means there is
a representation for -

-

2
1ws but not for 2

1ws- .

 Range and Precision

31-13

Precision

The precision of a data type is given by the slope. In this usage, precision means the
difference between neighboring representable values.

Fixed-Point Data Type Parameters

The low limit, high limit, and default binary-point-only scaling for the supported fixed-
point data types discussed in “Binary Point Interpretation” on page 31-5 are given in the
following table. See and for more information.

Fixed-Point Data Type Range and Default Scaling

Name Data Type Low Limit High Limit Default Scaling
(~Precision)

Unsigned
Integer

fixdt(0,ws,0) 0
2 1

ws
-

1

Signed
Integer

fixdt(1,ws,0)
-

-

2
1ws

2 1
1ws-

-

1

Unsigned
Binary
Point

fixdt(0,ws,fl) 0
()2 1 2

ws fl
-

-

2
- fl

Signed
Binary
Point

fixdt(1,ws,fl)
-

- -

2
1ws fl

()2 1 2
1ws fl- -

- 2
- fl

Unsigned
Slope Bias

fixdt(0,ws,s,b) b
s b

ws
()2 1- +

s

Signed
Slope Bias

fixdt(1,ws,s,b)
- +

-
s b

ws
()2

1
s b

ws
()2 1

1-
- +

s

s = Slope, b = Bias, ws = WordLength, fl = FractionLength

Range of an 8-Bit Fixed-Point Data Type — Binary-Point-Only Scaling

The precisions, range of signed values, and range of unsigned values for an 8-bit
generalized fixed-point data type with binary-point-only scaling are listed in the
follow table. Note that the first scaling value (21) represents a binary point that is not
contiguous with the word.

31 Data Types and Scaling

31-14

Scaling Precision Range of Signed Values
(Low, High)

Range of Unsigned Values
(Low, High)

21 2.0 -256, 254 0, 510

20 1.0 -128, 127 0, 255

2-1 0.5 -64, 63.5 0, 127.5

2-2 0.25 -32, 31.75 0, 63.75

2-3 0.125 -16, 15.875 0, 31.875

2-4 0.0625 -8, 7.9375 0, 15.9375

2-5 0.03125 -4, 3.96875 0, 7.96875

2-6 0.015625 -2, 1.984375 0, 3.984375

2-7 0.0078125 -1, 0.9921875 0, 1.9921875

2-8 0.00390625 -0.5, 0.49609375 0, 0.99609375

Range of an 8-Bit Fixed-Point Data Type — Slope and Bias Scaling

The precision and ranges of signed and unsigned values for an 8-bit fixed-point data type
using slope and bias scaling are listed in the following table. The slope starts at a value of
1.25 with a bias of 1.0 for all slopes. Note that the slope is the same as the precision.

Bias Slope/Precision Range of Signed Values
(low, high)

Range of Unsigned Values
(low, high)

1 1.25 -159, 159.75 1, 319.75
1 0.625 -79, 80.375 1, 160.375
1 0.3125 -39, 40.6875 1, 80.6875
1 0.15625 -19, 20.84375 1, 40.84375
1 0.078125 -9, 10.921875 1, 20.921875
1 0.0390625 -4, 5.9609375 1, 10.9609375
1 0.01953125 -1.5, 3.48046875 1, 5.98046875
1 0.009765625 -0.25, 2.240234375 1, 3.490234375
1 0.0048828125 0.375, 1.6201171875 1, 2.2451171875

 Fixed-Point Numbers in Simulink

31-15

Fixed-Point Numbers in Simulink

In this section...

“Constant Scaling for Best Precision” on page 31-15
“Fixed-Point Data Type and Scaling Notation” on page 31-17

Constant Scaling for Best Precision

The following fixed-point Simulink blocks provide a mode for scaling parameters whose
values are constant vectors or matrices:

• Constant
• Discrete FIR Filter
• Gain
• Relay
• Repeating Sequence Stair

This scaling mode is based on binary-point-only scaling. Using this mode, you can scale
a constant vector or matrix such that a common binary point is found based on the best
precision for the largest value in the vector or matrix.

Constant scaling for best precision is available only for fixed-point data types with
unspecified scaling. All other fixed-point data types use their specified scaling. You can
use the Data Type Assistant (see “Specify Data Types Using Data Type Assistant”) on a
block dialog box to enable the best precision scaling mode.

1
On a block dialog box, click the Show data type assistant button .

The Data Type Assistant appears.
2 In the Data Type Assistant, and from the Mode list, select Fixed point.

The Data Type Assistant displays additional options associated with fixed-point
data types.

3 From the Scaling list, select Best precision.

31 Data Types and Scaling

31-16

To understand how you might use this scaling mode, consider a 3-by-3 matrix of doubles,
M, defined as

 3.3333e-003 3.3333e-004 3.3333e-005

 3.3333e-002 3.3333e-003 3.3333e-004

 3.3333e-001 3.3333e-002 3.3333e-003

Now suppose you specify M as the value of the Gain parameter for a Gain block. The
results of specifying your own scaling versus using the constant scaling mode are
described here:

• Specified Scaling

Suppose the matrix elements are converted to a signed, 10-bit generalized fixed-point
data type with binary-point-only scaling of 2-7 (that is, the binary point is located
seven places to the left of the right most bit). With this data format, M becomes

0 0 0

3.1250e-002 0 0

3.3594e-001 3.1250e-002 0

Note that many of the matrix elements are zero, and for the nonzero entries, the
scaled values differ from the original values. This is because a double is converted to a
binary word of fixed size and limited precision for each element. The larger and more
precise the conversion data type, the more closely the scaled values match the original
values.

• Constant Scaling for Best Precision

If M is scaled based on its largest matrix value, you obtain

2.9297e-003 0 0

3.3203e-002 2.9297e-003 0

3.3301e-001 3.3203e-002 2.9297e-003

 Fixed-Point Numbers in Simulink

31-17

Best precision would automatically select the fraction length that minimizes the
quantization error. Even though precision was maximized for the given word length,
quantization errors can still occur. In this example, a few elements still quantize to
zero.

Fixed-Point Data Type and Scaling Notation

Simulink data type names must be valid MATLAB identifiers with less than 128
characters. The data type name provides information about container type, number
encoding, and scaling.

You can represent a fixed-point number using the fixed-point scaling equation

V V SQ Bª = +

~

,

where

• V is the real-world value.
•

V

~

 is the approximate real-world value.
•

S F
E

= 2 is the slope.
• F is the slope adjustment factor.
• E is the fixed power-of-two exponent.
• Q is the stored integer.
• B is the bias.

For more information, see “Scaling” on page 31-7.

The following table provides a key for various symbols that appear in Simulink products
to indicate the data type and scaling of a fixed-point value.

Symbol Description Example
Container Type
ufix Unsigned fixed-point data

type
ufix8 is an 8-bit unsigned fixed-
point data type

sfix Signed fixed-point data type sfix128 is a 128-bit signed fixed-
point data type

31 Data Types and Scaling

31-18

Symbol Description Example
fltu Scaled Doubles override of

an unsigned fixed-point data
type (ufix)

fltu32 is a scaled doubles
override of ufix32

flts Scaled Doubles override of a
signed fixed-point data type
(sfix)

flts64 is a scaled doubles
override of sfix64

Number Encoding
e 10^ 125e8 equals 125*(10^(8))
n Negative n31 equals -31
p Decimal point 1p5 equals 1.5

p2 equals 0.2
Scaling Encoding
S Slope ufix16_S5_B7 is a 16-bit

unsigned fixed-point data type
with Slope of 5 and Bias of 7

B Bias ufix16_S5_B7 is a 16-bit
unsigned fixed-point data type
with Slope of 5 and Bias of 7

E Fixed exponent (2^)

A negative fixed exponent
describes the fraction length

sfix32_En31 is a 32-bit signed
fixed-point data type with a
fraction length of 31

F Slope adjustment factor ufix16_F1p5_En50 is a 16-bit
unsigned fixed-point data type
with a SlopeAdjustmentFactor
of 1.5 and a FixedExponent of
-50

 Fixed-Point Numbers in Simulink

31-19

Symbol Description Example
C,c,D, or d Compressed encoding for

Bias

Note: If you pass
this string to the
slDataTypeAndScale

function, it returns a valid
fixdt data type.

No example available. For
backwards compatibility only.

To identify and replace calls
to slDataTypeAndScale,
use the “Check for calls to
slDataTypeAndScale” Model
Advisor check.

T or t Compressed encoding for
Slope

Note: If you pass
this string to the
slDataTypeAndScale, it
returns a valid fixdt data
type.

No example available. For
backwards compatibility only.

To identify and replace calls
to slDataTypeAndScale,
use the “Check for calls to
slDataTypeAndScale” Model
Advisor check.

31 Data Types and Scaling

31-20

Display Port Data Types

To display the data types for the ports in your model.

1 From the Simulink Display menu, select Signals and Ports, and then select Port
Data Types.

The port display for fixed-point signals consists of three parts: the data type, the number
of bits, and the scaling. These three parts reflect the block Output data type parameter
value or the data type and scaling that is inherited from the driving block or through
back propagation.

The following model displays its port data types.

In the model, the data type displayed with the In1 block indicates that the output data
type name is sfix16_Sp2_B10. This corresponds to fixdt(1, 16, 0.2, 10) which

 Display Port Data Types

31-21

is a signed 16 bit fixed-point number with slope 0.2 and bias 10.0. The data type
displayed with the In2 block indicates that the output data type name is sfix16_En6.
This corresponds to fixdt(1, 16, 6) which is a signed 16 bit fixed-point number with
fraction length of 6.

31 Data Types and Scaling

31-22

Scaled Doubles

What Are Scaled Doubles?

Scaled doubles are a hybrid between floating-point and fixed-point numbers. The Fixed-
Point Designer software stores them as doubles with the scaling, sign, and word length
information retained. For example, the storage container for a fixed-point data type
sfix16_En14 is int16. The storage container of the equivalent scaled doubles data
type, flts16_En14 is floating-point double. For details of the fixed-point scaling
notation, see “Fixed-Point Data Type and Scaling Notation” on page 31-17. The Fixed-
Point Designer software applies the scaling information to the stored floating-point
double to obtain the real-world value. Storing the value in a double almost always
eliminates overflow and precision issues.

What is the Difference between Scaled Double and Double Data Types?

The storage container for both the scaled double and double data types is floating-point
double. Therefore both data type override settings, Double and Scaled double,
provide the range and precision advantages of floating-point doubles. Scaled doubles
retain the information about the specified data type and scaling, but doubles do not
retain this information. Because scaled doubles retain the information about the
specified scaling, they can also be used for overflow detection.

Consider an example where you are storing 0.75001 degrees Celsius in a data type
sfix16_En13. For this data type:

• The slope, S =
-

2
13 .

• The bias, B = 0 .

Using the scaling equation V V SQ Bª = +

~

, where V is the real-world value and Q is the
stored value.

• B = 0 .
•

V SQ Q
~

.= = =
-

2 0 75001
13 .

Because the storage container of the data type sfix16_En13 is 16 bits, the stored
integer Q can only be represented as an integer within these 16 bits, so the ideal value of
Q is quantized to 6144 causing precision loss.

 Scaled Doubles

31-23

If you override the data type sfix16_En13 with Double, the data type changes to
Double and you lose the information about the scaling. The stored-value equals the real-
world value 0.75001.

If you override the data type sfix16_En13 with Scaled Double, the data type changes
to flts16_En13. The scaling is still given by _En13 and is identical to that of the
original data type. The only difference is the storage container used to hold the stored
value which is now double so the stored-value is 6144.08192. This example shows one
advantage of using scaled doubles: the virtual elimination of quantization errors.

When to Use Scaled Doubles

The Fixed-Point Tool enables you to perform various data type overrides on fixed-point
signals in your simulations. Use scaled doubles to override the fixed-point data types
and scaling using double-precision numbers to avoid quantization effects. Overriding
the fixed-point data types provides a floating-point benchmark that represents the ideal
output.

Scaled doubles are useful for:

• Testing and debugging
• Detecting overflows
• Applying data type overrides to individual subsystems

If you apply a data type override to subsystems in your model rather than to the
whole model, Scaled doubles provide the information that the fixed-point portions of
the model need for consistent data type propagation.

31 Data Types and Scaling

31-24

Use Scaled Doubles to Avoid Precision Loss

This example uses the ex_scaled_double model to show how you can avoid
precision loss by overriding the data types in your model with scaled doubles. For more
information about scaled doubles, see “Scaled Doubles” on page 31-22.

About the Model

In this model:

• The Constant block output data type is fixdt(1,8,4).
• The Bitwise Operator block uses the AND operator and the bit mask 0xFF to pass the

input value to the output. Because the Treat mask as parameter is set to Stored

 Use Scaled Doubles to Avoid Precision Loss

31-25

Integer, the block outputs the stored integer value, S, of its input. The encoding
scheme is V SQ B= + , where V is the real-world value and Q is the stored integer
value. For more information, see “Scaling” on page 31-7.

Running the Example

1 Open the ex_scaled_double model. At the MATLAB command line, enter:

addpath(fullfile(docroot,'toolbox','fixpoint','examples'))

ex_scaled_double

2 From the model menu, select Analysis > Fixed-Point Tool.

The Fixed-Point Tool opens.
3 In the Fixed-Point Tool, set the Data type override parameter to Use local

settings and click Apply.
4 From the model menu, select Simulation > Run.

The simulation runs and the Display block displays 4.125 as the output value of
the Constant block. The Stored Integer Display block displays 0100 0010,
which is the binary equivalent of the stored integer value. Precision loss occurs
because the output data type, fixdt(1,8,4), cannot represent the output value
4.1 exactly.

5 In the Fixed-Point Tool, set the Data type override parameter to Scaled double
and the Data type override applies to parameter to All numeric types. Then
click Apply and rerun the simulation.

Note: You cannot use a Data type override setting of Double because the Bitwise
Operator block does not support floating-point data types.

The simulation runs and this time the Display block correctly displays 4.1 as
the output value of the Constant block. The Stored Integer Display block
displays 65, which is the binary equivalent of the stored integer value. Because the
model uses scaled doubles to override the data type fixdt(1,8,4), the compiled
output data type changes to flts8_En4, which is the scaled doubles equivalent
of fixdt(1,8,4). No precision loss occurs because the scaled doubles retain the
information about the specified data type and scaling, and they use a double to hold
the stored value.

31 Data Types and Scaling

31-26

Floating-Point Numbers

In this section...

“Floating-Point Numbers” on page 31-26
“Scientific Notation” on page 31-26
“The IEEE Format” on page 31-27
“Range and Precision” on page 31-29
“Exceptional Arithmetic” on page 31-31

Floating-Point Numbers

Fixed-point numbers are limited in that they cannot simultaneously represent very large
or very small numbers using a reasonable word size. This limitation can be overcome by
using scientific notation. With scientific notation, you can dynamically place the binary
point at a convenient location and use powers of the binary to keep track of that location.
Thus, you can represent a range of very large and very small numbers with only a few
digits.

You can represent any binary floating-point number in scientific notation form as f
e

2 ,
where f is the fraction (or mantissa), 2 is the radix or base (binary in this case), and e is
the exponent of the radix. The radix is always a positive number, while f and e can be
positive or negative.

When performing arithmetic operations, floating-point hardware must take into account
that the sign, exponent, and fraction are all encoded within the same binary word. This
results in complex logic circuits when compared with the circuits for binary fixed-point
operations.

The Fixed-Point Designer software supports single-precision and double-precision
floating-point numbers as defined by the IEEE Standard 754. Additionally, a
nonstandard IEEE-style number is supported.

Scientific Notation

A direct analogy exists between scientific notation and radix point notation. For example,
scientific notation using five decimal digits for the fraction would take the form

 Floating-Point Numbers

31-27

± ¥ = ± ¥ = ± ¥
- +

d dddd ddddd ddddd
p p p

. . . ,10 0 10 0 10
4 1

where d = 0 9,..., and p is an integer of unrestricted range.

Radix point notation using five bits for the fraction is the same except for the number
base

± ¥ = ± ¥ = ± ¥
- +

b bbbb bbbbb bbbbb
q q q

. . . ,2 0 2 0 2
4 1

where b = 0 1, and q is an integer of unrestricted range.

For fixed-point numbers, the exponent is fixed but there is no reason why the binary
point must be contiguous with the fraction. For more information, see “Binary Point
Interpretation” on page 31-5.

The IEEE Format

The IEEE Standard 754 has been widely adopted, and is used with virtually all floating-
point processors and arithmetic coprocessors—with the notable exception of many DSP
floating-point processors.

Among other things, this standard specifies four floating-point number formats, of which
singles and doubles are the most widely used. Each format contains three components: a
sign bit, a fraction field, and an exponent field. These components, as well as the specific
formats for singles and doubles, are discussed in the sections that follow.

The Sign Bit

While two's complement is the preferred representation for signed fixed-point numbers,
IEEE floating-point numbers use a sign/magnitude representation, where the sign bit
is explicitly included in the word. Using this representation, a sign bit of 0 represents a
positive number and a sign bit of 1 represents a negative number.

The Fraction Field

In general, floating-point numbers can be represented in many different ways by shifting
the number to the left or right of the binary point and decreasing or increasing the
exponent of the binary by a corresponding amount.

To simplify operations on these numbers, they are normalized in the IEEE format. A
normalized binary number has a fraction of the form 1.f where f has a fixed size for a

31 Data Types and Scaling

31-28

given data type. Since the leftmost fraction bit is always a 1, it is unnecessary to store
this bit and is therefore implicit (or hidden). Thus, an n-bit fraction stores an n+1-bit
number. The IEEE format also supports denormalized numbers, which have a fraction
of the form 0.f. Normalized and denormalized formats are discussed in more detail in the
next section.

The Exponent Field

In the IEEE format, exponent representations are biased. This means a fixed value
(the bias) is subtracted from the field to get the true exponent value. For example, if
the exponent field is 8 bits, then the numbers 0 through 255 are represented, and there
is a bias of 127. Note that some values of the exponent are reserved for flagging Inf
(infinity), NaN (not-a-number), and denormalized numbers, so the true exponent values
range from -126 to 127. See the sections “Inf” on page 31-32 and “NaN” on page
31-32.

Single-Precision Format

The IEEE single-precision floating-point format is a 32-bit word divided into a 1-bit sign
indicator s, an 8-bit biased exponent e, and a 23-bit fraction f. For more information,
see “The Sign Bit” on page 31-27, “The Exponent Field” on page 31-28, and “The
Fraction Field” on page 31-27. A representation of this format is given below.

The relationship between this format and the representation of real numbers is given by

value

f e
s e

s e=

- < <

-

-

-

() ()(.) ,

() ()(

1 2 1 0 255

1 2

127

126

normalized,

00 0 0.) , ,f e fdenormalized,

exceptional value otherwise.

= >

Ï

Ì
ÔÔ

Ó
Ô

“Exceptional Arithmetic” on page 31-31 discusses denormalized values.

Double-Precision Format

The IEEE double-precision floating-point format is a 64-bit word divided into a 1-bit sign
indicator s, an 11-bit biased exponent e, and a 52-bit fraction f.For more information,

 Floating-Point Numbers

31-29

see “The Sign Bit” on page 31-27, “The Exponent Field” on page 31-28, and
“The Fraction Field” on page 31-27. A representation of this format is shown in the
following figure.

The relationship between this format and the representation of real numbers is given by

value

f e
s e

s e=

- < <

-

-

-

() ()(.) ,

() (

1 2 1 0 2047

1 2

1023

102

normalized,

22 0 0 0)(.) ,f e fdenormalized,

exceptional value otherwise.

= >

ÏÏ

Ì
Ô

Ó
Ô

,

“Exceptional Arithmetic” on page 31-31 discusses denormalized values.

Range and Precision

The range of a number gives the limits of the representation while the precision gives the
distance between successive numbers in the representation. The range and precision of
an IEEE floating-point number depend on the specific format.

Range

The range of representable numbers for an IEEE floating-point number with f bits
allocated for the fraction, e bits allocated for the exponent, and the bias of e given by
bias

e
= -

-

2 1
1() is given below.

where

31 Data Types and Scaling

31-30

• Normalized positive numbers are defined within the range 2
1(

)
-bias to (

)
2 2 2-

- f bias .

• Normalized negative numbers are defined within the range -

-

2
1()bias to

- -

-

()2 2 2
f bias .

• Positive numbers greater than ()2 2 2-

- f bias and negative numbers greater than

- -

-

(_2 2 2
f bias are overflows.

• Positive numbers less than 2
1(

)
-bias and negative numbers less than -

-

2
1()bias are

either underflows or denormalized numbers.
• Zero is given by a special bit pattern, where e = 0 and f = 0 .

Overflows and underflows result from exceptional arithmetic conditions. Floating-point
numbers outside the defined range are always mapped to ±Inf.

Note: You can use the MATLAB commands realmin and realmax to determine the
dynamic range of double-precision floating-point values for your computer.

Precision

Because of a finite word size, a floating-point number is only an approximation of the
“true” value. Therefore, it is important to have an understanding of the precision (or
accuracy) of a floating-point result. In general, a value v with an accuracy q is specified
by v q± . For IEEE floating-point numbers,
v = (–1)s(2e–bias)(1.f)

and
q = 2–f×2e–bias

Thus, the precision is associated with the number of bits in the fraction field.

Note: In the MATLAB software, floating-point relative accuracy is given by the command
eps, which returns the distance from 1.0 to the next larger floating-point number. For a
computer that supports the IEEE Standard 754, eps = 2-52 or 2.22045 · 10-16.

 Floating-Point Numbers

31-31

Floating-Point Data Type Parameters

The high and low limits, exponent bias, and precision for the supported floating-point
data types are given in the following table.

Data Type Low Limit High Limit Exponent Bias Precision

Single 2-126 ≈ 10-38 2128 ≈ 3 · 1038 127 2-23 ≈ 10-7

Double 2-1022 ≈ 2 · 10-308 21024 ≈ 2 · 10308 1023 2-52 ≈ 10-16

Nonstandard 2(1 - bias) (2 - 2-f) · 2bias 2(e - 1) - 1 2-f

Because of the sign/magnitude representation of floating-point numbers, there are two
representations of zero, one positive and one negative. For both representations e = 0 and
f.0 = 0.0.

Exceptional Arithmetic

In addition to specifying a floating-point format, the IEEE Standard 754 specifies
practices and procedures so that predictable results are produced independently of the
hardware platform. Specifically, denormalized numbers, Inf, and NaN are defined to deal
with exceptional arithmetic (underflow and overflow).

If an underflow or overflow is handled as Inf or NaN, then significant processor overhead
is required to deal with this exception. Although the IEEE Standard 754 specifies
practices and procedures to deal with exceptional arithmetic conditions in a consistent
manner, microprocessor manufacturers might handle these conditions in ways that
depart from the standard.

Denormalized Numbers

Denormalized numbers are used to handle cases of exponent underflow. When the
exponent of the result is too small (i.e., a negative exponent with too large a magnitude),
the result is denormalized by right-shifting the fraction and leaving the exponent at
its minimum value. The use of denormalized numbers is also referred to as gradual
underflow. Without denormalized numbers, the gap between the smallest representable
nonzero number and zero is much wider than the gap between the smallest representable
nonzero number and the next larger number. Gradual underflow fills that gap and
reduces the impact of exponent underflow to a level comparable with roundoff among
the normalized numbers. Thus, denormalized numbers provide extended range for small
numbers at the expense of precision.

31 Data Types and Scaling

31-32

Inf

Arithmetic involving Inf (infinity) is treated as the limiting case of real arithmetic,
with infinite values defined as those outside the range of representable numbers, or –
∞ ≤ (representable numbers) < ∞. With the exception of the special cases discussed below
(NaN), any arithmetic operation involving Inf yields Inf. Inf is represented by the
largest biased exponent allowed by the format and a fraction of zero.

NaN

A NaN (not-a-number) is a symbolic entity encoded in floating-point format. There are two
types of NaN: signaling and quiet. A signaling NaN signals an invalid operation exception.
A quiet NaN propagates through almost every arithmetic operation without signaling an
exception. The following operations result in a NaN: ∞–∞, –∞+∞, 0×∞, 0/0, and ∞/∞.

Both types of NaN are represented by the largest biased exponent allowed by the format
and a fraction that is nonzero. The bit pattern for a quiet NaN is given by 0.f where the
most significant number in f must be a one, while the bit pattern for a signaling NaN is
given by 0.f where the most significant number in f must be zero and at least one of the
remaining numbers must be nonzero.

32

Arithmetic Operations

• “Fixed-Point Arithmetic Operations” on page 32-3
• “Limitations on Precision” on page 32-4
• “Rounding” on page 32-5
• “Rounding Modes for Fixed-Point Simulink Blocks” on page 32-6
• “Rounding Mode: Ceiling” on page 32-8
• “Rounding Mode: Convergent” on page 32-9
• “Rounding Mode: Floor” on page 32-11
• “Rounding Mode: Nearest” on page 32-12
• “Rounding Mode: Round” on page 32-14
• “Rounding Mode: Simplest” on page 32-16
• “Rounding Mode: Zero” on page 32-20
• “Pad with Trailing Zeros” on page 32-23
• “Limitations on Precision and Errors” on page 32-24
• “Maximize Precision” on page 32-25
• “Net Slope and Net Bias Precision” on page 32-26
• “Detect Net Slope and Bias Precision Issues” on page 32-29
• “Detect Fixed-Point Constant Precision Loss” on page 32-30
• “Limitations on Range” on page 32-31
• “Saturation and Wrapping” on page 32-33
• “Guard Bits” on page 32-36
• “Determine the Range of Fixed-Point Numbers” on page 32-37
• “Handle Overflows in Simulink Models” on page 32-38
• “Recommendations for Arithmetic and Scaling” on page 32-40
• “Parameter and Signal Conversions” on page 32-52
• “Rules for Arithmetic Operations” on page 32-56

32 Arithmetic Operations

32-2

• “The Summation Process” on page 32-66
• “The Multiplication Process” on page 32-69
• “The Division Process” on page 32-71
• “Shifts” on page 32-72
• “Conversions and Arithmetic Operations” on page 32-74

 Fixed-Point Arithmetic Operations

32-3

Fixed-Point Arithmetic Operations

When developing a dynamic system using floating-point arithmetic, you generally don't
have to worry about numerical limitations since floating-point data types have high
precision and range. Conversely, when working with fixed-point arithmetic, you must
consider these factors when developing dynamic systems:

• Overflow

Adding two sufficiently large negative or positive values can produce a result that
does not fit into the representation. This will have an adverse effect on the control
system.

• Quantization

Fixed-point values are rounded. Therefore, the output signal to the plant and the
input signal to the control system do not have the same characteristics as the ideal
discrete-time signal.

• Computational noise

The accumulated errors that result from the rounding of individual terms within the
realization introduce noise into the control signal.

• Limit cycles

In the ideal system, the output of a stable transfer function (digital filter) approaches
some constant for a constant input. With quantization, limit cycles occur where the
output oscillates between two values in steady state.

This chapter describes the limitations involved when arithmetic operations are
performed using encoded fixed-point variables. It also provides recommendations for
encoding fixed-point variables such that simulations and generated code are reasonably
efficient.

32 Arithmetic Operations

32-4

Limitations on Precision

Computer words consist of a finite numbers of bits. This means that the binary
encoding of variables is only an approximation of an arbitrarily precise real-world
value. Therefore, the limitations of the binary representation automatically introduce
limitations on the precision of the value. For a general discussion of range and precision,
refer to “Range and Precision” on page 31-12.

The precision of a fixed-point word depends on the word size and binary point location.
Extending the precision of a word can always be accomplished with more bits, but you
face practical limitations with this approach. Instead, you must carefully select the data
type, word size, and scaling such that numbers are accurately represented. Rounding and
padding with trailing zeros are typical methods implemented on processors to deal with
the precision of binary words.

 Rounding

32-5

Rounding

The result of any operation on a fixed-point number is typically stored in a register that
is longer than the number's original format. When the result is put back into the original
format, the extra bits must be disposed of. That is, the result must be rounded. Rounding
involves going from high precision to lower precision and produces quantization errors
and computational noise.

Choose a Rounding Mode

To choose the most suitable rounding mode for your application, you need to consider
your system requirements and the properties of each rounding mode. The most important
properties to consider are:

• Cost — Independent of the hardware being used, how much processing expense does
the rounding method require?

• Bias — What is the expected value of the rounded values minus the original values?
• Possibility of overflow — Does the rounding method introduce the possibility of

overflow?

For more information on when to use each rounding mode, see “Rounding Methods” in
the Fixed-Point Designer User's Guide.

Choosing a Rounding Mode for Diagnostic Purposes

Rounding toward ceiling and rounding toward floor are sometimes useful for diagnostic
purposes. For example, after a series of arithmetic operations, you may not know the
exact answer because of word-size limitations, which introduce rounding. If every
operation in the series is performed twice, once rounding to positive infinity and once
rounding to negative infinity, you obtain an upper limit and a lower limit on the correct
answer. You can then decide if the result is sufficiently accurate or if additional analysis
is necessary.

More About
• “Rounding Modes for Fixed-Point Simulink Blocks” on page 32-6

32 Arithmetic Operations

32-6

Rounding Modes for Fixed-Point Simulink Blocks

Fixed-point Simulink blocks support the rounding modes shown in the expanded drop-
down menu of the following dialog box.

The following table illustrates the differences between these rounding modes:

 Rounding Modes for Fixed-Point Simulink Blocks

32-7

Rounding Mode Description Tie Handling

Ceiling Rounds to the nearest
representable number in the
direction of positive infinity.

N/A

Floor Rounds to the nearest
representable number in
the direction of negative
infinity.

N/A

Zero Rounds to the nearest
representable number in the
direction of zero.

N/A

Convergent Rounds to the nearest
representable number.

Ties are rounded toward the
nearest even integer.

Nearest Rounds to the nearest
representable number.

Ties are rounded to the
closest representable number
in the direction of positive
infinity.

Round Rounds to the nearest
representable number.

For positive numbers, ties
are rounded toward the
closest representable number
in the direction of positive
infinity.

For negative numbers, ties
are rounded toward the
closest representable number
in the direction of negative
infinity.

Simplest Automatically chooses
between Floor and Zero to
produce generated code that
is as efficient as possible.

N/A

32 Arithmetic Operations

32-8

Rounding Mode: Ceiling

When you round toward ceiling, both positive and negative numbers are rounded toward
positive infinity. As a result, a positive cumulative bias is introduced in the number.

In the MATLAB software, you can round to ceiling using the ceil function. Rounding
toward ceiling is shown in the following figure.

All numbers are rounded
 toward positive infinity

 Rounding Mode: Convergent

32-9

Rounding Mode: Convergent

Convergent rounds toward the nearest representable value with ties rounding toward
the nearest even integer. It eliminates bias due to rounding. However, it introduces the
possibility of overflow.

In the MATLAB software, you can perform convergent rounding using the convergent
function. Convergent rounding is shown in the following figure.

32 Arithmetic Operations

32-10

All numbers are rounded to the
nearest representable number

Ties are rounded to the
nearest even number

 Rounding Mode: Floor

32-11

Rounding Mode: Floor

When you round toward floor, both positive and negative numbers are rounded to
negative infinity. As a result, a negative cumulative bias is introduced in the number.

In the MATLAB software, you can round to floor using the floor function. Rounding
toward floor is shown in the following figure.

All numbers are rounded
toward negative infinity

32 Arithmetic Operations

32-12

Rounding Mode: Nearest

When you round toward nearest, the number is rounded to the nearest representable
value. In the case of a tie, nearest rounds to the closest representable number in the
direction of positive infinity.

In the Fixed-Point Designer software, you can round to nearest using the nearest
function. Rounding toward nearest is shown in the following figure.

 Rounding Mode: Nearest

32-13

All numbers are rounded to
the nearest representable number

Ties are rounded to the closest
representable number in the
direction of positive infinity

32 Arithmetic Operations

32-14

Rounding Mode: Round

Round rounds to the closest representable number. In the case of a tie, it rounds:

• Positive numbers to the closest representable number in the direction of positive
infinity.

• Negative numbers to the closest representable number in the direction of negative
infinity.

As a result:

• A small negative bias is introduced for negative samples.
• No bias is introduced for samples with evenly distributed positive and negative

values.
• A small positive bias is introduced for positive samples.

In the MATLAB software, you can perform this type of rounding using the round
function. The rounding mode Round is shown in the following figure.

 Rounding Mode: Round

32-15

All numbers are rounded to the
nearest representable number

For positive numbers, ties are rounded
to the closest representable number in
the direction of positive infinity

For negative numbers, ties are

rounded to the closest representable

number in the direction of negative

infinity

32 Arithmetic Operations

32-16

Rounding Mode: Simplest
The simplest rounding mode attempts to reduce or eliminate the need for extra rounding
code in your generated code using a combination of techniques, discussed in the following
sections:

• “Optimize Rounding for Casts” on page 32-16
• “Optimize Rounding for High-Level Arithmetic Operations” on page 32-16
• “Optimize Rounding for Intermediate Arithmetic Operations” on page 32-18

In nearly all cases, the simplest rounding mode produces the most efficient generated
code. For a very specialized case of division that meets three specific criteria, round to
floor might be more efficient. These three criteria are:

• Fixed-point/integer signed division
• Denominator is an invariant constant
• Denominator is an exact power of two

For this case, set the rounding mode to floor and the Model Configuration
Parameters > Hardware Implementation > Production Hardware > Signed
integer division rounds to parameter to describe the rounding behavior of your
production target.

Optimize Rounding for Casts

The Data Type Conversion block casts a signal with one data type to another data type.
When the block casts the signal to a data type with a shorter word length than the
original data type, precision is lost and rounding occurs. The simplest rounding mode
automatically chooses the best rounding for these cases based on the following rules:

• When casting from one integer or fixed-point data type to another, the simplest mode
rounds toward floor.

• When casting from a floating-point data type to an integer or fixed-point data type,
the simplest mode rounds toward zero.

Optimize Rounding for High-Level Arithmetic Operations

The simplest rounding mode chooses the best rounding for each high-level arithmetic
operation. For example, consider the operation y = u1 × u2 / u3 implemented using a
Product block:

 Rounding Mode: Simplest

32-17

As stated in the C standard, the most efficient rounding mode for multiplication
operations is always floor. However, the C standard does not specify the rounding mode
for division in cases where at least one of the operands is negative. Therefore, the most
efficient rounding mode for a divide operation with signed data types can be floor or zero,
depending on your production target.

The simplest rounding mode:

• Rounds to floor for all nondivision operations.
• Rounds to zero or floor for division, depending on the setting of the Model

Configuration Parameters > Hardware Implementation > Production
Hardware > Signed integer division rounds to parameter.

To get the most efficient code, you must set the Signed integer division rounds
to parameter to specify whether your production target rounds to zero or to floor for
integer division. Most production targets round to zero for integer division operations.
Note that Simplest rounding enables “mixed-mode” rounding for such cases, as it
rounds to floor for multiplication and to zero for division.

If the Signed integer division rounds to parameter is set to Undefined, the
simplest rounding mode might not be able to produce the most efficient code. The
simplest mode rounds to zero for division for this case, but it cannot rely on your
production target to perform the rounding, because the parameter is Undefined.
Therefore, you need additional rounding code to ensure rounding to zero behavior.

Note: For signed fixed-point division where the denominator is an invariant constant
power of 2, the simplest rounding mode does not generate the most efficient code. In
this case, set the rounding mode to floor.

32 Arithmetic Operations

32-18

Optimize Rounding for Intermediate Arithmetic Operations

For fixed-point arithmetic with nonzero slope and bias, the simplest rounding mode
also chooses the best rounding for each intermediate arithmetic operation. For example,
consider the operation y = u1 / u2 implemented using a Product block, where u1 and u2 are
fixed-point quantities:

As discussed in , each fixed-point quantity is calculated using its slope, bias, and stored
integer. So in this example, not only is there the high-level divide called for by the block
operation, but intermediate additions and multiplies are performed:

y
u

u

S Q B

S Q B
= =

+

+

1

2

1 1 1

2 2 2

The simplest rounding mode performs the best rounding for each of these operations,
high-level and intermediate, to produce the most efficient code. The rules used to
select the appropriate rounding for intermediate arithmetic operations are the same as
those described in “Optimize Rounding for High-Level Arithmetic Operations” on page
32-16. Again, this enables mixed-mode rounding, with the most common case being
round toward floor used for additions, subtractions, and multiplies, and round toward
zero used for divides.

Remember that generating the most efficient code using the simplest rounding
mode requires you to set the Model Configuration Parameters > Hardware
Implementation > Production Hardware > Signed integer division rounds to
parameter to describe the rounding behavior of your production target.

 Rounding Mode: Simplest

32-19

Note: For signed fixed-point division where the denominator is an invariant constant
power of 2, the simplest rounding mode does not generate the most efficient code. In this
case, set the rounding mode to floor.

32 Arithmetic Operations

32-20

Rounding Mode: Zero

Rounding towards zero is the simplest rounding mode computationally. All digits
beyond the number required are dropped. Rounding towards zero results in a number
whose magnitude is always less than or equal to the more precise original value. In the
MATLAB software, you can round to zero using the fix function.

Rounding toward zero introduces a cumulative downward bias in the result for positive
numbers and a cumulative upward bias in the result for negative numbers. That
is, all positive numbers are rounded to smaller positive numbers, while all negative
numbers are rounded to smaller negative numbers. Rounding toward zero is shown in
the following figure.

 Rounding Mode: Zero

32-21

Positive numbers are rounded
to smaller positive numbers

Negative numbers are rounded
to smaller negative numbers

32 Arithmetic Operations

32-22

Rounding to Zero Versus Truncation

Rounding to zero and truncation or chopping are sometimes thought to mean the same
thing. However, the results produced by rounding to zero and truncation are different
for unsigned and two's complement numbers. For this reason, the ambiguous term
“truncation” is not used in this guide, and explicit rounding modes are used instead.

To illustrate this point, consider rounding a 5-bit unsigned number to zero by dropping
(truncating) the two least significant bits. For example, the unsigned number 100.01 =
4.25 is truncated to 100 = 4. Therefore, truncating an unsigned number is equivalent to
rounding to zero or rounding to floor.

Now consider rounding a 5-bit two's complement number by dropping the two least
significant bits. At first glance, you may think truncating a two's complement number
is the same as rounding to zero. For example, dropping the last two digits of -3.75 yields
-3.00. However, digital hardware performing two's complement arithmetic yields a
different result. Specifically, the number 100.01 = -3.75 truncates to 100 = -4, which is
rounding to floor.

 Pad with Trailing Zeros

32-23

Pad with Trailing Zeros

Padding with trailing zeros involves extending the least significant bit (LSB) of a number
with extra bits. This method involves going from low precision to higher precision.

For example, suppose two numbers are subtracted from each other. First, the exponents
must be aligned, which typically involves a right shift of the number with the smaller
value. In performing this shift, significant digits can “fall off” to the right. However,
when the appropriate number of extra bits is appended, the precision of the result
is maximized. Consider two 8-bit fixed-point numbers that are close in value and
subtracted from each other:

1 0000000 2 1 1111111 2
1

. . ,¥ - ¥
-q q

where q is an integer. To perform this operation, the exponents must be equal:

1 0000000 2

0 1111111 2

0 0000001 2

.

.

.

.

¥

- ¥

¥

q

q

q

If the top number is padded by two zeros and the bottom number is padded with one zero,
then the above equation becomes

1 000000000 2

0 111111110 2

0 000000010 2

.

.

.
,

¥

- ¥

¥

q

q

q

which produces a more precise result. An example of padding with trailing zeros in a
Simulink model is illustrated in “Digital Controller Realization” on page 38-37.

32 Arithmetic Operations

32-24

Limitations on Precision and Errors

Fixed-point variables have a limited precision because digital systems represent numbers
with a finite number of bits. For example, suppose you must represent the real-world
number 35.375 with a fixed-point number. Using the encoding scheme described in
“Scaling” on page 31-7, the representation is

V V SQ B Qª = + = +
-% 2 32
2

,

where V = 35.375.

The two closest approximations to the real-world value are Q = 13 and Q = 14:

%

%

V

V

= ()+ =

= () + =

-

-

2 13 32 35 25

2 14 32 35 50

2

2

. ,

. .

In either case, the absolute error is the same:

%V V
S F

E

- = = =0 125
2

2

2
. .

For fixed-point values within the limited range, this represents the worst-case error if
round-to-nearest is used. If other rounding modes are used, the worst-case error can be
twice as large:

%V V F
E

- < 2 .

 Maximize Precision

32-25

Maximize Precision

Precision is limited by slope. To achieve maximum precision, you should make the slope
as small as possible while keeping the range adequately large. The bias is adjusted in
coordination with the slope.

Assume the maximum and minimum real-world values are given by max(V) and min(V),
respectively. These limits might be known based on physical principles or engineering
considerations. To maximize the precision, you must decide upon a rounding scheme
and whether overflows saturate or wrap. To simplify matters, this example assumes
the minimum real-world value corresponds to the minimum encoded value, and the
maximum real-world value corresponds to the maximum encoded value. Using the
encoding scheme described in “Scaling” on page 31-7, these values are given by

max max

min min .

V F Q B

V F Q B

E

E

() = ()()+

() = ()()+

2

2

Solving for the slope, you get

F
V V

Q Q

V VE

ws
2

2 1

=
()- ()

()- ()
=

() - ()

-

max min

max min

max min
.

This formula is independent of rounding and overflow issues, and depends only on the
word size, ws.

32 Arithmetic Operations

32-26

Net Slope and Net Bias Precision

What are Net Slope and Net Bias?

You can represent a fixed-point number by a general slope and bias encoding scheme

V V SQ Bª = +%
,

where:

• V is an arbitrarily precise real-world value.

• %V is the approximate real-world value.
• Q, the stored value, is an integer that encodes V.
• S = F2E is the slope.
• B is the bias.

For a cast operation,

S Q B S Q Ba a a b b b+ = +

or

Q
S Q

S

B B

S
a

b b

a

b a

a

= +
-Ê

Ë
Á

ˆ

¯
˜,

where:

• S

S

b

a is the net slope.

• B B

S

b a

a

-

 is the net bias.

 Net Slope and Net Bias Precision

32-27

Detecting Net Slope and Net Bias Precision Issues

Precision issues might occur in the fixed-point constants, net slope and net bias, due to
quantization errors when you convert from floating point to fixed point. These fixed-point
constant precision issues can result in numerical inaccuracy in your model.

You can configure your model to alert you when fixed-point constant precision issues
occur. For more information, see “Detect Net Slope and Bias Precision Issues” on page
32-29. The Fixed-Point Designer software provides the following information:

• The type of precision issue: underflow, overflow, or precision loss.
• The original value of the fixed-point constant.
• The quantized value of the fixed-point constant.
• The error in the value of the fixed-point constant.
• The block that introduced the error.

This information warns you that the outputs from this block are not accurate. If possible,
change the data types in your model to fix the issue.

Fixed-Point Constant Underflow

Fixed-point constant underflow occurs when the Fixed-Point Designer software
encounters a fixed-point constant whose data type does not have enough precision to
represent the ideal value of the constant, because the ideal value is too close to zero.
Casting the ideal value to the fixed-point data type causes the value of the fixed-point
constant to become zero. Therefore the value of the fixed-point constant differs from its
ideal value.

Fixed-Point Constant Overflow

Fixed-point constant overflow occurs when the Fixed-Point Designer software converts a
fixed-point constant to a data type whose range is not large enough to accommodate the
ideal value of the constant with reasonable precision. The data type cannot accurately
represent the ideal value because the ideal value is either too large or too small. Casting
the ideal value to the fixed-point data type causes overflow. For example, suppose the
ideal value is 200 and the converted data type is int8. Overflow occurs in this case
because the maximum value that int8 can represent is 127.

The Fixed-Point Designer software reports an overflow error if the quantized value
differs from the ideal value by more than the precision for the data type. The precision

32 Arithmetic Operations

32-28

for a data type is approximately equal to the default scaling (for more information, see
“Fixed-Point Data Type Parameters” on page 31-13.) Therefore, for positive values, the
Fixed-Point Designer software treats errors greater than the slope as overflows. For
negative values, it treats errors greater than or equal to the slope as overflows.

For example, the maximum value that int8 can represent is 127. The precision for
int8 is 1.0. An ideal value of 127.3 quantizes to 127 with an absolute error of 0.3.
Although the ideal value 127.3 is greater than the maximum representable value for
int8, the quantization error is small relative to the precision of int8. Therefore the
Fixed-Point Designer software does not report an overflow. However, an ideal value of
128.1 does cause an overflow because the quantization error is 1.1, which is larger than
the precision for int8.

Note: Fixed-point constant overflow differs from fixed-point constant precision loss.
Precision loss occurs when the ideal fixed-point constant value is within the range of the
current data type and scaling, but the software cannot represent this value exactly.

Fixed-Point Constant Precision Loss

Fixed-point constant precision loss occurs when the Fixed-Point Designer software
converts a fixed-point constant to a data type without enough precision to represent the
exact value of the constant. As a result, the quantized value differs from the ideal value.
For an example of this behavior, see “Detect Fixed-Point Constant Precision Loss” on
page 32-30.

Note: Fixed-point constant precision loss differs from fixed-point constant overflow.
Overflow occurs when the range of the parameter data type, that is, the maximum value
that it can represent, is smaller than the ideal value of the parameter.

 Detect Net Slope and Bias Precision Issues

32-29

Detect Net Slope and Bias Precision Issues

To receive alerts when fixed-point constant precision issues occur, use these options
available in the Simulink Configuration Parameters dialog box, on the Diagnostics
> Type Conversion pane. Set the parameters to warning or error so that Simulink
alerts you when precision issues occur.

Configuration Parameter Specifies Default

“Detect underflow” Diagnostic action when
a fixed-point constant
underflow occurs during
simulation

Does not generate a
warning or error.

“Detect overflow” Diagnostic action when
a fixed-point constant
overflow occurs during
simulation

Does not generate a
warning or error.

“Detect precision loss” Diagnostic action when
a fixed-point constant
precision loss occurs during
simulation

Does not generate a
warning or error.

32 Arithmetic Operations

32-30

Detect Fixed-Point Constant Precision Loss

This example shows how to detect fixed-point constant precision loss. The example uses
the following model.

For the Data Type Conversion block in this model, the:

• Input slope, SU = 1
• Output slope, SY = 1.000001
• Net slope, SU/SY = 1/1.000001

When you simulate the model, a net slope quantization error occurs.

To set up the model and run the simulation:

1 For the Inport block, set the Output data type to int16.
2 For the Data Type Conversion block, set the Output data type to fixdt(1,16,

1.000001, 0).
3 Set the Diagnostics > Type Conversion > Detect precision loss configuration

parameter to error.
4 In your Simulink model window, select Simulation > Run.

The Fixed-Point Designer software generates an error informing you that net scaling
quantization caused precision loss. The message provides the following information:

• The block that introduced the error.
• The original value of the net slope.
• The quantized value of the net slope.
• The error in the value of the net slope.

 Limitations on Range

32-31

Limitations on Range

Limitations on the range of a fixed-point word occur for the same reason as limitations
on its precision. Namely, fixed-point words have limited size. For a general discussion of
range and precision, refer to “Range and Precision” on page 31-12.

In binary arithmetic, a processor might need to take an n-bit fixed-point number and
store it in m bits, where m nπ . If m < n, the range of the number has been reduced and
an operation can produce an overflow condition. Some processors identify this condition
as Inf or NaN. For other processors, especially digital signal processors (DSPs), the value
saturates or wraps. If m > n, the range of the number has been extended. Extending the
range of a word requires the inclusion of guard bits, which act to guard against potential
overflow. In both cases, the range depends on the word's size and scaling.

The Simulink software supports saturation and wrapping for all fixed-point data
types, while guard bits are supported only for fractional data types. As shown in the
following figure, you can select saturation or wrapping for fixed-point Simulink blocks
with the Saturate on integer overflow check box. By setting Output data type to
sfrac(36,4), you specify a 36–bit signed fractional data type with 4 guard bits (total
word size is 40 bits).

32 Arithmetic Operations

32-32

 Saturation and Wrapping

32-33

Saturation and Wrapping

What Are Saturation and Wrapping?

Saturation and wrapping describe a particular way that some processors deal with
overflow conditions. For example, the ADSP-2100 family of processors from Analog
Devices™ supports either of these modes. If a register has a saturation mode of
operation, then an overflow condition is set to the maximum positive or negative
value allowed. Conversely, if a register has a wrapping mode of operation, an overflow
condition is set to the appropriate value within the range of the representation.

Saturation and Wrapping

Consider an 8-bit unsigned word with binary-point-only scaling of 2-5. Suppose this data
type must represent a sine wave that ranges from -4 to 4. For values between 0 and 4,
the word can represent these numbers without regard to overflow. This is not the case
with negative numbers. If overflows saturate, all negative values are set to zero, which
is the smallest number representable by the data type. The saturation of overflows is
shown in the following figure.

32 Arithmetic Operations

32-34

0 0.4 0.8 1.2 1.6 2
0

2

4

6

8

Time

Overflows Saturate

Negative values

saturate to zero

Negative values

saturate to zero

If overflows wrap, all negative values are set to the appropriate positive value. The
wrapping of overflows is shown in the following figure.

 Saturation and Wrapping

32-35

0 0.4 0.8 1.2 1.6 2
0

2

4

6

8
Overflows Wrap

Time

Negative values

wrap to positive

values.

Negative values

wrap to positive

values.

Note: For most control applications, saturation is the safer way of dealing with fixed-
point overflow. However, some processor architectures allow automatic saturation by
hardware. If hardware saturation is not available, then extra software is required,
resulting in larger, slower programs. This cost is justified in some designs—perhaps for
safety reasons. Other designs accept wrapping to obtain the smallest, fastest software.

32 Arithmetic Operations

32-36

Guard Bits

You can eliminate the possibility of overflow by appending the appropriate number of
guard bits to a binary word.

For a two's complement signed value, the guard bits are filled with either 0's or 1's
depending on the value of the most significant bit (MSB). This is called sign extension.
For example, consider a 4-bit two's complement number with value 1011. If this number
is extended in range to 7 bits with sign extension, then the number becomes 1111101 and
the value remains the same.

Guard bits are supported only for fractional data types. For both signed and unsigned
fractionals, the guard bits lie to the left of the default binary point.

 Determine the Range of Fixed-Point Numbers

32-37

Determine the Range of Fixed-Point Numbers

Fixed-point variables have a limited range for the same reason they have limited
precision—because digital systems represent numbers with a finite number of bits. As a
general example, consider the case where an integer is represented as a fixed-point word
of size ws. The range for signed and unsigned words is given by

max min ,Q Q()- ()

where

min

max

Q

Q

ws

w

() =
-

Ï
Ì
Ô

ÓÔ

() =

-

0 unsigned,

 signed,

2

2

1

ss

ws

-

-

Ï
Ì
Ô

ÓÔ
-

1

2 11

 unsigned,

 signed.

Using the general [Slope Bias] encoding scheme described in “Scaling” on page 31-7, the
approximate real-world value has the range

max min ,% %V V() - ()

where

min %V

F B
E ws

() =
- () +-

B unsigned,

2 2 1 signed,

 +B unsigned,

Ï
Ì
Ô

ÓÔ

() =
-()

-
max %V

F

F

E ws

E ws

2 2 1

2 2 1 --()

Ï
Ì
Ô

ÓÔ 1 +B signed.

If the real-world value exceeds the limited range of the approximate value, then the
accuracy of the representation can become significantly worse.

32 Arithmetic Operations

32-38

Handle Overflows in Simulink Models

This example shows how to control the warning messages you receive when a model
contains an overflow. This diagnostic control can simplify debugging models in which
only one type of overflow is of interest.

1 Open the ex_detect_overflows model.

addpath(fullfile(docroot,'toolbox','fixpoint','examples'))

ex_detect_overflows

This model contains a sine wave with an amplitude of 1.5 passed through two Data
Type Conversion blocks. In the Data Type Conversion block, the Saturate on
integer overflow parameter is selected. The Data Type Conversion1 block wraps
when the signal is too large to fit into the output data type.

2 Simulate the model.

 Handle Overflows in Simulink Models

32-39

The Diagnostic Viewer displays two overflow warnings. The first overflow saturated
and the second overflow wrapped.

3 In the Configuration Parameters dialog box:

• Set Diagnostics > Data Validity > Wrap on overflow to Error.
• Set Diagnostics > Data Validity > Saturate on overflow to Warning.

4 Simulate the model again.

The Diagnostic Viewer displays an error message for the overflow that wrapped, and
a warning message for the overflow that saturated.

For more information, see “Wrap on overflow”, and “Saturate on overflow”.

32 Arithmetic Operations

32-40

Recommendations for Arithmetic and Scaling

In this section...

“Arithmetic Operations and Fixed-Point Scaling” on page 32-40
“Addition” on page 32-41
“Accumulation” on page 32-44
“Multiplication” on page 32-44
“Gain” on page 32-47
“Division” on page 32-49
“Summary” on page 32-51

Arithmetic Operations and Fixed-Point Scaling

The sections that follow describe the relationship between arithmetic operations and
fixed-point scaling, and offer some basic recommendations that may be appropriate for
your fixed-point design. For each arithmetic operation,

• The general [Slope Bias] encoding scheme described in “Scaling” on page 31-7 is used.
• The scaling of the result is automatically selected based on the scaling of the two

inputs. In other words, the scaling is inherited.
• Scaling choices are based on

• Minimizing the number of arithmetic operations of the result
• Maximizing the precision of the result

Additionally, binary-point-only scaling is presented as a special case of the general
encoding scheme.

In embedded systems, the scaling of variables at the hardware interface (the ADC or
DAC) is fixed. However for most other variables, the scaling is something you can choose
to give the best design. When scaling fixed-point variables, it is important to remember
that

• Your scaling choices depend on the particular design you are simulating.
• There is no best scaling approach. All choices have associated advantages and

disadvantages. It is the goal of this section to expose these advantages and
disadvantages to you.

 Recommendations for Arithmetic and Scaling

32-41

Addition

Consider the addition of two real-world values:

V V V
a b c

= + .

These values are represented by the general [Slope Bias] encoding scheme described in
“Scaling” on page 31-7:

V F Q Bi i
E

i i
i= +2 .

In a fixed-point system, the addition of values results in finding the variable Qa:

Q
F

F
Q

F

F
Q

B B B

F
a

b

a

E E
b

c

a

E E
c

b c a

a

Eb a c a a
= + +

+ -
- - -

2 2 2 .

This formula shows

• In general, Qa is not computed through a simple addition of Qb and Qc.
• In general, there are two multiplications of a constant and a variable, two additions,

and some additional bit shifting.

Inherited Scaling for Speed

In the process of finding the scaling of the sum, one reasonable goal is to simplify the
calculations. Simplifying the calculations should reduce the number of operations,
thereby increasing execution speed. The following choices can help to minimize the
number of arithmetic operations:

• Set Ba = Bb + Bc. This eliminates one addition.
• Set Fa = Fb or Fa = Fc. Either choice eliminates one of the two constant times variable

multiplications.

The resulting formula is

Q Q
F

F
Qa

E E
b

c

a

E E
c

b a c a
= +

- -
2 2

32 Arithmetic Operations

32-42

or

Q
F

F
Q Qa

b

a

E E
b

E E
c

b a c a
= +

- -
2 2 .

These equations appear to be equivalent. However, your choice of rounding and precision
may make one choice stand out over the other. To further simplify matters, you could
choose Ea = Ec or Ea = Eb. This will eliminate some bit shifting.

Inherited Scaling for Maximum Precision

In the process of finding the scaling of the sum, one reasonable goal is maximum
precision. You can determine the maximum-precision scaling if the range of the variable
is known. “Maximize Precision” on page 32-25 shows that you can determine the range of
a fixed-point operation from max(Va) and min(Va). For a summation, you can determine
the range from

min min min ,

max max max .

% % %

% % %

V V V

V V V

a b c

a b c

() = () + ()

() = () + ()

You can now derive the maximum-precision slope:

F
V V

F F

a

E a a

ws

a

E ws

c

E ws

a

a

b b c c

2

2 1

2 2 1 2 2 1

2

=
()- ()

-

=
-() + -()

max min% %

wws
a -1

.

In most cases the input and output word sizes are much greater than one, and the slope
becomes

F F F
a

E

b

E ws ws

c

E ws ws
a b b a c c a2 2 2ª +

+ - + -
,

which depends only on the size of the input and output words. The corresponding bias is

B V F Qa a a
E

a
a= () - ()min min .% 2

 Recommendations for Arithmetic and Scaling

32-43

The value of the bias depends on whether the inputs and output are signed or unsigned
numbers.

If the inputs and output are all unsigned, then the minimum values for these variables
are all zero and the bias reduces to a particularly simple form:

B B B
a b c

= + .

If the inputs and the output are all signed, then the bias becomes

B B B F F

B B

a b c b

E ws ws

c

E ws ws

a b

b b b c c cª + + - +() + - +()
ª

- - - -
2 2 2 2 2 2

1 1 1 1
,

++ Bc .

Binary-Point-Only Scaling

For binary-point-only scaling, finding Qa results in this simple expression:

Q Q Qa
E E

b
E E

c
b a c a= +
- -

2 2 .

This scaling choice results in only one addition and some bit shifting. The avoidance of
any multiplications is a big advantage of binary-point-only scaling.

Note: The subtraction of values produces results that are analogous to those produced by
the addition of values.

32 Arithmetic Operations

32-44

Accumulation

The accumulation of values is closely associated with addition:

V V Va new a old b_ _

.= +

Finding Qa_new involves one multiplication of a constant and a variable, two additions,
and some bit shifting:

Q Q
F

F
Q

B

F
a new a old

b

a

E E
b

b

a

Eb a a
_ _ .= + +

- -
2 2

The important difference for fixed-point implementations is that the scaling of the output
is identical to the scaling of the first input.

Binary-Point-Only Scaling

For binary-point-only scaling, finding Qa_new results in this simple expression:

Q Q Qa new a old
E E

b
b a

_ _ .= +
-

2

This scaling option only involves one addition and some bit shifting.

Note: The negative accumulation of values produces results that are analogous to those
produced by the accumulation of values.

Multiplication

Consider the multiplication of two real-world values:

V V V
a b c

= .

These values are represented by the general [Slope Bias] encoding scheme described in
“Scaling” on page 31-7:

V F Q Bi i
E

i i
i= +2 .

 Recommendations for Arithmetic and Scaling

32-45

32 Arithmetic Operations

32-46

In a fixed-point system, the multiplication of values results in finding the variable Qa:

Q
F F

F
Q Q

F B

F
Q

F B

F
Q

B B

a
b c

a

E E E
b c

b c

a

E E
b

c b

a

E E
c

b c

b c a b a

c a

= +

+ +

-

+ - -

-

2 2

2
BB

F

a

a

Ea2
-

.

This formula shows

• In general, Qa is not computed through a simple multiplication of Qb and Qc.
• In general, there is one multiplication of a constant and two variables, two

multiplications of a constant and a variable, three additions, and some additional bit
shifting.

Inherited Scaling for Speed

The number of arithmetic operations can be reduced with these choices:

• Set Ba = BbBc. This eliminates one addition operation.
• Set Fa = FbFc. This simplifies the triple multiplication—certainly the most difficult

part of the equation to implement.
• Set Ea = Eb + Ec. This eliminates some of the bit shifting.

The resulting formula is

Q Q Q
B

F
Q

B

F
Qa b c

c

c

E
b

b

b

E
c

c b
= + +

- -
2 2 .

Inherited Scaling for Maximum Precision

You can determine the maximum-precision scaling if the range of the variable is known.
“Maximize Precision” on page 32-25 shows that you can determine the range of a fixed-
point operation from

max
%V
a()

and

 Recommendations for Arithmetic and Scaling

32-47

min .%V
a()

For multiplication, you can determine the range from

min min , , , ,

max max , , ,

%

%

V V V V V

V V V V V

a LL LH HL HH

a LL LH HL HH

() = ()

() = ()),

where

V V V

V V V

V V

LL b c

LH b c

HL b

= () ◊ ()

= () ◊ ()

= () ◊

min min ,

min max ,

max m

% %

% %

% iin ,

max max .

%

% %

V

V V V

c

HH b c

()

= () ◊ ()

Binary-Point-Only Scaling

For binary-point-only scaling, finding Qa results in this simple expression:

Q Q Qa
E E E

b c
b c a=
+ -

2 .

Gain

Consider the multiplication of a constant and a variable

V KV
a b

= ,

where K is a constant called the gain. Since Va results from the multiplication of a
constant and a variable, finding Qa is a simplified version of the general fixed-point
multiplication formula:

Q
KF

F
Q

KB B

F
a

b
E

a
E b

b a

a
E

b

a a

=
Ê

Ë
ÁÁ

ˆ

¯
˜̃ +

-Ê

Ë
ÁÁ

ˆ

¯
˜̃

2

2 2

.

32 Arithmetic Operations

32-48

Note that the terms in the parentheses can be calculated offline. Therefore, there is only
one multiplication of a constant and a variable and one addition.

To implement the above equation without changing it to a more complicated form,
the constants need to be encoded using a binary-point-only format. For each of these
constants, the range is the trivial case of only one value. Despite the trivial range, the
binary point formulas for maximum precision are still valid. The maximum-precision
representations are the most useful choices unless there is an overriding need to avoid
any shifting. The encoding of the constants is

KF

F
Q

KB B

F
Q

b
E

a
E

E
X

b a

a
E

E
Y

b

a

X

a

Y

2

2

2

2

2

Ê

Ë
Á
Á

ˆ

¯
˜
˜

=

-Ê

Ë
ÁÁ

ˆ

¯
˜̃ =

resulting in the formula

Q Q Q Qa
E

X B
E

Y
X Y= +2 2 .

Inherited Scaling for Speed

The number of arithmetic operations can be reduced with these choices:

• Set Ba = KBb. This eliminates one constant term.
• Set Fa = KFb and Ea = Eb. This sets the other constant term to unity.

The resulting formula is simply

Q Qa b= .

If the number of bits is different, then either handling potential overflows or performing
sign extensions is the only possible operation involved.

Inherited Scaling for Maximum Precision

The scaling for maximum precision does not need to be different from the scaling for
speed unless the output has fewer bits than the input. If this is the case, then saturation

 Recommendations for Arithmetic and Scaling

32-49

should be avoided by dividing the slope by 2 for each lost bit. This prevents saturation
but causes rounding to occur.

Division

Division of values is an operation that should be avoided in fixed-point embedded
systems, but it can occur in places. Therefore, consider the division of two real-world
values:

V V V
a b c

= .

These values are represented by the general [Slope Bias] encoding scheme described in
“Scaling” on page 31-7:

V F Q Bi i
E

i i
i= +2 .

In a fixed-point system, the division of values results in finding the variable Qa:

Q
F Q B

F F Q B F

B

F
a

b
E

b b

c a
E E

c c a
E

a

a

E
b

c a a

a=

+

+

-
+

-
2

2 2

2 .

This formula shows

• In general, Qa is not computed through a simple division of Qb by Qc.
• In general, there are two multiplications of a constant and a variable, two additions,

one division of a variable by a variable, one division of a constant by a variable, and
some additional bit shifting.

Inherited Scaling for Speed

The number of arithmetic operations can be reduced with these choices:

• Set Ba = 0. This eliminates one addition operation.
• If Bc = 0, then set the fractional slope Fa = Fb/Fc. This eliminates one constant times

variable multiplication.

The resulting formula is

32 Arithmetic Operations

32-50

Q
Q

Q

B F

Q
a

b

c

E E E b b

c

E E
b c a c a= +

()- - - -
2 2 .

If Bc ≠ 0, then no clear recommendation can be made.

Inherited Scaling for Maximum Precision

You can determine the maximum-precision scaling if the range of the variable is known.
“Maximize Precision” on page 32-25 shows that you can determine the range of a fixed-
point operation from

max
%V
a()

and

min .%V
a()

For division, you can determine the range from

min min , , , ,

max max , , ,

%

%

V V V V V

V V V V V

a LL LH HL HH

a LL LH HL HH

() = ()

() = ()),

where for nonzero denominators

V V V

V V V

V V

LL b c

LH b c

HL b

= () ()

= () ()

= ()

min min ,

min max ,

max min

% %

% %

% %VV

V V V

c

HH b c

()

= () ()

,

max max .% %

 Recommendations for Arithmetic and Scaling

32-51

Binary-Point-Only Scaling

For binary-point-only scaling, finding Qa results in this simple expression:

Q
Q

Q
a

b

c

E E Eb c a
=

- -

2 .

Note: For the last two formulas involving Qa, a divide by zero and zero divided by zero
are possible. In these cases, the hardware will give some default behavior but you must
make sure that these default responses give meaningful results for the embedded system.

Summary

From the previous analysis of fixed-point variables scaled within the general [Slope Bias]
encoding scheme, you can conclude

• Addition, subtraction, multiplication, and division can be very involved unless certain
choices are made for the biases and slopes.

• Binary-point-only scaling guarantees simpler math, but generally sacrifices some
precision.

Note that the previous formulas don't show the following:

• Constants and variables are represented with a finite number of bits.
• Variables are either signed or unsigned.
• Rounding and overflow handling schemes. You must make these decisions before an

actual fixed-point realization is achieved.

32 Arithmetic Operations

32-52

Parameter and Signal Conversions
In this section...

“Introduction” on page 32-52
“Parameter Conversions” on page 32-53
“Signal Conversions” on page 32-53

Introduction

To completely understand the results generated by fixed-point Simulink blocks, you must
be aware of these issues:

• When numerical block parameters are converted from doubles to Fixed-Point
Designer data types

• When input signals are converted from one Fixed-Point Designer data type to another
(if at all)

• When arithmetic operations on input signals and parameters are performed

For example, suppose a fixed-point Simulink block performs an arithmetic operation on
its input signal and a parameter, and then generates output having characteristics that
are specified by the block. The following diagram illustrates how these issues are related.

 Parameter and Signal Conversions

32-53

The sections that follow describe parameter and signal conversions. discusses arithmetic
operations.

Parameter Conversions

Parameters of fixed-point blocks that accept numerical values are always converted from
double to a fixed-point data type. Parameters can be converted to the input data type,
the output data type, or to a data type explicitly specified by the block. For example, the
Discrete FIR Filter block converts its Initial states parameter to the input data type,
and converts its Numerator coefficient parameter to a data type you explicitly specify
via the block dialog box.

Parameters are always converted before any arithmetic operations are performed.
Additionally, parameters are always converted offline using round-to-nearest and
saturation. Offline conversions are discussed below.

Note: Because parameters of fixed-point blocks begin as double, they are never precise
to more than 53 bits. Therefore, if the output of your fixed-point block is longer than 53
bits, your result might be less precise than you anticipated.

Offline Conversions

An offline conversion is a conversion performed by your development platform (for
example, the processor on your PC), and not by the fixed-point processor you are
targeting. For example, suppose you are using a PC to develop a program to run on a
fixed-point processor, and you need the fixed-point processor to compute

y
ab

c
u Cu= Ê

ËÁ
ˆ
¯̃

=

over and over again. If a, b, and c are constant parameters, it is inefficient for the fixed-
point processor to compute ab/c every time. Instead, the PC's processor should compute
ab/c offline one time, and the fixed-point processor computes only C·u. This eliminates
two costly fixed-point arithmetic operations.

Signal Conversions

Consider the conversion of a real-world value from one fixed-point data type to another.
Ideally, the values before and after the conversion are equal.

32 Arithmetic Operations

32-54

V V
a b

= ,

where Vb is the input value and Va is the output value. To see how the conversion is
implemented, the two ideal values are replaced by the general [Slope Bias] encoding
scheme described in “Scaling” on page 31-7:

V F Q Bi i
E

i i
i= +2 .

Solving for the output data type's stored integer value, Qa is obtained:

Q
F

F
Q

B B

F

F Q B

a
b

a

E E
b

b a

a

E

s
E E

b net

b a a

b a

= +

-

= +

- -

-

2 2

2 ,

where Fs is the adjusted fractional slope and Bnet is the net bias. The offline conversions
and online conversions and operations are discussed below.

Offline Conversions

Both Fs and Bnet are computed offline using round-to-nearest and saturation. Bnet is then
stored using the output data type and Fs is stored using an automatically selected data
type.

Online Conversions and Operations

The remaining conversions and operations are performed online by the fixed-point
processor, and depend on the slopes and biases for the input and output data types. The
conversions and operations are given by these steps:

1 The initial value for Qa is given by the net bias, Bnet:

Q Ba net= .

2 The input integer value, Qb, is multiplied by the adjusted slope, Fs:

Q F QRawProduct s b= .

3 The result of step 2 is converted to the modified output data type where the slope is
one and bias is zero:

 Parameter and Signal Conversions

32-55

Q convert QTemp RawProduct= () .

This conversion includes any necessary bit shifting, rounding, or overflow handling.
4 The summation operation is performed:

Q Q Qa Temp a= + .

This summation includes any necessary overflow handling.

Streamlining Simulations and Generated Code

Note that the maximum number of conversions and operations is performed when the
slopes and biases of the input signal and output signal differ (are mismatched). If the
scaling of these signals is identical (matched), the number of operations is reduced from
the worst (most inefficient) case. For example, when an input has the same fractional
slope and bias as the output, only step 3 is required:

Q convert Qa b= ().

Exclusive use of binary-point-only scaling for both input signals and output signals is a
common way to eliminate mismatched slopes and biases, and results in the most efficient
simulations and generated code.

32 Arithmetic Operations

32-56

Rules for Arithmetic Operations

Fixed-point arithmetic refers to how signed or unsigned binary words are operated on.
The simplicity of fixed-point arithmetic functions such as addition and subtraction allows
for cost-effective hardware implementations.

The sections that follow describe the rules that the Simulink software follows when
arithmetic operations are performed on inputs and parameters. These rules are
organized into four groups based on the operations involved: addition and subtraction,
multiplication, division, and shifts. For each of these four groups, the rules for
performing the specified operation are presented with an example using the rules.

Computational Units

The core architecture of many processors contains several computational units including
arithmetic logic units (ALUs), multiply and accumulate units (MACs), and shifters.
These computational units process the binary data directly and provide support for
arithmetic computations of varying precision. The ALU performs a standard set of
arithmetic and logic operations as well as division. The MAC performs multiply,
multiply/add, and multiply/subtract operations. The shifter performs logical and
arithmetic shifts, normalization, denormalization, and other operations.

Addition and Subtraction

Addition is the most common arithmetic operation a processor performs. When two
n-bit numbers are added together, it is always possible to produce a result with n + 1
nonzero digits due to a carry from the leftmost digit. For two's complement addition of
two numbers, there are three cases to consider:

• If both numbers are positive and the result of their addition has a sign bit of 1, then
overflow has occurred; otherwise the result is correct.

• If both numbers are negative and the sign of the result is 0, then overflow has
occurred; otherwise the result is correct.

• If the numbers are of unlike sign, overflow cannot occur and the result is always
correct.

Fixed-Point Simulink Blocks Summation Process

Consider the summation of two numbers. Ideally, the real-world values obey the equation

 Rules for Arithmetic Operations

32-57

V V V
a b c

= ± ± ,

where Vb and Vc are the input values and Va is the output value. To see how the
summation is actually implemented, the three ideal values should be replaced by the
general [Slope Bias] encoding scheme described in “Scaling” on page 31-7:

V F Q Bi i
E

i i
i= +2 .

The equation in “Addition” on page 32-41 gives the solution of the resulting equation for
the stored integer, Qa. Using shorthand notation, that equation becomes

Q F Q F Q Ba sb
E E

b sc
E E

c net
b a c a= ± ± +
- -

2 2 ,

where Fsb and Fsc are the adjusted fractional slopes and Bnet is the net bias. The offline
conversions and online conversions and operations are discussed below.

Offline Conversions

Fsb, Fsc, and Bnet are computed offline using round-to-nearest and saturation.
Furthermore, Bnet is stored using the output data type.

Online Conversions and Operations

The remaining operations are performed online by the fixed-point processor, and depend
on the slopes and biases for the input and output data types. The worst (most inefficient)
case occurs when the slopes and biases are mismatched. The worst-case conversions and
operations are given by these steps:

1 The initial value for Qa is given by the net bias, Bnet:

Q Ba net= .

2 The first input integer value, Qb, is multiplied by the adjusted slope, Fsb:

Q F QRawProduct sb b= .

3 The previous product is converted to the modified output data type where the slope is
one and the bias is zero:

32 Arithmetic Operations

32-58

Q convert QTemp RawProduct= () .

This conversion includes any necessary bit shifting, rounding, or overflow handling.
4 The summation operation is performed:

Q Q Qa a Temp= ± .

This summation includes any necessary overflow handling.
5 Steps 2 to 4 are repeated for every number to be summed.

It is important to note that bit shifting, rounding, and overflow handling are applied to
the intermediate steps (3 and 4) and not to the overall sum.

For more information, see “The Summation Process” on page 32-66.

Streamlining Simulations and Generated Code

If the scaling of the input and output signals is matched, the number of summation
operations is reduced from the worst (most inefficient) case. For example, when an input
has the same fractional slope as the output, step 2 reduces to multiplication by one
and can be eliminated. Trivial steps in the summation process are eliminated for both
simulation and code generation. Exclusive use of binary-point-only scaling for both input
signals and output signals is a common way to eliminate mismatched slopes and biases,
and results in the most efficient simulations and generated code.

Multiplication

The multiplication of an n-bit binary number with an m-bit binary number results in
a product that is up to m + n bits in length for both signed and unsigned words. Most
processors perform n-bit by n-bit multiplication and produce a 2n-bit result (double bits)
assuming there is no overflow condition.

Fixed-Point Simulink Blocks Multiplication Process

Consider the multiplication of two numbers. Ideally, the real-world values obey the
equation

V V V
a b c

= .

 Rules for Arithmetic Operations

32-59

where Vb and Vc are the input values and Va is the output value. To see how the
multiplication is actually implemented, the three ideal values should be replaced by the
general [Slope Bias] encoding scheme described in “Scaling” on page 31-7:

V F Q Bi i
E

i i
i= +2 .

The solution of the resulting equation for the output stored integer, Qa, is given below:

Q
F F

F
Q Q

F B

F
Q

F B

F
Q

B B

a
b c

a

E E E
b c

b c

a

E E
b

c b

a

E E
c

b c

b c a b a

c a

= +

+ +

-

+ - -

-

2 2

2
BB

F

a

a

Ea2
-

.

Multiplication with Nonzero Biases and Mismatched Fractional Slopes

The worst-case implementation of the above equation occurs when the slopes and
biases of the input and output signals are mismatched. In such cases, several low-
level integer operations are required to carry out the high-level multiplication (or
division). Implementation choices made about these low-level computations can affect the
computational efficiency, rounding errors, and overflow.

In Simulink blocks, the actual multiplication or division operation is always performed
on fixed-point variables that have zero biases. If an input has nonzero bias, it is
converted to a representation that has binary-point-only scaling before the operation.
If the result is to have nonzero bias, the operation is first performed with temporary
variables that have binary-point-only scaling. The result is then converted to the data
type and scaling of the final output.

If both the inputs and the output have nonzero biases, then the operation is broken down
as follows:

V V

V V

V V V

V V

Temp

Temp

Temp Temp Temp

Temp

1 1

2 2

3 1 2

3 3

=

=

=

=

,

,

,

,

32 Arithmetic Operations

32-60

where

V Q

V Q

V Q

Temp
E

Temp

Temp
E

Temp

Temp
E

Temp

Temp

Temp

1 1

2 2

3 3

2

2

2

1

2

3

=

=

=

,

,

TTemp .

These equations show that the temporary variables have binary-point-only scaling.
However, the equations do not indicate the signedness, word lengths, or values of the
fixed exponent of these variables. The Simulink software assigns these properties to the
temporary variables based on the following goals:

• Represent the original value without overflow.

The data type and scaling of the original value define a maximum and minimum real-
world value:

V F Q BMax
E

MaxInteger= +2 ,

V F Q BMin
E

MinInteger= +2 .

The data type and scaling of the temporary value must be able to represent this range
without overflow. Precision loss is possible, but overflow is never allowed.

• Use a data type that leads to efficient operations.

This goal is relative to the target that you will use for production deployment of your
design. For example, suppose that you will implement the design on a 16-bit fixed-
point processor that provides a 32-bit long, 16-bit int, and 8-bit short or char. For
such a target, preserving efficiency means that no more than 32 bits are used, and the
smaller sizes of 8 or 16 bits are used if they are sufficient to maintain precision.

• Maintain precision.

Ideally, every possible value defined by the original data type and scaling is
represented perfectly by the temporary variable. However, this can require more
bits than is efficient. Bits are discarded, resulting in a loss of precision, to the extent
required to preserve efficiency.

For example, consider the following, assuming a 16-bit microprocessor target:

 Rules for Arithmetic Operations

32-61

V QOriginal Original= + -43 25. ,

where QOriginal is an 8-bit, unsigned data type. For this data type,

Q

Q

MaxInteger

MinInteger

=

=

225

0

,

,

so

V

V

Max

Min

=

= -

211 75

43 25

. ,

. .

The minimum possible value is negative, so the temporary variable must be a signed
integer data type. The original variable has a slope of 1, but the bias is expressed with
greater precision with two digits after the binary point. To get full precision, the fixed
exponent of the temporary variable has to be -2 or less. The Simulink software selects
the least possible precision, which is generally the most efficient, unless overflow issues
arise. For a scaling of 2-2, selecting signed 16-bit or signed 32-bit avoids overflow. For
efficiency, the Simulink software selects the smaller choice of 16 bits. If the original
variable is an input, then the equations to convert to the temporary variable are

uint8_T

uint16_T

uint16_T

Q

Q

Q Q

Original

Temp

Temp Origi

,

,

= () nnal =2 173()- .

Multiplication with Zero Biases and Mismatched Fractional Slopes

When the biases are zero and the fractional slopes are mismatched, the implementation
reduces to

Q
F F

F
Q Qa

b c

a

E E E
b c

b c a
=

+ -
2 .

Offline Conversions

The quantity

32 Arithmetic Operations

32-62

F
F F

F
Net

b c

a

=

is calculated offline using round-to-nearest and saturation. FNet is stored using a fixed-
point data type of the form

2
E

Net
Net Q ,

where ENet and QNet are selected automatically to best represent FNet.

Online Conversions and Operations

1 The integer values Qb and Qc are multiplied:

Q Q QRawProduct b c= .

To maintain the full precision of the product, the binary point of QRawProduct is given
by the sum of the binary points of Qb and Qc.

2 The previous product is converted to the output data type:

Q convert QTemp RawProduct= () .

This conversion includes any necessary bit shifting, rounding, or overflow handling.
“Signal Conversions” on page 32-53 discusses conversions.

3 The multiplication

Q Q QRawProduct Temp Net2 =

is performed.
4 The previous product is converted to the output data type:

Q convert Qa RawProduct= ()2
.

This conversion includes any necessary bit shifting, rounding, or overflow handling.
“Signal Conversions” on page 32-53 discusses conversions.

5 Steps 1 through 4 are repeated for each additional number to be multiplied.

 Rules for Arithmetic Operations

32-63

Multiplication with Zero Biases and Matching Fractional Slopes

When the biases are zero and the fractional slopes match, the implementation reduces to

Q Q Qa
E E E

b c
b c a=
+ -

2 .

Offline Conversions

No offline conversions are performed.

Online Conversions and Operations

1 The integer values Qb and Qc are multiplied:

Q Q QRawProduct b c= .

To maintain the full precision of the product, the binary point of QRawProduct is given
by the sum of the binary points of Qb and Qc.

2 The previous product is converted to the output data type:

Q convert Qa RawProduct= ().

This conversion includes any necessary bit shifting, rounding, or overflow handling.
“Signal Conversions” on page 32-53 discusses conversions.

3 Steps 1 and 2 are repeated for each additional number to be multiplied.

For more information, see “The Multiplication Process” on page 32-69.

Division

This section discusses the division of quantities with zero bias.

Note: When any input to a division calculation has nonzero bias, the operations
performed exactly match those for multiplication described in .

Fixed-Point Simulink Blocks Division Process

Consider the division of two numbers. Ideally, the real-world values obey the equation

32 Arithmetic Operations

32-64

V V V
a b c

= ,

where Vb and Vc are the input values and Va is the output value. To see how the division
is actually implemented, the three ideal values should be replaced by the general [Slope
Bias] encoding scheme described in “Scaling” on page 31-7:

V F Q Bi i
E

i i
i= +2 .

For the case where the slope adjustment factors are one and the biases are zero for all
signals, the solution of the resulting equation for the output stored integer, Qa, is given
by the following equation:

Q Q Qa
E E E

b c
b c a= ()- -

2 .

This equation involves an integer division and some bit shifts. If Ea > Eb–Ec, then any
bit shifts are to the right and the implementation is simple. However, if Ea < Eb–Ec,
then the bit shifts are to the left and the implementation can be more complicated. The
essential issue is that the output has more precision than the integer division provides.
To get full precision, a fractional division is needed. The C programming language
provides access to integer division only for fixed-point data types. Depending on the size
of the numerator, you can obtain some of the fractional bits by performing a shift prior
to the integer division. In the worst case, it might be necessary to resort to repeated
subtractions in software.

In general, division of values is an operation that should be avoided in fixed-point
embedded systems. Division where the output has more precision than the integer
division (i.e., Ea < Eb–Ec) should be used with even greater reluctance.

For more information, see “The Division Process” on page 32-71.

Shifts

Nearly all microprocessors and digital signal processors support well-defined bit-shift (or
simply shift) operations for integers. For example, consider the 8-bit unsigned integer
00110101. The results of a 2-bit shift to the left and a 2-bit shift to the right are shown in
the following table.

Shift Operation Binary Value Decimal Value

No shift (original number) 00110101 53

 Rules for Arithmetic Operations

32-65

Shift Operation Binary Value Decimal Value

Shift left by 2 bits 11010100 212
Shift right by 2 bits 00001101 13

You can perform a shift using the Simulink Shift Arithmetic block. Use this block to
perform a bit shift, a binary point shift, or both

Shifting Bits to the Right

The special case of shifting bits to the right requires consideration of the treatment of
the leftmost bit, which can contain sign information. A shift to the right can be classified
either as a logical shift right or an arithmetic shift right. For a logical shift right, a 0 is
incorporated into the most significant bit for each bit shift. For an arithmetic shift right,
the most significant bit is recycled for each bit shift.

The Shift Arithmetic block performs an arithmetic shift right and, therefore, recycles the
most significant bit for each bit shift right. For example, given the fixed-point number
11001.011 (-6.625), a bit shift two places to the right with the binary point unmoved
yields the number 11110.010 (-1.75), as shown in the model below:

To perform a logical shift right on a signed number using the Shift Arithmetic block, use
the Data Type Conversion block to cast the number as an unsigned number of equivalent
length and scaling, as shown in the following model. The model shows that the fixed-
point signed number 11001.001 (-6.625) becomes 00110.010 (6.25).

32 Arithmetic Operations

32-66

The Summation Process

Suppose you want to sum three numbers. Each of these numbers is represented by an 8-
bit word, and each has a different binary-point-only scaling. Additionally, the output is
restricted to an 8-bit word with binary-point-only scaling of 2-3.

The summation is shown in the following model for the input values 19.875, 5.4375, and
4.84375.

Applying the rules from the previous section, the sum follows these steps:

1 Because the biases are matched, the initial value of Qa is trivial:

Qa = 00000 000. .

2 The first number to be summed (19.875) has a fractional slope that matches the
output fractional slope. Furthermore, the binary points and storage types are
identical, so the conversion is trivial:

Q

Q Q

b

Temp b

=

=

10011 111. ,

.

3 The summation operation is performed:

 The Summation Process

32-67

Q Q Qa a Temp= + =10011 111. .

4 The second number to be summed (5.4375) has a fractional slope that matches the
output fractional slope, so a slope adjustment is not needed. The storage data types
also match, but the difference in binary points requires that both the bits and the
binary point be shifted one place to the right:

Q

Q convert Q

Q

c

Temp c

Temp

=

= ()

=

0101 0111

00101 011

. ,

. .

Note that a loss in precision of one bit occurs, with the resulting value of QTemp
determined by the rounding mode. For this example, round-to-floor is used. Overflow
cannot occur in this case because the bits and binary point are both shifted to the
right.

5 The summation operation is performed:

Q Q Qa a Temp= +

=
+

=

 10011 111

00101 011

11001 010 25 250

.

.

. . .

Note that overflow did not occur, but it is possible for this operation.
6 The third number to be summed (4.84375) has a fractional slope that matches the

output fractional slope, so a slope adjustment is not needed. The storage data types
also match, but the difference in binary points requires that both the bits and the
binary point be shifted two places to the right:

Q

Q convert Q

Q

d

Temp d

Temp

=

= ()

=

100 11011

00100 110

. ,

. .

Note that a loss in precision of two bit occurs, with the resulting value of QTemp
determined by the rounding mode. For this example, round-to-floor is used. Overflow

32 Arithmetic Operations

32-68

cannot occur in this case because the bits and binary point are both shifted to the
right.

7 The summation operation is performed:

Q Q Qa a Temp= +

=
+

=

 11001 010

00100 110

11110 000 30 000

.

.

. . .

Note that overflow did not occur, but it is possible for this operation.

As shown here, the result of step 7 differs from the ideal sum:

 0

10011 111

101 0111

100 11011

11110 001 30 125

.

.

.

. . .
=

+

=

Blocks that perform addition and subtraction include the Sum, Gain, and Discrete FIR
Filter blocks.

 The Multiplication Process

32-69

The Multiplication Process

Suppose you want to multiply three numbers. Each of these numbers is represented by
a 5-bit word, and each has a different binary-point-only scaling. Additionally, the output
is restricted to a 10-bit word with binary-point-only scaling of 2-4. The multiplication is
shown in the following model for the input values 5.75, 2.375, and 1.8125.

Applying the rules from the previous section, the multiplication follows these steps:

1 The first two numbers (5.75 and 2.375) are multiplied:

QRawProduct =

¥

◊

◊

+

-

-

 1

1

 1

1

01 11

10 011

01 11 2

01 11 2

0

3

2

.

.

.

.

11 11 2

01 10101 13 65625

1
.

. . .

◊

=011

Note that the binary point of the product is given by the sum of the binary points of
the multiplied numbers.

2 The result of step 1 is converted to the output data type:

32 Arithmetic Operations

32-70

Q convert QTemp RawProduct= ()

= =001101 1010 13 6250. . .

“Signal Conversions” on page 32-53 discusses conversions. Note that a loss in
precision of one bit occurs, with the resulting value of QTemp determined by the
rounding mode. For this example, round-to-floor is used. Furthermore, overflow did
not occur but is possible for this operation.

3 The result of step 2 and the third number (1.8125) are multiplied:

QRawProduct =

¥

◊
-

 011

 11

01 1010

1 1101

01 1010 2

.

.

.
44

2

1

0

01 1010 2

01 1010 2

01 1010 2

 11

 11

11

0011000

.

.

.

.

◊

◊

+ ◊

-

-

110110010 24 6953125= . .

Note that the binary point of the product is given by the sum of the binary points of
the multiplied numbers.

4 The product is converted to the output data type:

Q convert Qa RawProduct= ()

= =011000 1011 24 6875. . .

“Signal Conversions” on page 32-53 discusses conversions. Note that a loss in
precision of 4 bits occurred, with the resulting value of QTemp determined by the
rounding mode. For this example, round-to-floor is used. Furthermore, overflow did
not occur but is possible for this operation.

Blocks that perform multiplication include the Product, Discrete FIR Filter, and Gain
blocks.

 The Division Process

32-71

The Division Process

Suppose you want to divide two numbers. Each of these numbers is represented by an
8-bit word, and each has a binary-point-only scaling of 2-4. Additionally, the output is
restricted to an 8-bit word with binary-point-only scaling of 2-4.

The division of 9.1875 by 1.5000 is shown in the following model.

For this example,

Q Q Q

Q Q

a b c

b c

= ()

= ()

- - -()- -()
2

2

4 4 4

4
.

Assuming a large data type was available, this could be implemented as

Q
Q

Q
a

b

c

=
()2

4

,

where the numerator uses the larger data type. If a larger data type was not available,
integer division combined with four repeated subtractions would be used. Both
approaches produce the same result, with the former being more efficient.

32 Arithmetic Operations

32-72

Shifts

Nearly all microprocessors and digital signal processors support well-defined bit-shift (or
simply shift) operations for integers. For example, consider the 8-bit unsigned integer
00110101. The results of a 2-bit shift to the left and a 2-bit shift to the right are shown in
the following table.

Shift Operation Binary Value Decimal Value

No shift (original number) 00110101 53
Shift left by 2 bits 11010100 212
Shift right by 2 bits 00001101 13

You can perform a shift using the Simulink Shift Arithmetic block. Use this block to
perform a bit shift, a binary point shift, or both

Shifting Bits to the Right

The special case of shifting bits to the right requires consideration of the treatment of
the leftmost bit, which can contain sign information. A shift to the right can be classified
either as a logical shift right or an arithmetic shift right. For a logical shift right, a 0 is
incorporated into the most significant bit for each bit shift. For an arithmetic shift right,
the most significant bit is recycled for each bit shift.

The Shift Arithmetic block performs an arithmetic shift right and, therefore, recycles the
most significant bit for each bit shift right. For example, given the fixed-point number
11001.011 (-6.625), a bit shift two places to the right with the binary point unmoved
yields the number 11110.010 (-1.75), as shown in the model below:

To perform a logical shift right on a signed number using the Shift Arithmetic block, use
the Data Type Conversion block to cast the number as an unsigned number of equivalent

 Shifts

32-73

length and scaling, as shown in the following model. The model shows that the fixed-
point signed number 11001.001 (-6.625) becomes 00110.010 (6.25).

32 Arithmetic Operations

32-74

Conversions and Arithmetic Operations

This example uses the Discrete FIR Filter block to illustrate when parameters are
converted from a double to a fixed-point number, when the input data type is converted
to the output data type, and when the rules for addition, subtraction, and multiplication
are applied. For details about conversions and operations, refer to “Parameter and Signal
Conversions” on page 32-52 and .

Note: If a block can perform all four arithmetic operations, then the rules for
multiplication and division are applied first. The Discrete FIR Filter block is an example
of this.

Suppose you configure the Discrete FIR Filter block for two outputs, where the first
output is given by

y k u k u k u k1 13 11 1 7 2() = ◊ ()+ ◊ -() - ◊ -(),

and the second output is given by

y k u k u k
2

6 5 1() = ◊ ()- ◊ -().

Additionally, the initial values of u(k–1) and u(k–2) are given by 0.8 and 1.1, respectively,
and all inputs, parameters, and outputs have binary-point-only scaling.

To configure the Discrete FIR Filter block for this situation, on the Main pane of its
dialog box, you must specify the Coefficients parameter as [13 11 -7; 6 -5 0] and
the Initial states parameter as [0.8 1.1], as shown here.

 Conversions and Arithmetic Operations

32-75

Similarly, configure the options on the Data Types pane of the block dialog box to
appear as follows:

32 Arithmetic Operations

32-76

The Discrete FIR Filter block performs parameter conversions and block operations in
the following order:

1 The Coefficients parameter is converted offline from doubles to the Coefficients
data type using round-to-nearest and saturation.

The Initial states parameter is converted offline from doubles to the input data type
using round-to-nearest and saturation.

2 The coefficients and inputs are multiplied together for the initial time step for both
outputs. For y1(0), the operations 13·u(0), 11·0.8, and –7·1.1 are performed, while for
y2(0), the operations 6·u(0) and –5·0.8 are performed.

The results of these operations are stored as Product output.
3 The sum is carried out in Accumulator. The final summation result is then

converted to Output.

 Conversions and Arithmetic Operations

32-77

4 Steps 2 and 3 repeat for subsequent time steps.

33

Realization Structures

• “Realizing Fixed-Point Digital Filters” on page 33-2
• “Targeting an Embedded Processor” on page 33-4
• “Canonical Forms” on page 33-7
• “Direct Form II” on page 33-9
• “Series Cascade Form” on page 33-13
• “Parallel Form” on page 33-16

33 Realization Structures

33-2

Realizing Fixed-Point Digital Filters

In this section...

“Introduction” on page 33-2
“Realizations and Data Types” on page 33-2

Introduction

This chapter investigates how you can realize fixed-point digital filters using Simulink
blocks and the Fixed-Point Designer software.

The Fixed-Point Designer software addresses the needs of the control system, signal
processing, and other fields where algorithms are implemented on fixed-point hardware.
In signal processing, a digital filter is a computational algorithm that converts a
sequence of input numbers to a sequence of output numbers. The algorithm is designed
such that the output signal meets frequency-domain or time-domain constraints
(desirable frequency components are passed, undesirable components are rejected).

In general terms, a discrete transfer function controller is a form of a digital filter.
However, a digital controller can contain nonlinear functions such as lookup tables in
addition to a discrete transfer function. This guide uses the term digital filter when
referring to discrete transfer functions.

Note: To design and implement a wide variety of floating-point and fixed-point filters
suitable for use in signal processing applications and for deployment on DSP chips, use
the DSP System Toolbox software.

Realizations and Data Types

In an ideal world, where numbers, calculations, and storage of states have infinite
precision and range, there are virtually an infinite number of realizations for the same
system. In theory, these realizations are all identical.

In the more realistic world of double-precision numbers, calculations, and storage of
states, small nonlinearities are introduced by the finite precision and range of floating-
point data types. Therefore, each realization of a given system produces different results.
In most cases however, these differences are small.

 Realizing Fixed-Point Digital Filters

33-3

In the world of fixed-point numbers, where precision and range are limited, the
differences in the realization results can be very large. Therefore, you must carefully
select the data type, word size, and scaling for each realization element such that results
are accurately represented. To assist you with this selection, design rules for modeling
dynamic systems with fixed-point math are provided in “Targeting an Embedded
Processor” on page 33-4.

33 Realization Structures

33-4

Targeting an Embedded Processor

In this section...

“Introduction” on page 33-4
“Size Assumptions” on page 33-4
“Operation Assumptions” on page 33-4
“Design Rules” on page 33-5

Introduction

The sections that follow describe issues that often arise when targeting a fixed-point
design for use on an embedded processor, such as some general assumptions about
integer sizes and operations available on embedded processors. These assumptions lead
to design issues and design rules that might be useful for your specific fixed-point design.

Size Assumptions

Embedded processors are typically characterized by a particular bit size. For example,
the terms “8-bit micro,” “32-bit micro,” or “16-bit DSP” are common. It is generally safe
to assume that the processor is predominantly geared to processing integers of the
specified bit size. Integers of the specified bit size are referred to as the base data type.
Additionally, the processor typically provides some support for integers that are twice
as wide as the base data type. Integers consisting of double bits are referred to as the
accumulator data type. For example a 16-bit micro has a 16-bit base data type and a 32-
bit accumulator data type.

Although other data types may be supported by the embedded processor, this section
describes only the base and accumulator data types.

Operation Assumptions

The embedded processor operations discussed in this section are limited to the needs of
a basic simulation diagram. Basic simulations use multiplication, addition, subtraction,
and delays. Fixed-point models also need shifts to do scaling conversions. For all these
operations, the embedded processor should have native instructions that allow the

 Targeting an Embedded Processor

33-5

base data type as inputs. For accumulator-type inputs, the processor typically supports
addition, subtraction, and delay (storage/retrieval from memory), but not multiplication.

Multiplication is typically not supported for accumulator-type inputs because of
complexity and size issues. A difficulty with multiplication is that the output needs
to be twice as big as the inputs for full precision. For example, multiplying two 16-bit
numbers requires a 32-bit output for full precision. The need to handle the outputs
from a multiplication operation is one of the reasons embedded processors include
accumulator-type support. However, if multiplication of accumulator-type inputs is
also supported, then there is a need to support a data type that is twice as big as the
accumulator type. To restrict this additional complexity, multiplication is typically not
supported for inputs of the accumulator type.

Design Rules

The important design rules that you should be aware of when modeling dynamic systems
with fixed-point math follow.

Design Rule 1: Only Multiply Base Data Types

It is best to multiply only inputs of the base data type. Embedded processors typically
provide an instruction for the multiplication of base-type inputs, but not for the
multiplication of accumulator-type inputs. If necessary, you can combine several
instructions to handle multiplication of accumulator-type inputs. However, this can lead
to large, slow embedded code.

You can insert blocks to convert inputs from the accumulator type to the base type prior
to Product or Gain blocks, if necessary.

Design Rule 2: Delays Should Use the Base Data Type

There are two general reasons why a Unit Delay should use only base-type numbers:

• The Unit Delay essentially stores a variable's value to RAM and, one time step later,
retrieves that value from RAM. Because the value must be in memory from one time
step to the next, the RAM must be exclusively dedicated to the variable and can't be
shared or used for another purpose. Using accumulator-type numbers instead of the
base data type doubles the RAM requirements, which can significantly increase the
cost of the embedded system.

• The Unit Delay typically feeds into a Gain block. The multiplication design rule
requires that the input (the unit delay signal) use the base data type.

33 Realization Structures

33-6

Design Rule 3: Temporary Variables Can Use the Accumulator Data Type

Except for unit delay signals, most signals are not needed from one time step to the
next. This means that the signal values can be temporarily stored in shared and reused
memory. This shared and reused memory can be RAM or it can simply be registers in
the CPU. In either case, storing the value as an accumulator data type is not much more
costly than storing it as a base data type.

Design Rule 4: Summation Can Use the Accumulator Data Type

Addition and subtraction can use the accumulator data type if there is justification. The
typical justification is reducing the buildup of errors due to roundoff or overflow.

For example, a common filter operation is a weighted sum of several variables.
Multiplying a variable by a weight naturally produces a product of the accumulator
type. Before summing, each product can be converted back to the base data type. This
approach introduces round-off error into each part of the sum.

Alternatively, the products can be summed using the accumulator data type, and the
final sum can be converted to the base data type. Round-off error is introduced in just one
point and the precision is generally better. The cost of doing an addition or subtraction
using accumulator-type numbers is slightly more expensive, but if there is justification, it
is usually worth the cost.

 Canonical Forms

33-7

Canonical Forms

The Fixed-Point Designer software does not attempt to standardize on one particular
fixed-point digital filter design method. For example, you can produce a design in
continuous time and then obtain an “equivalent” discrete-time digital filter using one of
many transformation methods. Alternatively, you can design digital filters directly in
discrete time. After you obtain a digital filter, it can be realized for fixed-point hardware
using any number of canonical forms. Typical canonical forms are the direct form, series
form, and parallel form, each of which is outlined in the sections that follow.

For a given digital filter, the canonical forms describe a set of fundamental operations
for the processor. Because there are an infinite number of ways to realize a given digital
filter, you must make the best realization on a per-system basis. The canonical forms
presented in this chapter optimize the implementation with respect to some factor, such
as minimum number of delay elements.

In general, when choosing a realization method, you must take these factors into
consideration:

• Cost

The cost of the realization might rely on minimal code and data size.
• Timing constraints

Real-time systems must complete their compute cycle within a fixed amount of time.
Some realizations might yield faster execution speed on different processors.

• Output signal quality

The limited range and precision of the binary words used to represent real-world
numbers will introduce errors. Some realizations are more sensitive to these errors
than others.

The Fixed-Point Designer software allows you to evaluate various digital filter
realization methods in a simulation environment. Following the development cycle
outlined in “Developing and Testing Fixed-Point Systems” on page 30-15, you can
fine-tune the realizations with the goal of reducing the cost (code and data size) or
increasing signal quality. After you have achieved the desired performance, you can
use the Simulink Coder product to generate rapid prototyping C code and evaluate its
performance with respect to your system's real-time timing constraints. You can then
modify the model based upon feedback from the rapid prototyping system.

33 Realization Structures

33-8

The presentation of the various realization structures takes into account that a summing
junction is a fundamental operator, thus you may find that the structures presented here
look different from those in the fixed-point filter design literature. For each realization
form, an example is provided using the transfer function shown here:

H z
z z z

z z z
ex () =

+ + +

- + +

=
+

- - -

- - -

1 2 2 1 85 0 5

1 0 5 0 84 0 09

1 0

1 2 3

1 2 3

. . .

. . .

.. .

. . .

.

5 1 1 7

1 0 1 1 0 6 0 9

5 5556
3

1 1 2

1 1 2

z z z

z z z

- - -

- - -

() + +()

+() - +()

= -
..

.

. .

. .

.
4639

1 0 1

1 0916 3 0086

1 0 6 0 9
1

1

1 2
+

+
- +

- +
-

-

- -
z

z

z z

 Direct Form II

33-9

Direct Form II

In general, a direct form realization refers to a structure where the coefficients of the
transfer function appear directly as Gain blocks. The direct form II realization method is
presented as using the minimal number of delay elements, which is equal to n, the order
of the transfer function denominator.

The canonical direct form II is presented as “Standard Programming” in Discrete-Time
Control Systems by Ogata. It is known as the “Control Canonical Form” in Digital
Control of Dynamic Systems by Franklin, Powell, and Workman.

You can derive the canonical direct form II realization by writing the discrete-time
transfer function with input e(z) and output u(z) as

u z

e z

u z

h z

h z

e z

b b z b z
m

m

u z

h z

()

()
=

()

()
◊

()

()

= + + +()- -

()

()

0 1

1
…

1 244444 34444

…

1 244444 344444

1

1
1

1

2

2
+ + +

- - -

()

()

a z a z a z
n

n

h z

e z

.

The block diagram for u(z)/h(z) follows.

The block diagrams for h(z)/e(z) follow.

33 Realization Structures

33-10

Combining these two block diagrams yields the direct form II diagram shown in the
following figure. Notice that the feedforward part (top of block diagram) contains the
numerator coefficients and the feedback part (bottom of block diagram) contains the
denominator coefficients.

 Direct Form II

33-11

The direct form II example transfer function is given by

H z
z z z

z z z
ex () =

+ + +

- + +

- - -

- - -

1 2 2 1 85 0 5

1 0 5 0 84 0 09

1 2 3

1 2 3

. . .

. . .

.

The realization of Hex(z) using fixed-point Simulink blocks is shown in the following
figure. You can display this model by typing

fxpdemo_direct_form2

at the MATLAB command line.

33 Realization Structures

33-12

 Series Cascade Form

33-13

Series Cascade Form

In the canonical series cascade form, the transfer function H(z) is written as a product of
first-order and second-order transfer functions:

H z
u z

e z
H z H z H z H zi p() =

()

()
= () ◊ () ◊ () ()1 2 3

… .

This equation yields the canonical series cascade form.

Factoring H(z) into Hi(z) where i = 1,2,3,...,p can be done in a number of ways. Using
the poles and zeros of H(z), you can obtain Hi(z) by grouping pairs of conjugate complex
poles and pairs of conjugate complex zeros to produce second-order transfer functions,
or by grouping real poles and real zeros to produce either first-order or second-order
transfer functions. You could also group two real zeros with a pair of conjugate complex
poles or vice versa. Since there are many ways to obtain Hi(z), you should compare the
various groupings to see which produces the best results for the transfer function under
consideration.

For example, one factorization of H(z) might be

H z H z H z H z

b z

a z

e z f z

c

p

i

ii

j
i i

i

() = () () ()

=
+

+

+ +

+

-

-
=

- -

’

1 2

1

1
1

1 2
1

1

1

1

…

zz d zii j

p

- -
= + +
’

1 2
1

.

You must also take into consideration that the ordering of the individual Hi(z)'s
will lead to systems with different numerical characteristics. You might want to try
various orderings for a given set of Hi(z)'s to determine which gives the best numerical
characteristics.

The first-order diagram for H(z) follows.

33 Realization Structures

33-14

The second-order diagram for H(z) follows.

The series cascade form example transfer function is given by

H z
z z z

z z z
ex () =

+() + +()

+() - +()

- - -

- - -

1 0 5 1 1 7

1 0 1 1 0 6 0 9

1 1 2

1 1 2

. .

. . .

..

 Series Cascade Form

33-15

The realization of Hex(z) using fixed-point Simulink blocks is shown in the following
figure. You can display this model by typing

fxpdemo_series_cascade_form

at the MATLAB command line.

33 Realization Structures

33-16

Parallel Form

In the canonical parallel form, the transfer function H(z) is expanded into partial
fractions. H(z) is then realized as a sum of a constant, first-order, and second-order
transfer functions, as shown:

H z
u z

e z
K H z H z H zi p() =

()

()
= + () + () + + ()1 2

… .

This expansion, where K is a constant and the Hi(z) are the first- and second-order
transfer functions, follows.

As in the series canonical form, there is no unique description for the first-order and
second-order transfer function. Because of the nature of the Sum block, the ordering of
the individual filters doesn't matter. However, because of the constant K, you can choose
the first-order and second-order transfer functions such that their forms are simpler
than those for the series cascade form described in the preceding section. This is done by
expanding H(z) as

 Parallel Form

33-17

H z K H z H z

K
b

a z

e f z

i

i

j

i

i j

p

i

ii

j
i i

() = + ()+ ()

= +
+

+
+

+

= = +

-
=

-

Â Â

Â

1 1

1

1

1

1 1 cc z d zi ii j

p

- -
= + +
Â 1 2

1

.

The first-order diagram for H(z) follows.

The second-order diagram for H(z) follows.

33 Realization Structures

33-18

The parallel form example transfer function is given by

H z

z

z

z
ex () = -

+
+

- +

- +
-

-

-
5 5556

3 4639

1 0 1

1 0916 3 0086

1 0 6 0 9
1

1

1
.

.

.

. .

. . zz
-2

.

The realization of Hex(z) using fixed-point Simulink blocks is shown in the following
figure. You can display this model by typing

fxpdemo_parallel_form

at the MATLAB command line.

 Parallel Form

33-19

34

Fixed-Point Advisor

34 Fixed-Point Advisor

34-2

Preparation for Fixed-Point Conversion

In this section...

“Introduction” on page 34-2
“Best Practices” on page 34-2
“Run the Fixed-Point Advisor” on page 34-4
“Fix a Task Failure” on page 34-5
“Manually Fixing Failures” on page 34-5
“Automatically Fixing Failures” on page 34-6
“Batch Fixing Failures” on page 34-6
“Restore Points” on page 34-7
“Save a Restore Point” on page 34-7
“Load a Restore Point” on page 34-8

Introduction

Using the Fixed-Point Advisor, you can prepare a model for conversion from a floating-
point model or subsystem to an equivalent fixed-point representation. After preparing
the model for conversion, use the Fixed-Point Tool to obtain initial fixed-point data types
and then refine these data types.

Best Practices

Use a Known Working Model

Before using the Fixed-Point Advisor, verify that update diagram succeeds for your
model. To update diagram, press Ctrl+D. If update diagram fails, before you start
converting your model, fix the failure in your model.

Back Up Your Model

Back up your Simulink model first.

This practice provides you with a back up in case of error and a baseline for testing and
validation.

 Preparation for Fixed-Point Conversion

34-3

Convert Small Models

The Fixed-Point Advisor is intended to assist in converting small models. Using larger
models can result in long processing times.

Convert Subsystems

Convert subsystems within your model, rather than the entire model. This practice saves
time and unnecessary conversions.

Specify Short Simulation Run Times

Specifying small simulation run times reduces task processing times. You can change the
simulation run time in the Configuration Parameters dialog box. For more information,
see “Start time” and “Stop time” in the Simulink Reference.

Make Small Changes to Your Model

Make small changes to your model so that you can identify where errors are accidentally
introduced.

Isolate the System Under Conversion

If you encounter data type propagation issues with a particular subsystem, isolate
this subsystem by placing Data Type Conversion blocks on the inputs and outputs of
the system. The Data Type Conversion block converts an input signal of any Simulink
software data type to the data type and scaling you specify for its Output data type
parameter. This practice enables you to continue converting the rest of your model.

The ultimate goal is to replace all blocks that do not support fixed-point data types. You
must eventually replace blocks that you isolate with Data Type Conversion blocks with
blocks that do support fixed-point data types.

Use Lock Output Data Type Setting

You can prevent the Fixed-Point Advisor from replacing the current data type. Use the
Lock output data type setting against changes by the fixed-point tools parameter
available on many blocks. The default setting allows replacement. Use this setting when:

• You already know the fixed-point data types that you want to use for a particular
block.

For example, the block is modeling a real-world component. Set up the block to allow
for known hardware limitations, such as restricting outputs to integer values.

34 Fixed-Point Advisor

34-4

Specify the output data type of the block explicitly and select Lock output data type
setting against changes by the fixed-point tools.

• You are debugging a model and know that a particular block accepts only certain data
types.

Specify the output data type of upstream blocks explicitly and select Lock output
data type setting against changes by the fixed-point tools.

Save Simulink Signal Objects

The Fixed-Point Advisor proposes data types for Simulink signal objects in your model.
However, it does not automatically save Simulink signal objects. To preserve changes,
before closing the model, save the Simulink signal objects in your workspace and model
before closing the model.

Save Restore Point

Before making changes to your model that might cause subsequent update diagram
failure, consider saving a restore point. For example, before applying proposed data types
in task 3.1. For more information, see “Save a Restore Point” on page 34-7.

Run the Fixed-Point Advisor

1 Open a model.
2 Start the Fixed-Point Advisor by:

• Typing fpcadvisor('model_name/subsystem_name') at the MATLAB
command line

• Selecting a subsystem and, from the menu, selecting Analysis > Fixed-Point
Tool to open the Fixed-Point Tool. On the Fixed-Point Tool Fixed-point
preparation for selected system pane, click Fixed-Point Advisor.

• Right-clicking a subsystem block and, from the subsystem context menu,
selecting Fixed-Point Tool to open the Fixed-Point Tool. On the Fixed-Point
Tool Fixed-point preparation for selected system pane, click Fixed-Point
Advisor.

3 In the Fixed-Point Advisor window, on the left pane, select the Fixed-Point Advisor
folder.

4 Run the advisor by:

 Preparation for Fixed-Point Conversion

34-5

• Selecting Run All from the Run menu.
• Right-clicking the Fixed-Point Advisor folder and selecting Run All from the

folder context menu.

The Fixed-Point Advisor runs the tasks in order until a task fails. A waitbar is
displayed while each task runs.

5 Review the results. If a task fails because input parameters are not specified, select
an Input Parameter. Then continue running to failure by right-clicking the task
and selecting Continue from the context menu. If the task fails for a different
reason, fix the task as described in “Fix a Task Failure” on page 34-5.

If your model contains referenced models, the Fixed-Point Advisor provides results
for each referenced model instance.

Fix a Task Failure

Tasks fail when there is a step for you to take to convert your model from floating-point
to fixed-point. The Fixed-Point Advisor provides guidance on how to fix the issues.

You can fix a failure using three different methods:

• Follow the instructions in the Analysis Result box. Use this method to fix failures
individually. See “Manually Fixing Failures” on page 34-5.

• Use the Action box. Use this method to automatically fix all failures. See
“Automatically Fixing Failures” on page 34-6.

• Use the Model Advisor Results Explorer. Use this method to batch fix failures. See
“Batch Fixing Failures” on page 34-6

Note: A warning result is meant for your information. You can choose to fix the reported
issue or move on to the next task.

Manually Fixing Failures

All checks have an Analysis Result box that describes the recommended actions to
manually fix failures.

To manually fix warnings or failures within a task:

34 Fixed-Point Advisor

34-6

1 Optionally, save a restore point so you can undo the changes that you make. For
more information, see “Save a Restore Point” on page 34-7.

2 In the Analysis Result box, review the recommended actions. Use the information
to make changes to your model.

3 To verify that the task now passes, in the Analysis box, click Run This Task.

Automatically Fixing Failures

You can automatically fix failures using the Action box. The Action box applies all of
the recommended actions listed in the Analysis Result box.

Caution Prior to automatically fixing failures, review the Analysis Result box to ensure
that you want to apply all of the recommended actions.

Automatically fix all failures within a task using the following steps:

1 Optionally, save a restore point so you can undo the changes that you make. For
more information, see “Save a Restore Point” on page 34-7.

2 In the Action box, click Modify All.

The Action Result box displays a table of changes.
3 To verify that the task now passes, in the Analysis box, click Run This Task.

Batch Fixing Failures

If a task fails and you want to explore the results and make batch changes, use the
following steps.

1 Optionally, save a restore point so you can undo the changes that you make. For
more information, see “Save a Restore Point” on page 34-7.

2 In the Analysis box, click Explore Result.
3 Use the Model Advisor Result Explorer to modify block parameters.
4 When you finish making changes, in the Fixed-Point Advisor window, click Run

This Task to see if the changes you made result in the task passing. Continue fixing
failures and rerunning the task until the task passes.

 Preparation for Fixed-Point Conversion

34-7

Restore Points

The Fixed-Point Advisor provides a model and data restore point capability for reverting
changes that you made in response to advice from the Fixed-Point Advisor. A restore
point is a snapshot in time of the model, base workspace, and Fixed-Point Advisor.

Caution A restore point saves only the current working model, base workspace variables,
and Fixed-Point Advisor tree. It does not save other items, such as libraries and
referenced submodels.

To learn how to save a restore point, see “Save a Restore Point” on page 34-7.

To learn how to load a restore point, see “Load a Restore Point” on page 34-8.

Save a Restore Point

When to Save a Restore Point

Consider saving a restore point:

• Before applying changes to your model that might cause update diagram failure. For
example, before applying proposed data types in task 3.1.

• Before attempting to fix failures.

How to Save a Restore Point

You can save a restore point and give it a name and optional description, or allow the
Fixed Point Advisor to automatically name the restore point for you.

To save a restore point with a name and optional description:

1 From the main menu, select File > Save Restore Point As.

34 Fixed-Point Advisor

34-8

2 In the Save Model and Data Restore Point dialog box, in the Name field, enter a
name for the restore point.

3 In the Description field, you can optionally add a description to help you identify
the restore point.

4 Click Save.

The Fixed Point Advisor saves a restore point of the current model, base workspace,
and Fixed Point Advisor status.

Note: To quickly save a restore point, go to File > Save Restore Point. The Fixed
Advisor saves a restore point with the name autosaven. n is the sequential number
of the restore point. If you use this method, you cannot change the name of, or add a
description to, the restore point.

Load a Restore Point

When to Load a Restore Point

Load a restore point when:

 Preparation for Fixed-Point Conversion

34-9

• A task fails and you cannot continue the conversion. In this case, load a restore point
saved earlier in the run to avoid rerunning all the previous tasks.

• You want to revert changes you made in response to advice from the Fixed-Point
Advisor.

How to Load a Restore Point

To load a restore point:

1 Go to File > Load Restore Point.

2 In the Load Model and Data Restore Point dialog box, select the restore point
that you want.

3 Click Load.

The Model Advisor issues a warning that the restoration will overwrite the current
model and workspace.

4 Click Load to load the restore point that you selected.

The Fixed Point Advisor reverts the model, base workspace, and Fixed Point Advisor
status.

35

Fixed-Point Tool

• “Fixed-Point Tool” on page 35-2
• “Run Management” on page 35-5
• “Use Shortcuts to Manage Runs” on page 35-7
• “Debug a Fixed-Point Model” on page 35-11
• “Logging Simulation Ranges for Referenced Models” on page 35-18
• “Log Simulation Ranges for Referenced Models” on page 35-22
• “Propose Data Types for a Referenced Model” on page 35-28
• “Logging Simulation Ranges for MATLAB Function Block” on page 35-31
• “Log Simulation Ranges for MATLAB Function Block” on page 35-32
• “View Signal Names in Fixed-Point Tool” on page 35-35
• “Model Multiple Data Type Behaviors Using a Data Dictionary” on page 35-37

35 Fixed-Point Tool

35-2

Fixed-Point Tool

In this section...

“Introduction to the Fixed-Point Tool” on page 35-2
“Using the Fixed-Point Tool” on page 35-2

Introduction to the Fixed-Point Tool

The Fixed-Point Tool is a graphical user interface that automates specifying fixed-point
data types in a model. The tool collects range data for model objects. The range data
comes from either design minimum and maximum values that objects specify explicitly,
from logged minimum and maximum values that occur during simulation, or from
minimum and maximum values derived using range analysis. Based on these values,
the tool proposes fixed-point data types that maximize precision and cover the range.
With this too, you can review the data type proposals and then apply them selectively to
objects in your model.

Fixed-Point Tool Capability More Information

Deriving range information based on
specified design range

“Derive Ranges”

Proposing data types based on simulation
data

“Conversion Using Simulation Data”

Proposing data types based on derived
ranges

“Conversion Using Range Analysis”

Proposing data types based on simulation
data from multiple runs

“Propose Data Types Using Multiple
Simulations”

Debugging fixed-point models “Debug a Fixed-Point Model” on page
35-11

Using the Fixed-Point Tool

To open the Fixed-Point Tool, use any of the following methods:

• From the Simulink Analysis menu, select Fixed-Point Tool.

 Fixed-Point Tool

35-3

• From the model context menu, select Fixed-Point Tool.
• From a subsystem context menu, select Fixed-Point Tool.

If you want to open the tool programmatically, use the fxptdlg function. For more
information, see fxptdlg.

The Fixed-Point Tool contains the following components:

• Model Hierarchy pane — Displays a tree-structured view of the Simulink model
hierarchy.

• Contents pane — Displays a tabular view of objects that log fixed-point data in a
system or subsystem.

• Workflow pane — Displays parameters for specifying particular attributes of a system
or subsystem, such as its data type override and fixed-point instrumentation mode.

• Toolbar — Provides buttons for commonly used Fixed-Point Tool commands.
• Shortcut Editor — To open the Shortcut Editor, on the far right-hand pane,

click the Add/Edit shortcuts link. This editor provides the ability to configure
shortcuts that set up the run name as well as model-wide data type override
and instrumentation settings prior to simulation or range derivation. For more
information, see “Run Management with the Shortcut Editor” on page 35-5.

For more information about each of these components, see fxptdlg.

35 Fixed-Point Tool

35-4

 Run Management

35-5

Run Management

In this section...

“Run Management” on page 35-5
“Run Management with the Shortcut Editor” on page 35-5
“Manual Run Management” on page 35-6

Run Management

The Fixed-Point Tool supports multiple runs. Each run uses one set of model settings to
simulate the model or to derive or propose data types. You can:

• Store multiple runs.
• Specify custom run names.
• Propose data types based on the results in any run.
• Apply data type proposals based on any run.
• Compare the results of any two runs.
• Rename runs directly in the Fixed-Point Tool Contents pane.

You can easily switch between different run setups using shortcuts. Alternatively, you
can manually manage runs.

Run Management with the Shortcut Editor

You can use shortcuts prior to simulation to configure the run name as well as to
configure model-wide data type override and instrumentation settings. The Fixed-Point
Tool provides:

• Frequently used factory default shortcuts, such as Model-wide double override
and full instrumentation, which sets up your model so that you can override
all fixed-point data types with double-precision numbers and logs the simulation
minimum and maximum values and overflows.

Note: You can set up user-defined shortcuts across referenced model boundaries. The
factory default shortcuts apply only to the top-level model and so do not affect the
settings of any referenced model.

35 Fixed-Point Tool

35-6

• The ability to add and edit custom shortcuts. The shortcuts are saved with the model
so that you define them once and then reuse them multiple times. Use the Shortcut
Editor to create or edit shortcuts and to add and organize shortcut buttons in the
Fixed-Point Tool Model settings pane.

Note: You can use user-defined shortcuts across referenced model boundaries.

Manual Run Management

You can also manually manage runs using the following settings:

• In the Data collection pane, Run name.

Provide a new run name before a simulation or collecting derived minimum and
maximum values so that you do not overwrite existing runs.

• In the Settings for selected system pane:

• Fixed-point instrumentation mode
• Data type override
• Data type override applies to

More About
• “Use Shortcuts to Manage Runs” on page 35-7

 Use Shortcuts to Manage Runs

35-7

Use Shortcuts to Manage Runs
In this section...

“Why Use Shortcuts to Manage Runs” on page 35-7
“When to Use Shortcuts to Manage Runs” on page 35-7
“Add Shortcuts” on page 35-8
“Edit Shortcuts” on page 35-8
“Delete Shortcuts” on page 35-9
“Capture Model Settings Using the Shortcut Editor” on page 35-10

Why Use Shortcuts to Manage Runs

Shortcuts provide a quick and easy way to set up data type override and fixed-point
instrumentation settings run prior to simulation or range derivation. You can associate
a run name with each shortcut. When you apply a shortcut, you change the data type
override and fixed-point instrumentation settings of multiple systems in your hierarchy
simultaneously.

Shortcuts:

• Simplify the workflow. For example, you can collect a floating-point baseline in a
clearly named run.

• Provide the ability to configure data type override and instrumentation settings
on multiple subsystems in the model hierarchy at the same time. This capability is
useful for models that have a complicated hierarchy.

• Are a convenient way to store frequently used settings and reuse them. This
capability is useful when switching between different settings during debugging.

• Provide a way to store the original fixed-point instrumentation and data type override
settings for the model. Preserving these settings in a shortcut provides a backup in
case of failure and a baseline for testing and validation.

When to Use Shortcuts to Manage Runs

To ... Use...

Autoscale your entire model The factory default shortcuts. These
defaults provide an efficient way to override
the model with floating-point data types or

35 Fixed-Point Tool

35-8

To ... Use...

remove existing data type overrides. For
more information, see “Propose Fraction
Lengths Using Simulation Range Data” on
page 38-40.

Debug a model Shortcuts to switch between different
data type override and fixed-point
instrumentation modes. For more
information, see “Debug a Fixed-Point
Model” on page 35-11.

Manage the settings on multiple systems
in a model. For example, if you are
converting your model to fixed point one
subsystem at a time.

The Shortcut Editor to define your own
shortcuts so that you can switch between
different settings without manually
changing individual settings each time.

Capture the initial settings of the model
before making any changes to it.

The Shortcut Editor to capture the model
settings and save them in a named run.
For more information, see “Capture Model
Settings Using the Shortcut Editor” on page
35-10.

Add Shortcuts

1 On the Fixed-Point Tool Model settings pane, click Add/Edit shortcuts.
2 For each subsystem that you want to specify a shortcut for, on the Shortcut Editor

Model Hierarchy pane, select the subsystem:

a In the Name of shortcut field, enter the shortcut name.

By default, if Allow modification of run name is selected, the software sets
the Run name to the shortcut name. You can manually override the name.

b Edit the shortcut properties. See “Edit Shortcuts” on page 35-8.

Edit Shortcuts

1 On the Fixed-Point Tool Model settings pane, click Add/Edit shortcuts.
2 In the Shortcut Editor, from the Name of shortcut list, select the shortcut that you

want to edit.

 Use Shortcuts to Manage Runs

35-9

The editor displays the run name, fixed-point instrumentation settings, and data
type override settings defined by the shortcut.

Note: You cannot modify the factory default shortcuts.
3 If you do not want this shortcut to modify the existing fixed-point instrumentation

settings on the model, clear Allow modification of fixed-point instrumentation
settings.

4 If you do not want this shortcut to modify the existing data type override settings on
the model, clear Allow modification of data type override settings.

5 If you do not want this shortcut to modify the run name on the model, clear Allow
modification of run name.

6 If you want to modify the shortcut for a subsystem:

a Select the subsystem.
b If applicable, set the Fixed-point instrumentation mode to use when you

apply this shortcut.
c If applicable, set the Data type override mode to use when you apply this

shortcut.
d If applicable, set the Run name to use when you apply this shortcut.
e Click Apply.

7 Repeat step 6 to modify any subsystem shortcuts that you want.
8 Optionally, if you want the Fixed-Point Tool to display a button for this new

shortcut, use the right arrow to move the shortcut to the list of shortcuts to display.
Use the up and down arrows to change the order of the shortcut buttons.

9 Save the model to store the shortcut with the model.

Delete Shortcuts

To delete a shortcut from a model:

1 On the Fixed-Point Tool Model settings pane, click Add/Edit shortcuts.
2 On the Shortcut Editor Manage shortcuts pane, in the Shortcuts table, select the

shortcut that you want to delete.
3 Click the Delete selected shortcut button, .

35 Fixed-Point Tool

35-10

Capture Model Settings Using the Shortcut Editor

1 On the Fixed-Point Tool Model settings pane, click Add/Edit shortcuts.
2 In the Shortcut Editor, create a new shortcut, for example, Initial subsystem

settings.

By default, if Allow modification of run name is selected, the software sets the
Run name to the shortcut name. You can manually override the name.

3 Verify that Allow modification of fixed-point instrumentation settings and
Allow modification of data type override settings are selected.

4 Click Capture system settings.

The software sets the Fixed-point instrumentation mode, Data type override,
and, if appropriate, Data type override applies to for the systems in the model
hierarchy.

5 Click Apply.
6 Save the model to store the shortcut with the model.

 Debug a Fixed-Point Model

35-11

Debug a Fixed-Point Model

In this section...

“Simulating the Model to See the Initial Behavior” on page 35-11
“Debugging the Model” on page 35-13
“Simulating the Model Using a Different Input Stimulus” on page 35-15
“Debugging the Model with the New Input” on page 35-15
“Proposing Fraction Lengths for Math2 Based on Simulation Results” on page 35-16
“Verifying the New Settings” on page 35-17

This example shows how to:

• Identify which parts of a model cause numeric problems.

The current fixed-point settings on this model cause overflows. You debug the model
by overriding the fixed-point settings on one subsystem at a time and simulating the
model to determine how these fixed-point settings affect the model behavior.

• Create and use shortcuts to set up fixed-point instrumentation and data type override
settings for different runs.

To optimize the model for two different inputs, you switch several times between
different data type override and fixed-point instrumentation settings. Using shortcuts
facilitates changing these settings.

• Autoscale the model over the complete simulation range for both inputs.

Simulating the Model to See the Initial Behavior

Initially, the input to the Gain block is a sine wave of amplitude 7. Simulate the model
using local system settings with logging enabled to see if any overflows or saturations
occur.

1 Open the ex_fixedpoint_debug model. At the MATLAB command line, enter:

addpath(fullfile(docroot,'toolbox','fixpoint','examples'))

ex_fixedpoint_debug

35 Fixed-Point Tool

35-12

2 From the model Analysis menu, select Fixed-Point Tool.
3 In the Fixed-Point Tool, set up a shortcut for the initial system settings:

On the Model settings pane, click Add/Edit shortcuts.
4 In the Shortcut Editor:

a On the Model Hierarchy pane, select subsysA>Math1.
b In the Name of shortcut field, enter Setting A.

The editor sets the Run name for this shortcut to Setting A.
c Set Fixed-point instrumentation mode to Minimums, maximums and

overflows.
d Set Data type override to Use local settings.

 Debug a Fixed-Point Model

35-13

e Click Apply.
f On the Model Hierarchy pane, select subsysA>Math2 and repeat steps (c) to

(f).
g On the Manage shortcuts pane, under Shortcuts, select Setting A then

click the right arrow to move this shortcut to the list of shortcuts displayed in
the Fixed-Point Tool.

5 Use this shortcut to set up a run. Use the settings to simulate the model.

a On the Fixed-Point Tool Model Hierarchy pane, select
ex_fixedpoint_debug.

b On the Model settings pane, click Setting A.
c Click the Simulate button,

The Simulink software simulates the model using the fixed-point
instrumentation and data type settings specified in Setting A. Afterward,
on the Contents pane, the Fixed-Point Tool displays the simulation results
for each block that logged fixed-point data. The tool stores the results in the
run named Setting A. The Fixed-Point tool highlights subsysB/Math2/
Add1:Output in red to indicate that there is an issue with this result. The
OvfWrap column for this result shows that the block overflowed 51 times, which
indicates a poor estimate for its scaling.

Debugging the Model

To debug the model, first simulate the model using local settings on the subsystem
Math1 while overriding the fixed-point settings on Math2 with doubles. Simulating
subsystem Math2 with doubles override avoids quantization effects for this subsystem.
If overflows occur, you can deduce that there are issues with the fixed-point settings in
subsystem Math1.

Next, simulate the model using local settings on Math2 and doubles override on Math1.
If overflows occur for this simulation, there are problems with the fixed-point settings for
subsystem Math2.

Setting Up Shortcuts

1 Use the Shortcut Editor to create the following new shortcuts.

35 Fixed-Point Tool

35-14

Shortcut Name Subsystem Fixed-point instrumentation
mode

Data type
override

Data type override
applies to

Math1 MinMaxAndOverflow Use local
settings

N/ASetting B

Math2 MinMaxAndOverflow Double All numeric types
Math1 MinMaxAndOverflow Double All numeric typesSetting C
Math2 MinMaxAndOverflow Use local

settings
N/A

2 On the Manage shortcuts pane, add Setting B and Setting C to the list of
buttons to display in the Fixed-Point Tool.

Testing Subsystem Math1 Settings

Simulate the model with original fixed-point settings on Math1 while overriding the
fixed-point settings with doubles on Math2.

1 On the Fixed-Point Tool Model Hierarchy pane, select ex_fixedpoint_debug.
2 On the Model settings pane, click Setting B to override fixed-point settings on

Math2.
3 Click the Simulate button.

The Simulink software simulates the model using the fixed-point instrumentation
and data type settings specified in Setting B, using fixed-point settings for Math1
and overriding the fixed-point settings for Math2. No overflows occur, which
indicates that the settings on Math1 are not causing the overflows.

Testing Subsystem Math2 Settings

Simulate with original fixed-point settings on Math2 while overriding the fixed-point
settings with doubles on Math1.

1 On the Fixed-Point Tool Model Hierarchy pane, select ex_fixedpoint_debug.
2 On the Shortcuts to set up runs pane, click Setting C to override the fixed-point

settings on Math1.
3 Click the Simulate button.

The Simulink software simulates the model using the fixed-point instrumentation
and data type settings specified in Setting C, using fixed-point settings for Math2

 Debug a Fixed-Point Model

35-15

and overriding the fixed-point settings for Math1. Overflows occur in run Setting
C, indicating that the settings on Math2 are causing the overflows.

Simulating the Model Using a Different Input Stimulus

Simulate the model with a different input using the original fixed-point settings on
subsystems Math1 and Math2. Because you set up a shortcut for this initial set up,
before rerunning the simulation, you can easily configure the model. Before simulating,
select to merge the simulation results so that the tool gathers the simulation range for
both inputs.

1 On the Data collection pane, select Merge results from multiple simulations.
2 In the ex_fixedpoint_debug model, double-click the Manual Switch block to

select Chirp Signal1 as the input to the Gain block.
3 On the Fixed-Point Tool Model Hierarchy pane, select ex_fixedpoint_debug

and simulate using the original fixed-point settings for Math1 and Math2.

a On the Model settings pane, click Setting A.
b Click the Simulate button.

The Simulink software simulates the model using the fixed-point
instrumentation and data type settings specified in Setting A. Afterward, in the
Contents pane, the Fixed-Point Tool displays the simulation results for each
block that logged fixed-point data. The tool stores the results in the run named
Setting A.

Tip In the Fixed-Point Tool Contents pane, click Run to sort the results in this
column.

Debugging the Model with the New Input

1 Simulate the model with original fixed-point settings on Math1 while overriding the
fixed-point settings with doubles on Math2.

a On the Fixed-Point Tool Model Hierarchy pane, select
ex_fixedpoint_debug.

b On the Model settings pane, click Setting B.
c Click the Start button.

35 Fixed-Point Tool

35-16

No overflows occur, which indicates that the settings on Math1 are not causing
the overflows.

2 Simulate with original fixed-point settings on Math2 while overriding the fixed-point
settings with doubles on Math1.

a On the Fixed-Point Tool Model Hierarchy pane, select
ex_fixedpoint_debug.

b On the Model settings pane, click Setting C.
c Click the Start button.

Overflows occur, which indicates that the fixed-point settings on Math2 are
causing the overflows. Next, use the Fixed-Point Tool to propose new data types
for this subsystem.

Proposing Fraction Lengths for Math2 Based on Simulation Results

1 On the Fixed-Point Tool Model Hierarchy pane, select Math2.
2 On the Automatic data typing for selected system pane, click the Propose

fraction lengths button.
3 In the Propose Data Types dialog box, select Setting B as the run to use for

proposing data types and click OK. This run simulated Math2 with double override
to obtain the 'ideal' behavior of the subsystem based on the simulation results for
both input stimuli.

The Fixed-Point Tool proposes new fixed-point data types for the objects in
subsystem Math2 to avoid numerical issues such as overflows.

4 On the Contents pane ProposedDT column, examine the proposed data types for
the objects in Math2. The tool proposed new fixed-point data types with reduced
precision for the Add1 block Output and Accumulator.

5 Because the Fixed-Point Tool marked all the proposed results with a green icon to
indicate that the proposed data types pose no issues for these objects, accept the
proposals.

In the Automatic data typing for selected system pane, click the Apply
accepted fraction lengths button.

 Debug a Fixed-Point Model

35-17

Verifying the New Settings

Verify that the new settings do not cause any numerical problems by simulating the
model using local settings for subsystems Math1 and Math2 and logging the results. Use
shortcut Setting A that you set up for these settings.

1 On the Fixed-Point Tool Model Hierarchy pane, select ex_fixedpoint_debug.
2 On the Model settings pane, click Setting A.
3 On the Data collection pane, set Store results in run to Setting A2 and click

Apply so that the Fixed-Point Tool does not overwrite the previous results for this
shortcut.

4 Click the Simulate button.

The Simulink software simulates the model using the new fixed-point settings.
Afterward, the Fixed-Point Tool displays the simulation results in run Setting A2.
No overflows or saturations occur indicating that the model can now handle the full
input range.

35 Fixed-Point Tool

35-18

Logging Simulation Ranges for Referenced Models

In this section...

“Viewing Simulation Ranges for Referenced Models” on page 35-18
“Fixed-Point Instrumentation and Data Type Override Settings” on page 35-20
“See Also” on page 35-21

Viewing Simulation Ranges for Referenced Models

The Fixed-Point Tool logs simulation minimum and maximum values (ranges) for
referenced models. The tool logs these values only for instances of the referenced model
that are in Normal mode. It does not log simulation minimum and maximum values for
instances of the referenced model that are in non-Normal modes. If your model contains
multiple instances of a referenced model and some are instances are in Normal mode and
some are not, the tool logs and displays data for those that are in Normal mode.

If a model contains a referenced model, the Fixed-Point Tool Model Hierarchy pane
displays a subnode for the instance of the referenced model as well as a node for the
referenced model. For example, the ex_mdlref_controller model contains a Model
block that references the ex_controller model. The Fixed-Point Tool shows both
models in the model hierarchy.

 Logging Simulation Ranges for Referenced Models

35-19

If a model contains multiple instances of a referenced model, the tool displays each
instance of the referenced model in this model as well as a node for the referenced model.
For example, the ex_multi_instance model contains two instances of the referenced
model ex_sum. The Fixed-Point Tool displays both models and both instances of the
referenced model in the model hierarchy.

The tool logs and displays the results for each instance of the referenced model. For
example, here are the results for the first instance of the referenced model ex_sum1 in
ex_multi_instance.

35 Fixed-Point Tool

35-20

Here are the results for the second instance of ex_sum1.

In the referenced model node, the tool displays the union of the results for each instance
of the referenced model.

Fixed-Point Instrumentation and Data Type Override Settings

When you simulate a model that contains referenced models, the data type override and
fixed-point instrumentation settings for the top-level model do not control the settings
for the referenced models. You must specify these settings separately for the referenced
model. If the settings are inconsistent, for example, if you set the top-level model data
type override setting to double and the referenced model to use local settings and the
referenced model uses fixed-point data types, data type propagation issues might occur.

You can set up user-defined shortcuts across referenced model boundaries. The factory
default shortcuts apply only to the top-level model and so do not affect the settings of any
referenced model.

When you change the fixed-point instrumentation and data type override settings for any
instance of a referenced model, the settings change on all instances of the model and on
the referenced model itself.

 Logging Simulation Ranges for Referenced Models

35-21

See Also

• “Log Simulation Ranges for Referenced Models” on page 35-22

35 Fixed-Point Tool

35-22

Log Simulation Ranges for Referenced Models

This example shows how to log simulation minimum and maximum values for a model
that contains multiple instances of the same referenced model.

Simulate the Model Using Local Settings

1 Open the ex_mdlref_controller model. At the MATLAB command line, enter:

addpath(fullfile(docroot,'toolbox','fixpoint','examples'))

ex_mdlref_controller

The model contains a Model block that references the ex_controller model. Using
a referenced model isolates the controller from the rest of the system. This method is
useful to help you configure a model to determine the effect of fixed-point data types
on a system. Using this approach, you convert only the referenced model because this
is the system of interest.

 Log Simulation Ranges for Referenced Models

35-23

2 In the ex_mdlref_controller model menu, select Analysis > Fixed-Point Tool.

The Fixed-Point Tool opens. In its Model Hierarchy pane, the tool displays two
model nodes, one for the ex_mdlref_controller model showing that this model
contains a Model block that refers to the ex_controller model, and another for the
ex_controller model itself.

35 Fixed-Point Tool

35-24

3 In the Fixed-Point Tool Model Hierarchy pane, select the
ex_mdlref_controller model.

4 On the Settings for selected system pane, verify that:

• Fixed-point instrumentation mode is set to Minimums, maximums and
overflows.

• Data type override is set to Use local settings so the model will log
simulation data using the data types set up on the model.

5 In the Fixed-Point Tool Data collection pane, set Run name to initial_run and
then click Apply.

Providing a unique name for the run avoids accidentally overwriting results from
previous runs and enables you to identify the run more easily.

6 The fixed-point instrumentation and data type override settings for the top-level
model do not affect the settings in the referenced model. In the Fixed-Point Tool
Model Hierarchy pane, select the ex_controller model and verify that:

 Log Simulation Ranges for Referenced Models

35-25

• Fixed-point instrumentation mode is set to Minimums, maximums and
overflows

• Data type override is set to Use local settings
7 In the Fixed-Point Tool, click Simulate.

The Simulink software simulates the model. Afterward, the Fixed-Point Tool
displays in its Contents pane the simulation results for each block that logged fixed-
point data. By default, it displays the Simulation View of these results.

The Simulation Data Inspector tool opens. You can use this tool to inspect and
compare signals in your model.

8 In the Fixed-Point Tool Model Hierarchy pane, select the ex_controller model.

The Fixed-Point tool displays the results for the referenced model and highlights
the Up Cast block in red to indicate that there is an issue with this result. The
Saturations column for this result shows that the block saturated 23 times, which
indicates poor scaling.

35 Fixed-Point Tool

35-26

Next, use data type override mode to perform a global override of the fixed-point
data types and scaling using double-precision numbers to avoid quantization effects.
Later, you use these simulation results when performing automatic data typing.

Gather a Floating-Point Benchmark

1 In the Settings for selected system pane, set Data type override to Double.
2 In the Data collection pane, set Run name to double_run and then click Apply.
3 In the Model Hierarchy pane, select the ex_mdlref_controller model, set Data

type override to Double and then click Apply.

Setting data type override for the top-level model avoids data type propagation
issues when you simulate the model.

4 In the Fixed-Point Tool, click Simulate.

The Simulink software simulates the ex_mdlref_controller model in data type
override mode and stores the results in the run named double_run. Afterward, the
Fixed-Point Tool displays in its Contents pane the results along with those of the
run that you generated previously.

5 Use the Simulation Data Inspector to view the initial_run and double_run
versions of the signal associated with the Analog Plant output (upper axes), and the
difference between the signals (lower axes).

 Log Simulation Ranges for Referenced Models

35-27

Now you are ready to propose data types based on the simulation results from the
doubles override run.

35 Fixed-Point Tool

35-28

Propose Data Types for a Referenced Model

This example shows how to propose data types for a referenced model. To run this
example, you must first run the “Log Simulation Minimum and Maximum Values for
Referenced Models” example.

1 In the Model Hierarchy pane of the Fixed-Point Tool, select the ex_controller
model.

2 In the Automatic data typing for selected system pane, click the Configure
link and verify that Propose fraction lengths for specified word lengths is
selected.

3 In the same pane, specify the Safety margin for simulation min/max (%)
parameter as 20 and click Apply.

4
In the Fixed-Point Tool, click Propose fraction lengths, .

Because no design minimum and maximum information is supplied, the simulation
minimum and maximum data that was collected during the simulation run is used
to propose data types. The Percent safety margin for simulation min/max
parameter value multiplies the “raw” simulation values by a factor of 1.2. Setting
this parameter to a value greater than 1 decreases the likelihood that an overflow
will occur when fixed-point data types are being used.

Because of the nonlinear effects of quantization, a fixed-point simulation will
produce results that are different from an idealized, doubles-based simulation.
Signals in a fixed-point simulation can cover a larger or smaller range than in a
doubles-based simulation. If the range increases enough, overflows or saturations
could occur. A safety margin decreases the likelihood of this happening, but it might
also decrease the precision of the simulation.

5 In the Propose Data Types dialog box, select double_run and click OK.

The Fixed-Point Tool analyzes the scaling of all fixed-point blocks whose:

• Lock output data type setting against changes by the fixed-point tools
parameter is not selected.

• Output data type parameter specifies a generalized fixed-point number.

The Fixed-Point Tool uses the minimum and maximum values stored in the selected
run to propose each block's scaling such that the precision is maximized while the

 Propose Data Types for a Referenced Model

35-29

full range of simulation values is spanned. The tool displays the proposed scaling
in its Contents pane. Now, it displays the Automatic Data Typing View to provide
information, such as ProposedDT, ProposedMin, ProposedMax, which are
relevant at this stage of the fixed-point conversion.

6 Review the scaling that the Fixed-Point Tool proposes. You can choose to accept the
scaling proposal for each block by selecting the corresponding Accept check box in
the Contents pane. By default, the Fixed-Point Tool accepts all scaling proposals
that differ from the current scaling. For this example, verify that the Accept check
box associated with the active run is selected for each of the Controller subsystem's
blocks.

The Fixed-Point Tool does not propose a data type for Combine
Terms:Accumulator and displays n/a in the ProposedDT column. The tool does
not propose a data type because the SpecifiedDT is Inherit: Inherit via
internal rule. To view more information about a proposal, select the result and
click the Result Details tab.

7 In the Fixed-Point Tool, click the Apply accepted fraction lengths button .

The Fixed-Point Tool applies to the scaling proposals that you accepted in the
previous step.

8 In the Model Hierarchy pane of the Fixed-Point Tool, select the
ex_mdlref_controller model.

a In the Settings for selected system pane, set Data type override to Use
local settings. This option enables each of the model's subsystems to use its
locally specified data type settings, however, it does not apply to the referenced
model.

35 Fixed-Point Tool

35-30

b In the Data collection pane, set Run name to scaled_fixed_run and then
click Apply.

9 In the Model Hierarchy pane, select the ex_controller model and set its Data
type override parameter as Use local settings and click Apply.

10 In the Fixed-Point Tool, click Simulate.

The Simulink software simulates the ex_mdlref_controller model using the new
scaling that you applied. Afterward, the Fixed-Point Tool displays in its Contents
pane information about blocks that logged fixed-point data.

11 Use the Simulation Data Inspector to plot the Analog Plant output for the floating-
point and fixed-point runs and the difference between them.

The difference plot shows that the difference between the floating-point signal and
the fixed-point signal is within the specified tolerance of 0.04.

 Logging Simulation Ranges for MATLAB Function Block

35-31

Logging Simulation Ranges for MATLAB Function Block

You can log simulation minimum and maximum values for MATLAB Function blocks
using the Mininums, maximumx and overflows logging control in the Fixed-Point
Tool. The logged minimum and maximum values are displayed in the MATLAB Function
Report. For fixed-point data types, the report also displays the percent of current range.
You can use the simulation minimum/maximum data to help you determine the optimal
word length and fraction length of fixed-point data types for signals in your model. After
modifying your model to use fixed-point data types, simulate again to verify that the data
types cover the full intended operating range.

Note: The software does not log simulation minimum and maximum values for MATLAB
Function blocks used as a reference (library) block or in a referenced model.

See Also

• “Log Simulation Ranges for MATLAB Function Block” on page 35-32

35 Fixed-Point Tool

35-32

Log Simulation Ranges for MATLAB Function Block

This example shows how to log simulation minimum and maximum values for a
MATLAB Function block and view these values in the MATLAB Function Report.

1 Open the ex_matlab_function_block_logging model. At the MATLAB
command line, enter:

addpath(fullfile(docroot,'toolbox','fixpoint','examples'))

ex_matlab_function_block_logging

2 From the model Analysis menu, select Fixed-Point Tool.

 Log Simulation Ranges for MATLAB Function Block

35-33

3 In the Fixed-Point Tool, under Settings for selected system, Fixed-point
instrumentation mode is set to Minimums, maximums and overflows so that
the Fixed-Point Tool logs the simulation minimum and maximum values. Data type
override is set to Use local settings so that the Fixed-Point Tool logs data
using the data types specified in the model.

4 On the Fixed-Point Tool Model Hierarchy pane, select
ex_matlab_function_block_logging.

5
Click the Simulate button, .

The Simulink software simulates the model using the specified fixed-point
instrumentation and local data type settings.

6 In the ex_matlab_function_block_logging model, double-click the MATLAB
Function block.

The MATLAB Function block code is displayed in the MATLAB editor window.
7 In MATLAB, on the Editor tab, click View Report.
8 In the MATLAB Function Report, click the Variables tab.

The Variables tab displays the simulation minimum and maximum values for the
MATLAB Function block input, output, and variables.

35 Fixed-Point Tool

35-34

 View Signal Names in Fixed-Point Tool

35-35

View Signal Names in Fixed-Point Tool

To view signal names in the Fixed-Point Tool:

1 In the Fixed-Point Tool Contents pane, click Show Details.
2 In the list box of available columns, select SignalName.

3 Click .

The Fixed-Point Tool includes SignalName in the list box of columns to display.
4 Optionally, use the up and down arrow buttons to change the display order for the

columns.
5 Click Hide Details.
6 If a signal has a name, the Fixed-Point Tool displays the name in the Contents

pane.

35 Fixed-Point Tool

35-36

 Model Multiple Data Type Behaviors Using a Data Dictionary

35-37

Model Multiple Data Type Behaviors Using a Data Dictionary

This example shows how to use referenced data dictionaries to store multiple sets of data
types for a model. This example also shows how to change the data types by switching
the referenced data dictionary.

1 Open the folder containing the example. At the MATLAB command line, enter:

cd(fullfile(docroot,'toolbox','fixpoint','examples'))

2 Copy these files to a local writable folder:

• ex_data_dictionary.slx — Simulink model using a data dictionary to store
its data types

• mdl_dd.sldd — Main data dictionary
• flt_dd.sldd — Referenced data dictionary using floating-point data types
• fix_dd.sldd — Referenced data dictionary using fixed-point data types

3 In the folder you copied the files to, open the ex_data_dictionary model.

ex_data_dictionary

35 Fixed-Point Tool

35-38

4
In the lower left corner of the Simulink Editor, click to open the dictionary.

The data dictionary defines the parameters of the Gain blocks in the F1 and F2
subsystems. mdl_dd is associated with a referenced data dictionary, flt_dd, which
defines the output data types of the gain blocks in the model’s subsystems.

In the Model Explorer, in the Contents pane, the Data Source column shows the
source data dictionary for each Gain block parameter.

 Model Multiple Data Type Behaviors Using a Data Dictionary

35-39

35 Fixed-Point Tool

35-40

5 Return to the model. Open the F1 subsystem and double-click the a1 block. The
block gain is specified as f1_a1_param, which is defined in the data dictionary.

In the Signal Attributes tab, the block output data type is specified as f1_a1_dt. The
data type of f1_a1_dt is defined in the referenced data dictionary, flt_dd.

 Model Multiple Data Type Behaviors Using a Data Dictionary

35-41

Change Data Types of Model Parameters

The fix_dd data dictionary contains the same entries as flt_dd, but defines fixed-point
data types instead of floating-point data types. To use the fixed-point data types without
changing the model, replace flt_dd with fix_dd as the referenced data dictionary of
mdl_dd.

1 In the Model Explorer, in the Model Hierarchy pane, right-click mdl_dd and select
Properties.

2 Remove the referenced floating-point data dictionary. In the Data Dictionary dialog
box, in the Referenced Dictionaries pane, select flt_dd and click Remove.

3 Add a reference to the fixed-point data dictionary. Click Add Reference and select
fix_dd. Click OK to close the dialog box.

35 Fixed-Point Tool

35-42

4 In the Model Explorer, right-click mdl_dd and select Save Changes.
5 Return to the Simulink editor and update the model.

The model now uses fixed-point data types.

Related Examples
• “Migrate Single Model to Use Dictionary”

More About
• “What Is a Data Dictionary?”

36

Convert Floating-Point Model to Fixed
Point

• “Learning Objectives” on page 36-2
• “Model Description” on page 36-4
• “Before You Begin” on page 36-7
• “Convert Floating-Point Model to Fixed Point” on page 36-8
• “Key Points to Remember” on page 36-24
• “Where to Learn More” on page 36-25

36 Convert Floating-Point Model to Fixed Point

36-2

Learning Objectives

In this example, you learn how to:

• Convert a floating-point system to an equivalent fixed-point representation.

This example shows the recommended workflow for conversion when using proposing
fraction lengths based on simulation data.

• Use the Fixed-Point Advisor to prepare your model for conversion.

The Fixed-Point Advisor provides a set of tasks to help you convert a floating-point
system to fixed point.

You use the Fixed-Point Advisor to:

• Set model-wide configuration options
• Set block-specific dialog parameters
• Check the model against fixed-point guidelines.
• Identify unsupported blocks.
• Remove output data type inheritance from blocks that use floating-point

inheritance.
• Promote simulation minimum and maximum values to design minimum and

maximum values. This capability is useful if you want to derive ranges for objects
in the model and you have not specified design ranges but you have simulated
the model with inputs that cover the full intended operating range. For more
information, see “Specify block minimum and maximum values”.

• Use the Fixed-Point Tool to propose fixed-point data types.

The Fixed-Point Tool automates the task of specifying fixed-point data types in
a system. In this example, the tool collects range data for model objects, either
from design minimum and maximum values that you specify explicitly for signals
and parameters, or from logged minimum and maximum values that occur during
simulation. Based on these values, the tool proposes fixed-point data types that
maximize precision and covers the range. The tool allows you to review the data type
proposals and then apply them selectively to objects in your model.

• Handle floating-point inheritance blocks during conversion.

 Learning Objectives

36-3

For floating-point inheritance blocks when inputs are floating point, all internal and
output data types are floating point. The model in this example uses a Discrete Filter
block, which is a floating-point inheritance block.

36 Convert Floating-Point Model to Fixed Point

36-4

Model Description

In this section...

“Model Overview” on page 36-4
“Model Set Up” on page 36-5

Model Overview

This example uses the ex_fixed_point_workflow model.

The model consists of a Source, a Controller Subsystem that you want to convert to
fixed point, and a Scope to visualize the subsystem outputs. This method is how you
configure a model to determine the effect of fixed-point data types on a system. Using
this approach, you convert only the subsystem because this is the system of interest.
There is no need to convert the Source or Scope to fixed point.

This configuration allows you to modify the inputs and collect simulation data for
multiple stimuli. You can then examine the behavior of the subsystem with different
input ranges and scale your fixed-point data types to provide maximum precision while
accommodating the full simulation range.

 Model Description

36-5

Model Set Up

The model consists of the following blocks and subsystem.

Source

• Repeating table Source

A Repeating Sequence (Repeating Table) block provides the first input to the
Controller Subsystem and periodically repeats the sequence of data specified in the
mask.

• Rate Transition

A Rate Transition block outputs data from the Repeating table Source block at a
different rate to the input.

• Sine Wave Source

A Sine Wave block provides the second input to the Controller Subsystem.

Initially, the amplitude of the Sine Wave block is 1. Later, you modify the amplitude
to change the input range of the system.

• Conversion1 and Conversion2

These two Conversion blocks are set up so that the real-world values of their input
and output are equal.

Controller Subsystem

The Controller Subsystem consists of:

• Discrete Filter

The Discrete Filter block filters the Repeating table Source signal. The Discrete Filter
is a floating-point inheritance block. For floating-point inheritance blocks, when
inputs are floating-point, all internal and output data types are floating point.

• Chart

The Chart consists of aStateflow Chart block which converts the Sine Wave input to a
positive output and multiplies it by 3.

• Lookup Table for Chart

36 Convert Floating-Point Model to Fixed Point

36-6

The Lookup Table for Chart block is the first of two identical n-D Lookup Table
blocks. This block receives the output from the Chart and, at each breakpoint, outputs
the input multiplied by 10.

• Gain

The Gain block multiplies the Sine Wave input by -3.
• Lookup Table for Gain

The Lookup Table for Gain block is a n-D Lookup Table block. It receives the output
from the Gain block and, at each breakpoint, outputs its input multiplied by 10.

• Sum for Chart

This Sum block adds the outputs from the Discrete Filter and Lookup Table for Chart
blocks and outputs the result to the Scope block.

• Sum for Gain

This Sum block adds the outputs from the Discrete Filter and Lookup Table for Gain
blocks and outputs the result to the Scope block.

Scope

• Scope

The model includes a Scope block that displays the Controller Subsystem output
signals.

 Before You Begin

36-7

Before You Begin

This example shows the recommended workflow for converting a floating-point system
to fixed point using design and simulation data. It shows you how to use the Fixed-Point
Advisor to prepare a floating-point subsystem for conversion to an equivalent fixed-point
representation, and then how to use the Fixed-Point Tool to propose the fixed-point data
types in the subsystem.

The example uses the following recommended workflow:

1 “Prepare Floating-Point Model for Conversion to Fixed Point” on page 36-8.

Step through the Fixed-Point Advisor tasks that prepare the floating-point
subsystem for conversion to an equivalent fixed-point representation.

Note: If your model contains referenced models, you must run the Fixed-Point
Advisor on each instance of the referenced model as well as the parent model.

2 “Propose Data Types” on page 36-15.

Propose data types based on the simulation results. Examine the results to resolve
any conflicts and to verify that you want to accept the proposed data type for each
result.

3 “Apply Fixed-Point Data Types” on page 36-16.

Write the proposed data types to the model. Perform the automatic data typing
procedure, which uses the double-precision simulation results to propose fixed-point
data types for appropriately configured blocks. The Fixed-Point Tool allows you to
accept and apply the proposals selectively.

4 “Verify Fixed-Point Settings” on page 36-17.

Simulate the model again using the fixed-point settings. Compare the ideal results
for the double-precision run with the fixed-point results.

5 Test the fixed-point settings with a different input stimulus and, if necessary,
propose new data types to accommodate the simulation range for this input.

36 Convert Floating-Point Model to Fixed Point

36-8

Convert Floating-Point Model to Fixed Point

In this section...

“Open the Model” on page 36-8
“Prepare Floating-Point Model for Conversion to Fixed Point” on page 36-8
“Propose Data Types” on page 36-15
“Apply Fixed-Point Data Types” on page 36-16
“Verify Fixed-Point Settings” on page 36-17
“Test Fixed-Point Settings With New Input Data” on page 36-18
“Gather a Floating-Point Benchmark” on page 36-20
“Propose Data Types for the New Input” on page 36-20
“Apply the New Fixed-Point Data Types” on page 36-21
“Verify New Fixed-Point Settings” on page 36-21
“Prepare for Code Generation” on page 36-22

Open the Model

Open the ex_fixed_point_workflow model. At the MATLAB command line, enter:

addpath(fullfile(docroot,'toolbox','fixpoint','examples'))

ex_fixed_point_workflow

Prepare Floating-Point Model for Conversion to Fixed Point

The Fixed-Point Advisor provides a set of tasks that help you prepare a floating-point
model or subsystem for conversion to an equivalent fixed-point representation. After
preparing your model, you use the Fixed-Point Tool to perform the fixed-point conversion.

In this part of the example, you use the Fixed-Point Advisor to prepare the Controller
Subsystem in the ex_fixed_point_workflow model for conversion.

Open the Fixed-Point Advisor

1 In the ex_fixed_point_workflow model menu, select Analysis > Fixed-Point
Tool.

2 In the Fixed-Point Tool:

 Convert Floating-Point Model to Fixed Point

36-9

a In the Model Hierarchy pane, select the Controller Subsystem.
b In the Fixed-point preparation for selected system pane, click the Fixed-

Point Advisor button.

You run the Fixed-Point Advisor on the ex_fixed_point_workflow Controller
Subsystem because this is the system of interest. There is no need to convert the
system inputs or the display to fixed point.

Prepare Model for Conversion

1 In the Fixed-Point Advisor left pane, expand the Prepare Model for Conversion
folder to view the tasks. For the purpose of this example, run the tasks in the this
folder one at a time. Select Verify model simulation settings and, in the right
pane, select Run this task.

This task validates that model simulation settings allow signal logging and disables
data type override in the model and for fi objects or embedded numeric data types
in your model or workspace. These settings facilitate conversion to fixed point in
later tasks.

A waitbar appears while the task runs. When the run is complete, the result shows
that the task passed.

2 Select and run Verify update diagram status.

Verify update diagram status runs. Your model must be able to successfully
update diagram to run the checks in the Fixed-Point Advisor.

The task passes.
3 Select and run Address unsupported blocks. This task identifies blocks that do

not support fixed-point data types.

The task passes because the subsystem contains no blocks that do not support fixed-
point data.

4 Select and run Set up signal logging. Prior to simulation, you must specify at
least one signal for the Fixed-Point Advisor to use for analysis and comparison in
downstream checks. You should log, at minimum, the unique input and output
signals.

The task generates a warning because signal logging is not specified for any signals.

36 Convert Floating-Point Model to Fixed Point

36-10

5 Fix the warning using the Model Advisor Result Explorer:

a Click the Explore Result button.

The Model Advisor Result Explorer opens.
b In the middle pane, select each signal you want to log and, next to the signal,

select the corresponding EnableLogging check box.

For this example, log these signals:

• Lookup Table for Gain

• Lookup Table for Chart

• Chart

• Discrete Filter

c Close the Model Advisor Result Explorer.
d In the Fixed-Point Advisor window, click Run This Task.

The task passes because signal logging is now enabled for at least one signal.
6 Select and run Create simulation reference data.

The Fixed-Point Advisor simulates the model using the current solver settings,
and creates and archives reference signal data in a run named FPA_Reference to
use for analysis and comparison in later conversion tasks. This task also validates
that model simulation settings allow signal logging and that the Fixed-point
instrumentation mode is set to Minimums, maximums and overflows.

The Fixed-Point Advisor issues a warning and provides information in the Analysis
Result box that logging simulation minimum and maximum values failed.

Logging failed because the Fixed-point instrumentation mode is Use
local settings, but the recommended setting is Minimums, maximums and
overflows.

7 To fix the failure, in the Action pane, click Modify All.

The Fixed-Point Advisor configures the model to the settings recommended in the
Analysis Result pane. The Action pane displays a table of changes showing that
the Fixed-point instrumentation mode is now Minimums, maximums and
overflows

 Convert Floating-Point Model to Fixed Point

36-11

8 Click Run This Task.

Running the task after using the Modify All action verifies that you made the
necessary changes. The Analysis Result pane updates to display a passed result and
information about why the task passed.

Tip You can view the reference run data in the Fixed-Point Tool Contents pane in
the run named FPA_Reference or in the Simulation Data Inspector. Because you
ran the simulation twice, the Simulation Data Inspector displays data for both runs
using the same name (FPA_Reference).

9 In the Verify Fixed-Point Conversion Guidelines folder, select and run Check
model configuration data validity diagnostic parameters settings. This
task verifies that the Model Configuration Parameters > Diagnostics > Data
Validity > Parameters options are all set to warning. If these options are set to
error, the model update diagram action fails in downstream checks.

The task passes because none of these options are set to error.
10 Select and run Implement logic signals as Boolean data. This task verifies that

Model Configuration Parameters > Optimization > Implement logic signals
as Boolean data is selected. If it is cleared, the code generated in downstream
checks is not optimized.

The task passes.
11 Select and run Check bus usage. This task identifies:

• Mux blocks that are bus creators
• Bus signals that the top-level model treats as vectors

Note: This is a Simulink check. For more information, see “Check bus usage”.

The task runs and generates a warning because this check works only from top-level
models and you are running from the subsystem. Because this model uses no buses,
ignore this warning. For models containing buses, you must run the Fixed-Point
Advisor from the top-level model to perform this check.

12 Select and run Simulation range checking. This tasks verifies that the Model
Configuration Parameters > Diagnostics > Data Validity> Simulation range
checking option is not set to none.

36 Convert Floating-Point Model to Fixed Point

36-12

The task generates a warning because the Simulation range checking option is none.
13 To fix the warning, in the Action box, click Modify All.

The Fixed-Point Advisor sets the Simulation range checking option to warning.
14 Rerun the task.

The task now passes because the Simulation range checking option is correct.
15 Select and run Check for implicit signal resolution. This task checks for models

that use implicit signal resolution.

The task fails because implicit signal resolution is enabled.
16 To fix the failure, in the Action box, click Modify All.

The Fixed-Point Advisor sets the Signal resolution option to Explicit only.
17 Rerun the task.

The task now passes.

You have completed all the tasks for the Prepare Model for Conversion folder. At this
point, you can review the results report found at the folder level, or continue to the next
folder.

Prepare for Data Typing and Scaling

This folder contains tasks that set the block configuration options and set output
minimum and maximum values for blocks. The block settings from this task simplify the
initial data typing and scaling. Later tasks set optimal block configuration. The tasks in
this folder prepare the model for automatic data typing in the Fixed-Point Tool.

1 For the purpose of this example, run the tasks in the Prepare for Data Typing
and Scaling folder one at a time.

Open the Prepare for Data Typing and Scaling folder then select and run
Review locked data type settings. This task identifies blocks that have their data
type settings locked down which excludes them for automatic data typing.

This task passes because the model contains no blocks with locked data types.
2 Select and run Remove output data type inheritance. This task identifies

blocks that have an inherited output signal data type that might lead to data type
propagation errors.

 Convert Floating-Point Model to Fixed Point

36-13

This task fails because there are floating-point inheritance blocks in the model. For
floating-point inheritance blocks, when inputs are floating-point, all internal and
output data types are floating point. Therefore, you must specify an input parameter
data type for these blocks.

3 In the Fixed-Point Advisor Input Parameters pane, set Data type for blocks
with floating-point inheritance to int16, and rerun the task.

The task fails and the Fixed-Point Advisor provides information about the failure in
the Analysis Result box. The Fixed-Point Advisor recommends that you set:

• The input data type of the Discrete Filter block, which is a floating-point
inheritance block, to a fixed-point data type. This avoids inheritance issues when
the system is converted to fixed-point types.

• The output data type of all the other blocks that currently have their output data
type set by inheritance rules to the compiled (current propagated) data type.

Tip Review the recommended data types prior to accepting them.

4 Fix the failure using the Modify All button to configure the output data types to the
recommended values.

The Action Result box displays:

• A table showing the previous and current data types for all the floating-point
inheritance blocks.

• A table showing the previous and current data types for blocks that use other
types of inheritance.

5 Rerun the task.

The task passes.
6 Select and run Relax input data type settings. This task identifies blocks with

input data type constraints that might cause data type propagation issues.

The task passes because the model contains no blocks that have inherited input data
types.

7 Select and run Verify Stateflow charts have strong data typing with
Simulink. This task verifies that the configuration of all Stateflow charts ensures
strong data typing with Simulink I/O.

36 Convert Floating-Point Model to Fixed Point

36-14

The task passes because the configuration of the Stateflow chart in the subsystem is
correct.

8 Select and run Remove redundant specification between signal objects
and blocks. This task identifies and removes redundant data type specification
originating from blocks and Simulink signal objects.

The task passes because the model contains no resolved Simulink signal objects.
9 Select and run Verify hardware selection. This task identifies the hardware

device information in the Hardware Implementation pane of the Configuration
Parameters dialog box. It also checks the default data type selected for floating-point
signals in the model.

The task fails because the default data type for all floating-point signals is set to
Remain floating-point. Because the target hardware is an embedded processor,
the Fixed-Point Advisor recommends that you set this value to the hardware integer
used by the embedded hardware.

10 To fix the failure, in the Input Parameters pane, set Default data type of all
floating-point signals to Same as embedded hardware integer.

11 Rerun the task.

The task passes.
12 Select and run Specify block minimum and maximum values. Ideally, you

should specify block output and parameter minimum and maximum values for,
at minimum, the Inport blocks in the system. You can specify the minimum and
maximum values for any block in this step. Typically, you determine these values
during the design process based on the system you are creating.

The Fixed-Point Advisor warns you that you have not specified any minimum and
maximum values.

13 Fix the warning by specifying minimum and maximum values for Inport blocks:

a Click the Explore Result button.

The Model Advisor Result Explorer opens, showing that the Inport blocks, In1
and In2, do not have output minimum and maximum values specified.

b In the center pane, select In1. This block receives the output from Repeating
table Source, which has a minimum value of 10 and a maximum value of 20.
Therefore, set OutMin to 10 and set OutMax to 20 as follows:

 Convert Floating-Point Model to Fixed Point

36-15

i In the OutMin column for In1, select [] and replace with 10.
ii In the OutMax column for In1, select [] and replace with 20.

c Select In2. This block receives the output from Sine Wave block, which has a
minimum value of -1 and a maximum value of 1. Therefore, set OutMin to -1
and set OutMax to 1.

d Close the Model Advisor Result Explorer.
e In the Fixed-Point Advisor, rerun the task.

The task passes because you specified minimum and maximum values for all
Inport blocks.

The tool advises you to specify minimum and maximum values for all blocks if
possible. For the purpose of this example, do not specify other minimum and
maximum values for other blocks.

You have completed all tasks in the Prepare for Data Typing and Scaling folder. At
this point, you can review the results report found at the folder level, or continue to the
next folder.

Return to Fixed-Point Tool to Perform Data Typing and Scaling

Select and run this task to close the Fixed-Point Advisor and return to the Fixed-Point
Tool.

Propose Data Types

Use the Fixed-Point Tool to propose fixed-point data types for appropriately configured
blocks based on the double-precision simulation results stored in the simulation reference
run that the Fixed-Point Advisor created. These results are stored in the run named
FPA_Reference. You can view the results in the Fixed-Point Tool Contents pane.

The tool proposes fixed-point data types and scaling based on the ranges of the Repeating
table Source and Sine Wave inputs. You can then use the tool to accept and apply the
proposed data types selectively. In this example, you propose fraction lengths for the
specified word lengths.

1 In the Fixed-Point Tool, click the Propose fraction lengths button .

The Fixed-Point Tool analyzes the scaling of all fixed-point blocks whose:

36 Convert Floating-Point Model to Fixed Point

36-16

• Lock output data type setting against changes by the fixed-point tools
parameter is not selected.

• Output data type parameter specifies a generalized fixed-point number.
• Data types are not inherited.

The Fixed-Point Tool updates the results in the Contents pane.
2 In the Fixed-Point Tool, set the Column View to Automatic Data Typing with

Simulation Min/Max View to display information relevant to the proposal. The
tool displays the proposed data types in the ProposedDT column in the Contents
pane. The tool does not propose data types for objects with inherited data types.

To accommodate the full simulation range, the Fixed-Point Tool proposes data types
for blocks that do not have inherited data types. By default, it selects the Accept
check box for these signals because the proposed data type differs from the object's
current data type. If you apply data types, the tool will apply the proposed data types
to these signals. For more information, see “Apply Proposed Data Types” on page
38-18.

3 Examine the results to resolve any conflicts and to ensure that you want to accept
the proposed data type for each result.

In the Fixed-Point Tool toolbar, select Show > Conflicts with proposed data
types.

The Fixed-Point Tool detected no conflicts.

Tip If the tool does detect conflicts, you must resolve these before applying data
types. For more information, see “Examine Results to Resolve Conflicts” on page
38-15.

Now that you have reviewed the results and ensured that there are no issues, you are
ready to apply the proposed data types to the model, as described in “Apply Fixed-Point
Data Types” on page 36-16.

Apply Fixed-Point Data Types

1 Click the Apply accepted fraction lengths button to write the proposed data

types to the model.

 Convert Floating-Point Model to Fixed Point

36-17

The Fixed-Point Tool applies the data type proposals to the subsystem blocks.
2 In the Fixed-Point Tool toolbar, select Show > All results.

The tool has set all the specified data types to the proposed types.

You are now ready to check that the new data types are acceptable, as described in
“Verify Fixed-Point Settings” on page 36-17.

Verify Fixed-Point Settings

Next, you simulate again using the new fixed-point settings. You then use the
Fixed-Point Tool plotting capabilities to compare the results from the floating-point
FPA_Reference run with the fixed-point results.

1 In the Fixed-Point Tool Model Hierarchy pane, select the Controller Subsystem.
2 In the Data collection pane, set Store results in run to Initial_fixed_point.

You specify a new run name to prevent the tool from overwriting the results that you
want to retain in the FPA_Reference run.

3
Click the Fixed-Point Tool Simulate button to run the simulation.

The Simulink software simulates using the new data types that you applied in
the previous step. Afterward, the Fixed-Point Tool displays in its Contents pane
information about blocks that logged fixed-point data. The CompiledDT (compiled
data type) column for the run shows that the Controller Subsystem blocks use fixed-
point data types with the new data types.

Tip In the Contents pane, click the Run column heading to sort the runs.

4 Examine the results to verify that there are no overflows or saturations.
5 In the Fixed-Point Tool Model Hierarchy pane, select the Controller Subsystem. In

the Contents pane, select the Discrete Filter: Output that corresponds to the
FPA_Reference run, and then click the Compare Signals button.

The Fixed-Point Tool plots the signal for the FPA_Reference and
Initial_fixed_point runs, as well as their difference. The difference plot shows

36 Convert Floating-Point Model to Fixed Point

36-18

that the floating-point signal and the fixed-point signal are almost identical, the
difference is on the order of 10^-6.

Now you are ready to test the fixed-point settings with new the input data, as
described in “Test Fixed-Point Settings With New Input Data” on page 36-18.

Test Fixed-Point Settings With New Input Data

You have successfully used the Fixed-Point Tool to propose fixed-point data types for
your model. In the previous step, you saw that the numerical results for the double-
precision system and the fixed-point system are very close. These results indicate that
the fixed-point data types are suitable for the range of input data that you used. In
practice, you might need to run multiple simulations to cover the entire design range of
your system and use the results of these simulations to refine the fixed-point data types
in your model.

 Convert Floating-Point Model to Fixed Point

36-19

In this part of the example, you continue working on the model. First, you modify the
range of the Sine Wave input and obtain simulation data based on this new range. Then,
you use the Fixed-Point Tool to refine the model fixed-point settings based on the new
simulation data. The Fixed-Point Tool proposes new data types that can accommodate
the new input range.

To change the range of the input data and test the fixed-point settings:

1 In the ex_fixed_point_workflow model, double-click the Sine Wave Source block.

The Source Block Parameters dialog box opens.
2 In this dialog box, change the Amplitude to 2 and click OK.
3 In the Fixed-Point Tool Model Hierarchy pane , select the Controller Subsystem.
4 In the Data collection pane, set Store results in run to Input2.
5

Click the Fixed-Point Tool Simulate button to run the simulation.

The Simulink software simulates the ex_fixed_point_workflow model. The
Stateflow debugger reports a data overflow error in the Stateflow chart.

6 In the Stateflow Debugging window, under Error checking options, clear the
Data Range option and close the debugger and the Chart.

This action disables data range error detection and allows the simulation to run to
completion.

7 In the Fixed-Point Tool Model Hierarchy pane, select the Controller Subsystem.

The Fixed-Point Tool Contents pane displays the simulation results for each block
in the subsystem that logged fixed-point data. The tool stores the results in the
Input2 run.

In the Input2 run, the tool highlights in red the result for the Gain block, indicating
that there are issues.

8 Examine the result for the Gain block.

The result shows that the Gain block output saturated, which indicates that the
fixed-point data settings for this block are not suitable for the new input range.

Next, override the fixed-point data types with doubles and simulate the model again
to obtain the ideal behavior of the subsystem, as described in “Gather a Floating-
Point Benchmark” on page 36-20.

36 Convert Floating-Point Model to Fixed Point

36-20

Gather a Floating-Point Benchmark

Run the model with a global override of the fixed-point data types using double-precision
numbers to avoid quantization effects. This provides a floating-point benchmark that
represents the ideal output. The Simulink software logs the signal logging results to the
MATLAB workspace. The Fixed-Point Tool displays the simulation results including
minimum and maximum values that occur during the run.

1 In the Fixed-Point Tool Model Hierarchy pane, select the Controller Subsystem.
2 In the Settings for selected system pane, set Data type override to Double.

Using this setting, the Fixed-Point Tool performs a global override of the fixed-point
data types and scaling using double-precision numbers, thus avoiding quantization
effects.

3 In the Data collection pane, set Store results in run to DTO_Input2.
4

Click the Fixed-Point Tool Simulate button to run the simulation.

The Fixed-Point Tool highlights any simulation results that have issues, such as
overflows or saturations.

5 In the Contents pane, click the Run column to sort the runs. Verify that there were
no overflows or saturations in the DTO_Input2 run.

Propose Data Types for the New Input

Now, use the Fixed-Point Tool to propose fixed-point data types based on the double-
precision simulation results for the new input stored in the DTO_Input2 run.

1 In the Fixed-Point Tool, click the Propose fraction lengths button .
2 In the Propose Data Types dialog box, select DTO_Input2 as the run to use for

proposing data types, and then click OK.

The Fixed-Point Tool proposes new data types for all objects in the model and
updates the results in the Contents pane.

3 In the Fixed-Point Tool, set the Column View to Automatic Data Typing with
Simulation Min/Max View to display information relevant to the proposal. The
tool displays the proposed data types in the ProposedDT column in the Contents
pane. The tool does not propose data types for objects with inherited data types.

 Convert Floating-Point Model to Fixed Point

36-21

To accommodate the full simulation range, the Fixed-Point Tool proposes new data
types with reduced precision for the Chart/output and Gain block output.

4 Examine the results to resolve any conflicts and to ensure that you want to accept
the proposed data type for each result.

In the Fixed-Point Tool toolbar, select Show > Conflicts with proposed data
types.

The Fixed-Point Tool detected no conflicts, so you are ready to apply the new data
types as described in “Apply the New Fixed-Point Data Types” on page 36-21.

Apply the New Fixed-Point Data Types

1
Click Apply accepted fraction lengths to write the proposed data types to the
model.

2 In the Apply Data Types dialog box, select DTO_Input2 as the run to use for
applying proposed data types and then click OK.

3 In the Fixed-Point Tool toolbar, select Show > All results.

The tool has set all the specified data types to the proposed types.

Verify New Fixed-Point Settings

Finally, you simulate again using the new fixed-point settings. You then use the Fixed-
Point Tool plotting capabilities to compare the results for the initial and final fixed-point
settings.

1 In the Fixed-Point Tool Model Hierarchy pane, select the Controller Subsystem.
2 In the Settings for selected system pane, set Data type override to Use local

settings.
3 In the Data collection pane, set Store results in run to Final_fixed_point.
4 Click Simulate to run the simulation.

The Simulink software simulates using the new data types that you applied in the
previous step and stores the results in the Final_fixed_point run.

5 Examine the results to verify that there are no overflows or saturations.

36 Convert Floating-Point Model to Fixed Point

36-22

6 In the Fixed-Point Tool Model Hierarchy pane , select the Controller Subsystem.
In the Contents pane, select the Discrete Filter: Output that corresponds to
the Initial_fixed_point run, and then click the Compare Signals button.

7 In the Compare Runs Selector dialog box, select Final_fixed_point, and then
click OK.

The Fixed-Point Tool plots the signal for both runs, as well as their difference. The
difference plot shows that the floating-point signal and the fixed-point signal are
identical.

8 Optionally, you can zoom in to view the steady-state region with greater detail. From
the Tools menu of the figure window, select Zoom In and then drag the pointer to
draw a box around the area you want to view more closely.

Prepare for Code Generation

Optionally, use the Simulink Model Advisor to identify model settings that might lead to
nonoptimal results in code generation.

1 From the Simulink Analysis menu, select Model Advisor>Model Advisor.
2 In the System Selector dialog box, select Controller Subsystem, and then click

OK.
3 In the Model Advisor left pane, expand the By Task node.
4 Expand the Code Generation Efficiency node.
5 Select and run Identify blocks that generate expensive rounding code. This

task optimizes the code to eliminate unnecessary rounding code.

The Model Advisor warns that your model contains expensive rounding code.
6 Change the Integer rounding mode of the Look-Up Table1, Conversion1, and

Conversion2 blocks from Floor to Simplest, and rerun the check.

The task passes.
7 Select and run Identify questionable fixed-point operations. This task

identifies fixed-point operations that can lead to nonoptimal results.

The Model Advisor warns that your model generates cumbersome multiplication
code, and contains inefficient lookup blocks.

 Convert Floating-Point Model to Fixed Point

36-23

8 The Discrete Filter and Gain blocks contain expensive multiplication code.

Under Configuration Parameters>Hardware Implementation change the
Device Type to 64–bit Embedded Processor (LLP64), and select Enable long
long.

9 The Model Advisor recommends that you change the breakpoints data of your lookup
tables to have even power of 2 spacing, and use Evenly-spaced points index
search method.

Using the function fixpt_look1_func_approx, and following the steps outlined
in “Fixed-Point Function Approximation”, adjust the breakpoints data of the lookup
table blocks.

10 Rerun the task.

The task passes.
11 Select and run Identify blocks that generate expensive fixed-point and

saturation code. This task identifies blocks that can lead to unnecessary saturation
code.

The Model Advisor warns that the model contains expensive saturation code.
12 Clear the Gain block’s Function Block Parameters > Signal Attributes >

Saturate on integer overflow parameter. Click apply, and close the window.
13 Rerun the task.

The task passes.

Your model is now optimized for code generation.

36 Convert Floating-Point Model to Fixed Point

36-24

Key Points to Remember

• Convert subsystems within your model, rather than the entire model. This practice
saves time and avoids unnecessary conversions.

• Use the Fixed-Point Advisor to prepare your model for conversion to fixed point.
• Use the Fixed-Point Tool to propose fixed-point data types for your model or

subsystem.
• When using the Fixed-Point Advisor, consider saving a restore point before applying

recommendations.

A restore point provides a fallback in case the recommended data types causes
subsequent update diagram failure. If you do not save a restore point and you
encounter an update diagram failure, you must start the conversion from the
beginning.

• Provide as much design minimum and maximum information as possible before
starting the conversion to fixed point.

Providing this information enables the fixed-point tools to choose fixed-point data
types that maximize precision and cover the range.

Specify minimum and maximum values for signals and parameters in the model for:

• Inport and Outport blocks
• Block outputs
• The interface between MATLAB Function and C Chart blocks and the Simulink

model to ensure strong data typing
• Simulink.Signal objects

• Ensure that you simulate the system using the full range of inputs.

If you use simulation minimum and maximum values to scale fixed-point data types,
the tools provide meaningful results when exercising the full range of values over
which your design is meant to run.

 Where to Learn More

36-25

Where to Learn More

To learn more about... See...

Fixed-Point Advisor capabilities “Preparation for Fixed-Point Conversion”
Best practices for using the Fixed-Point Advisor “Best Practices” on page 34-2
Using restore points in the Fixed-Point Advisor “Restore Points” on page 34-7
Fixed-Point Tool capabilities “Fixed-Point Tool” on page 35-2

fxptdlg

Best practices for using the Fixed-Point Tool “Best Practices for Fixed-Point Workflow” on
page 38-5

Using the Fixed-Point Tool to merge multiple
simulation results

“Propose Data Types Using Multiple
Simulations” on page 38-58

37

Producing Lookup Table Data

• “Producing Lookup Table Data” on page 37-2
• “What Is the Worst-Case Error for a Lookup Table?” on page 37-3
• “Approximate the Square Root Function” on page 37-4
• “Create Lookup Tables for a Sine Function” on page 37-6
• “Use Lookup Table Approximation Functions” on page 37-21
• “Effects of Spacing on Speed, Error, and Memory Usage” on page 37-22

37 Producing Lookup Table Data

37-2

Producing Lookup Table Data

A function lookup table is a method by which you can approximate a function by a table
with a finite number of points (X,Y). Function lookup tables are essential to many fixed-
point applications. The function you want to approximate is called the ideal function. The
X values of the lookup table are called the breakpoints. You approximate the value of the
ideal function at a point by linearly interpolating between the two breakpoints closest to
the point.

In creating the points for a function lookup table, you generally want to achieve one or
both of the following goals:

• Minimize the worst-case error for a specified maximum number of breakpoints
• Minimize the number of breakpoints for a specified maximum allowed error

“Create Lookup Tables for a Sine Function” on page 37-6 shows you how to create
function lookup tables using the function fixpt_look1_func_approx. You can
optimize the lookup table to minimize the number of data points, the error, or both. You
can also restrict the spacing of the breakpoints to be even or even powers of two to speed
up computations using the table.

explains how to use the function fixpt_look1_func_plot to find the worst-case error
of a lookup table and plot the errors at all points.

 What Is the Worst-Case Error for a Lookup Table?

37-3

What Is the Worst-Case Error for a Lookup Table?

The error at any point of a function lookup table is the absolute value of the difference
between the ideal function at the point and the corresponding Y value found by linearly
interpolating between the adjacent breakpoints. The worst-case error, or maximum
absolute error, of a lookup table is the maximum absolute value of all errors in the
interval containing the breakpoints.

For example, if the ideal function is the square root, and the breakpoints of the lookup
table are 0, 0.25, and 1, then in a perfect implementation of the lookup table, the worst-
case error is 1/8 = 0.125, which occurs at the point 1/16 = 0.0625. In practice, the error
could be greater, depending on the fixed-point quantization and other factors.

The section that follows shows how to use the function fixpt_look1_func_plot to find
the worst-case error of a lookup table for the square root function.

37 Producing Lookup Table Data

37-4

Approximate the Square Root Function

This example shows how to use the function fixpt_look1_func_plot to find the
maximum absolute error for the simple lookup table whose breakpoints are 0, 0.25, and
1. The corresponding Y data points of the lookup table, which you find by taking the
square roots of the breakpoints, are 0, 0.5, and 1.

To use the function fixpt_look1_func_plot , you need to define its parameters first.
To do so, type the following at the MATLAB prompt:

funcstr = 'sqrt(x)'; % Define the square root function

xdata = [0;.25;1]; % Set the breakpoints

ydata = sqrt(xdata); % Find the square root of the breakpoints

xmin = 0; % Set the minimum breakpoint

xmax = 1; % Set the maximum breakpoint

xdt = ufix(16); % Set the x data type

xscale = 2^-16; % Set the x data scaling

ydt = sfix(16); % Set the y data type

yscale = 2^-14; % Set the y data scaling

rndmeth = 'Floor'; % Set the rounding method

To get the worst-case error of the lookup table and a plot of the error, type:

errworst = fixpt_look1_func_plot(xdata,ydata,funcstr, ...

xmin,xmax,xdt,xscale,ydt,yscale,rndmeth)

errworst =

 0.1250

 Approximate the Square Root Function

37-5

The upper box (Outputs) displays a plot of the square root function with a plot of the
fixed-point lookup approximation underneath. The approximation is found by linear
interpolation between the breakpoints. The lower box (Absolute Error) displays the
errors at all points in the interval from 0 to 1. Notice that the maximum absolute error
occurs at 0.0625. The error at the breakpoints is 0.

37 Producing Lookup Table Data

37-6

Create Lookup Tables for a Sine Function

In this section...

“Introduction” on page 37-6
“Parameters for fixpt_look1_func_approx” on page 37-6
“Setting Function Parameters for the Lookup Table” on page 37-8
“Using errmax with Unrestricted Spacing” on page 37-8
“Using nptsmax with Unrestricted Spacing” on page 37-11
“Using errmax with Even Spacing” on page 37-13
“Using nptsmax with Even Spacing” on page 37-14
“Using errmax with Power of Two Spacing” on page 37-15
“Using nptsmax with Power of Two Spacing” on page 37-17
“Specifying Both errmax and nptsmax” on page 37-18
“Comparison of Example Results” on page 37-19

Introduction

The sections that follow explain how to use the function fixpt_look1_func_approx
to create lookup tables. It gives examples that show how to create lookup tables for the
function sin(2πx) on the interval from 0 to 0.25.

Parameters for fixpt_look1_func_approx

To use the function fixpt_look1_func_approx, you must first define its parameters.
The required parameters for the function are

• funcstr — Ideal function
• xmin — Minimum input of interest
• xmax — Maximum input of interest
• xdt — x data type
• xscale — x data scaling
• ydt — y data type

 Create Lookup Tables for a Sine Function

37-7

• yscale — y data scaling
• rndmeth — Rounding method

In addition there are three optional parameters:

• errmax — Maximum allowed error of the lookup table
• nptsmax — Maximum number of points of the lookup table
• spacing — Spacing allowed between breakpoints

You must use at least one of the parameters errmax and nptsmax. The next section,
“Setting Function Parameters for the Lookup Table” on page 37-8, gives typical
settings for these parameters.

Using Only errmax

If you use only the errmax parameter, without nptsmax, the function creates a lookup
table with the fewest points, for which the worst-case error is at most errmax. See
“Using errmax with Unrestricted Spacing” on page 37-8.

Using Only nptsmax

If you use only the nptsmax parameter without errmax, the function creates a lookup
table with at most nptsmax points, which has the smallest worse case error. See “Using
nptsmax with Unrestricted Spacing” on page 37-11.

The section “Specifying Both errmax and nptsmax” on page 37-18 describes how the
function behaves when you specify both errmax and nptsmax.

Spacing

You can use the optional spacing parameter to restrict the spacing between breakpoints
of the lookup table. The options are

• 'unrestricted' — Default.
• 'even' — Distance between any two adjacent breakpoints is the same.
• 'pow2' — Distance between any two adjacent breakpoints is the same and the

distance is a power of two.

The section “Restricting the Spacing” on page 37-12 and the examples that follow it
explain how to use the spacing parameter.

37 Producing Lookup Table Data

37-8

Setting Function Parameters for the Lookup Table

To do the examples in this section, you must first set parameter values for the
fixpt_look1_func_approx function. To do so, type the following at the MATLAB
prompt:

funcstr = 'sin(2*pi*x)'; % Define the sine function

xmin = 0; % Set the minimum input of interest

xmax = 0.25; % Set the maximum input of interest

xdt = ufix(16); % Set the x data type

xscale = 2^-16; % Set the x data scaling

ydt = sfix(16); % Set the y data type

yscale = 2^-14; % Set the y data scaling

rndmeth = 'Floor'; % Set the rounding method

errmax = 2^-10; % Set the maximum allowed error

nptsmax = 21; % Specify the maximum number of points

If you exit the MATLAB software after typing these commands, you must retype them
before trying any of the other examples in this section.

Using errmax with Unrestricted Spacing

The first example shows how to create a lookup table that has the fewest data points
for a specified worst-case error, with unrestricted spacing. Before trying the example,
enter the same parameter values given in the section “Setting Function Parameters for
the Lookup Table” on page 37-8, if you have not already done so in this MATLAB
session.

You specify the maximum allowed error by typing

errmax = 2^-10;

Creating the Lookup Table

To create the lookup table, type

[xdata, ydata, errworst] = fixpt_look1_func_approx(funcstr, ...

xmin,xmax,xdt,xscale,ydt,yscale,rndmeth,errmax,[]);

Note that the nptsmax and spacing parameters are not specified.

The function returns three variables:

 Create Lookup Tables for a Sine Function

37-9

• xdata, the vector of breakpoints of the lookup table
• ydata, the vector found by applying ideal function sin(2πx) to xdata
• errworst, which specifies the maximum possible error in the lookup table

The value of errworst is less than or equal to the value of errmax.

You can find the number of X data points by typing

length(xdata)

ans =

 16

This means that 16 points are required to approximate sin(2πx) to within the tolerance
specified by errmax.

You can display the maximum error by typing errworst. This returns

errworst

errworst =

 9.7656e-04

Plotting the Results

You can plot the output of the function fixpt_look1_func_plot by typing

fixpt_look1_func_plot(xdata,ydata,funcstr,xmin,xmax,xdt, ...

xscale,ydt,yscale,rndmeth);

37 Producing Lookup Table Data

37-10

The upper plot shows the ideal function sin(2πx) and the fixed-point lookup
approximation between the breakpoints. In this example, the ideal function and the
approximation are so close together that the two graphs appear to coincide. The lower
plot displays the errors.

In this example, the Y data points, returned by the function
fixpt_look1_func_approx as ydata, are equal to the ideal function applied to
the points in xdata. However, you can define a different set of values for ydata after
running fixpt_look1_func_plot. This can sometimes reduce the maximum error.

You can also change the values of xmin and xmax in order to evaluate the lookup table on
a subset of the original interval.

 Create Lookup Tables for a Sine Function

37-11

To find the new maximum error after changing ydata, xmin or xmax, type
errworst = fixpt_look1_func_plot(xdata,ydata,funcstr,xmin,xmax, ...

xdt,xscale,ydt,yscale,rndmeth)

Using nptsmax with Unrestricted Spacing

The next example shows how to create a lookup table that minimizes the worst-case
error for a specified maximum number of data points, with unrestricted spacing. Before
starting the example, enter the same parameter values given in the section “Setting
Function Parameters for the Lookup Table” on page 37-8, if you have not already
done so in this MATLAB session.

Setting the Number of Breakpoints

You specify the number of breakpoints in the lookup table by typing

nptsmax = 21;

Creating the Lookup Table

Next, type

[xdata, ydata, errworst] = fixpt_look1_func_approx(funcstr, ...

xmin,xmax,xdt,xscale,ydt,yscale,rndmeth,[],nptsmax);

The empty brackets, [], tell the function to ignore the parameter errmax,
which is not used in this example. Omitting errmax causes the function
fixpt_look1_func_approx to return a lookup table of size specified by nptsmax, with
the smallest worst-case error.

The function returns a vector xdata with 21 points. You can find the maximum error for
this set of points by typing errworst at the MATLAB prompt.

errworst

errworst =

 5.1139e-04

Plotting the Results

To plot the lookup table along with the errors, type

37 Producing Lookup Table Data

37-12

fixpt_look1_func_plot(xdata,ydata,funcstr,xmin,xmax,xdt, ...

xscale,ydt,yscale,rndmeth);

Restricting the Spacing

In the previous two examples, the function fixpt_look1_func_approx creates lookup
tables with unrestricted spacing between the breakpoints. You can restrict the spacing to
improve the computational efficiency of the lookup table, using the spacing parameter.

The options for spacing are

• 'unrestricted' — Default.
• 'even' — Distance between any two adjacent breakpoints is the same.

 Create Lookup Tables for a Sine Function

37-13

• 'pow2' — Distance between any two adjacent breakpoints is the same and is a power
of two.

Both power of two and even spacing increase the computational speed of the lookup
table and use less command read-only memory (ROM). However, specifying either of the
spacing restrictions along with errmax usually requires more data points in the lookup
table than does unrestricted spacing to achieve the same degree of accuracy. The section
“Effects of Spacing on Speed, Error, and Memory Usage” on page 37-22 discusses the
tradeoffs between different spacing options.

Using errmax with Even Spacing

The next example shows how to create a lookup table that has evenly spaced breakpoints
and a specified worst-case error. To try the example, you must first enter the parameter
values given in the section “Setting Function Parameters for the Lookup Table” on page
37-8, if you have not already done so in this MATLAB session.

Next, at the MATLAB prompt type

spacing = 'even';

[xdata, ydata, errworst] = fixpt_look1_func_approx(funcstr, ...

xmin,xmax,xdt,xscale,ydt,yscale,rndmeth,errmax,[],spacing);

You can find the number of points in the lookup table by typing:

length(xdata)

ans =

 20

To plot the lookup table along with the errors, type

fixpt_look1_func_plot(xdata,ydata,funcstr,xmin,xmax,xdt, ...

xscale,ydt,yscale,rndmeth);

37 Producing Lookup Table Data

37-14

Using nptsmax with Even Spacing

The next example shows how to create a lookup table that has evenly spaced breakpoints
and minimizes the worst-case error for a specified maximum number of points. To try
the example, you must first enter the parameter values given in the section “Setting
Function Parameters for the Lookup Table” on page 37-8, if you have not already
done so in this MATLAB session.

Next, at the MATLAB prompt type

spacing = 'even';

[xdata, ydata, errworst] = fixpt_look1_func_approx(funcstr, ...

xmin,xmax,xdt,xscale,ydt,yscale,rndmeth,[],nptsmax,spacing);

 Create Lookup Tables for a Sine Function

37-15

The result requires 21 evenly spaced points to achieve a maximum absolute error of
2^-10.2209.

To plot the lookup table along with the errors, type

fixpt_look1_func_plot(xdata,ydata,funcstr,xmin,xmax,xdt, ...

xscale,ydt,yscale,rndmeth);

Using errmax with Power of Two Spacing

The next example shows how to construct a lookup table that has power of two spacing
and a specified worst-case error. To try the example, you must first enter the parameter

37 Producing Lookup Table Data

37-16

values given in the section “Setting Function Parameters for the Lookup Table” on page
37-8, if you have not already done so in this MATLAB session.

Next, at the MATLAB prompt type

spacing = 'pow2';

[xdata, ydata, errworst] = ...

fixpt_look1_func_approx(funcstr,xmin, ...

xmax,xdt,xscale,ydt,yscale,rndmeth,errmax,[],spacing);

To find out how many points are in the lookup table, type

length(xdata)

ans =

 33

This means that 33 points are required to achieve the worst-case error specified by
errmax. To verify that these points are evenly spaced, type

widths = diff(xdata)

This generates a vector whose entries are the differences between consecutive points in
xdata. Every entry of widths is 2-7.

To find the maximum error for the lookup table, type

errworst

errworst =

 3.7209e-04

This is less than the value of errmax.

To plot the lookup table data along with the errors, type

fixpt_look1_func_plot(xdata,ydata,funcstr,xmin,xmax,xdt, ...

 Create Lookup Tables for a Sine Function

37-17

xscale,ydt,yscale,rndmeth);

Using nptsmax with Power of Two Spacing

The next example shows how to create a lookup table that has power of two spacing
and minimizes the worst-case error for a specified maximum number of points. To try
the example, you must first enter the parameter values given in the section “Setting
Function Parameters for the Lookup Table” on page 37-8, if you have not already
done so in this MATLAB session:

spacing = 'pow2';

[xdata, ydata, errworst] = ...

fixpt_look1_func_approx(funcstr,xmin, ...

37 Producing Lookup Table Data

37-18

xmax,xdt,xscale,ydt,yscale,rndmeth,errmax,[],spacing);

The result requires 17 points to achieve a maximum absolute error of 2^-9.6267.

To plot the lookup table along with the errors, type

fixpt_look1_func_plot(xdata,ydata,funcstr,xmin,xmax,xdt, ...

xscale,ydt,yscale,rndmeth);

Specifying Both errmax and nptsmax

If you include both the errmax and the nptsmax parameters, the function
fixpt_look1_func_approx tries to find a lookup table with at most nptsmax data

 Create Lookup Tables for a Sine Function

37-19

points, whose worst-case error is at most errmax. If it can find a lookup table meeting
both conditions, it uses the following order of priority for spacing:

1 Power of two
2 Even
3 Unrestricted

If the function cannot find any lookup table satisfying both conditions, it ignores
nptsmax and returns a lookup table with unrestricted spacing, whose worst-case
error is at most errmax. In this case, the function behaves the same as if the nptsmax
parameter were omitted.

Using the parameters described in the section “Setting Function Parameters for the
Lookup Table” on page 37-8, the following examples illustrate the results of using
different values for nptsmax when you enter

[xdata ydata errworst] = fixpt_look1_func_approx(funcstr, ...

xmin,xmax,xdt,xscale,ydt,yscale,rndmeth,errmax,nptsmax);

The results for three different settings for nptsmax are as follows:

• nptsmax = 33; — The function creates the lookup table with 33 points having
power of two spacing, as in Example 3.

• nptsmax = 21; — Because the errmax and nptsmax conditions cannot be met with
power of two spacing, the function creates the lookup table with 20 points having even
spacing, as in Example 5.

• nptsmax = 16; — Because the errmax and nptsmax conditions cannot be met with
either power of two or even spacing, the function creates the lookup table with 16
points having unrestricted spacing, as in Example 1.

Comparison of Example Results

The following table summarizes the results for the examples. Note that when you specify
errmax, even spacing requires more data points than unrestricted, and power of two
spacing requires more points than even spacing.

Example Options Spacing Worst-Case Error Number of Points in
Table

1 errmax=2^-10 'unrestricted' 2^-10 16

37 Producing Lookup Table Data

37-20

Example Options Spacing Worst-Case Error Number of Points in
Table

2 nptsmax=21 'unrestricted' 2^-10.933 21
3 errmax=2^-10 'even' 2^-10.0844 20
4 nptsmax=21 'even' 2^-10.2209 21
5 errmax=2^-10 'pow2' 2^-11.3921 33
6 nptsmax=21 'pow2' 2^-9.627 17

 Use Lookup Table Approximation Functions

37-21

Use Lookup Table Approximation Functions

The following steps summarize how to use the lookup table approximation functions:

1 Define:

a The ideal function to approximate
b The range, xmin to xmax, over which to find X and Y data
c The fixed-point implementation: data type, scaling, and rounding method
d The maximum acceptable error, the maximum number of points, and the

spacing
2 Run the fixpt_look1_func_approx function to generate X and Y data.
3 Use the fixpt_look1_func_plot function to plot the function and error between

the ideal and approximated functions using the selected X and Y data, and to
calculate the error and the number of points used.

4 Vary input criteria, such as errmax, nptsmax, and spacing, to produce sets of X
and Y data that generate functions with varying worst-case error, number of points
required, and spacing.

5 Compare results of the number of points required and maximum absolute error from
various runs to choose the best set of X and Y data.

37 Producing Lookup Table Data

37-22

Effects of Spacing on Speed, Error, and Memory Usage

In this section...

“Criteria for Comparing Types of Breakpoint Spacing” on page 37-22
“Model That Illustrates Effects of Breakpoint Spacing” on page 37-22
“Data ROM Required for Each Lookup Table” on page 37-23
“Determination of Out-of-Range Inputs” on page 37-23
“How the Lookup Tables Determine Input Location” on page 37-24
“Interpolation for Each Lookup Table” on page 37-26
“Summary of the Effects of Breakpoint Spacing” on page 37-28

Criteria for Comparing Types of Breakpoint Spacing

The sections that follow compare implementations of lookup tables that use breakpoints
whose spacing is uneven, even, and power of two. The comparison focuses on:

• Execution speed of commands
• Rounding error during interpolation
• The amount of read-only memory (ROM) for data
• The amount of ROM for commands

This comparison is valid only when the breakpoints are not tunable. If the breakpoints
are tunable in the generated code, all three cases generate the same code. For a summary
of the effects of breakpoint spacing on execution speed, error, and memory usage, see
“Summary of the Effects of Breakpoint Spacing” on page 37-28.

Model That Illustrates Effects of Breakpoint Spacing

This comparison uses the model fxpdemo_approx_sin. Three fixed-point lookup tables
appear in this model. All three tables approximate the function sin(2*pi*u) over the
first quadrant and achieve a worst-case error of less than 2^-8. However, they have
different restrictions on their breakpoint spacing.

You can use the model fxpdemo_approx, which fxpdemo_approx_sin opens, to
generate Simulink Coder code (Simulink Coder software license required). The sections
that follow present several segments of generated code to emphasize key differences.

 Effects of Spacing on Speed, Error, and Memory Usage

37-23

To open the model, type at the MATLAB prompt:

fxpdemo_approx_sin

Data ROM Required for Each Lookup Table

This section looks at the data ROM required by each of the three spacing options.

Uneven Case

Uneven spacing requires both Y data points and breakpoints:

int16_T yuneven[8];

uint16_T xuneven[8];

The total bytes used is 32.

Even Case

Even spacing requires only Y data points:

int16_T yeven[10];

The total bytes used is 20. The breakpoints are not explicitly required. The code uses the
spacing between the breakpoints, and might use the smallest and largest breakpoints. At
most, three values related to the breakpoints are necessary.

Power of Two Case

Power of two spacing requires only Y data points:

int16_T ypow2[17];

The total bytes used is 34. The breakpoints are not explicitly required. The code uses the
spacing between the breakpoints, and might use the smallest and largest breakpoints. At
most, three values related to the breakpoints are necessary.

Determination of Out-of-Range Inputs

In all three cases, you must guard against the chance that the input is less than the
smallest breakpoint or greater than the biggest breakpoint. There can be differences in
how occurrences of these possibilities are handled. However, the differences are generally
minor and are normally not a key factor in deciding to use one spacing method over

37 Producing Lookup Table Data

37-24

another. The subsequent sections assume that out-of-range inputs are impossible or have
already been handled.

How the Lookup Tables Determine Input Location

This section describes how the three fixed-point lookup tables determine where the
current input is relative to the breakpoints.

Uneven Case

Unevenly-spaced breakpoints require a general-purpose algorithm such as a binary
search to determine where the input lies in relation to the breakpoints. The following
code provides an example:

iLeft = 0;

iRght = 7; /* number of breakpoints minus 1 */

while ((iRght - iLeft) > 1)

{

 i = (iLeft + iRght) >> 1;

if (uAngle < xuneven[i])

 {

 iRght = i;

 }

 else

 {

 iLeft = i;

 }

}

The while loop executes up to log2(N) times, where N is the number of breakpoints.

Even Case

Evenly-spaced breakpoints require only one step to determine where the input lies in
relation to the breakpoints:

iLeft = uAngle / 455U;

The divisor 455U represents the spacing between breakpoints. In general, the dividend
would be (uAngle - SmallestBreakPoint). In this example, the smallest breakpoint
is zero, so the code optimizes out the subtraction.

 Effects of Spacing on Speed, Error, and Memory Usage

37-25

Power of Two Case

Power of two spaced breakpoints require only one step to determine where the input lies
in relation to the breakpoints:

iLeft = uAngle >> 8;

The number of shifts is 8 because the breakpoints have spacing 2^8. The
smallest breakpoint is zero, so uAngle replaces the general case of (uAngle -
SmallestBreakPoint).

Comparison

To determine where the input lies with respect to the breakpoints, the unevenly-spaced
case requires much more code than the other two cases. This code requires additional
command ROM. If many lookup tables share the binary search algorithm as a function,
you can reduce this ROM penalty. Even if the code is shared, the number of clock cycles
required to determine the location of the input is much higher for the unevenly-spaced
cases than the other two cases. If the code is shared, function-call overhead decreases the
speed of execution a little more.

In the evenly-spaced case and the power of two spaced case, you can determine the
location of the input with a single line of code. The evenly-spaced case uses a general
integer division. The power of two case uses a shift instead of general division because
the divisor is an exact power of two. Without knowing the specific processor, you cannot
be certain that a shift is better than division.

Many processors can implement division with a single assembly language instruction,
so the code will be small. However, this instruction often takes many clock cycles to
complete. Many processors do not provide a division instruction. Division on these
processors occurs through repeated subtractions. This process is slow and requires a lot
of machine code, but this code can be shared.

Most processors provide a way to do logical and arithmetic shifts left and right. A key
difference is whether the processor can do N shifts in one instruction (barrel shift) or
requires N instructions that shift one bit at a time. The barrel shift requires less code.
Whether the barrel shift also increases speed depends on the hardware that supports the
operation.

The compiler can also complicate the comparison. In the previous example, the command
uAngle >> 8 essentially takes the upper 8 bits in a 16-bit word. The compiler can detect

37 Producing Lookup Table Data

37-26

this situation and replace the bit shifts with an instruction that takes the bits directly. If
the number of shifts is some other value, such as 7, this optimization would not occur.

Interpolation for Each Lookup Table

In theory, you can calculate the interpolation with the following code:

y = (yData[iRght] - yData[iLeft]) * (u - xData[iLeft]) ...

 / (xData[iRght] - xData[iLeft]) + yData[iLeft]

The term (xData[iRght] - xData[iLeft]) is the spacing between neighboring
breakpoints. If this value is constant, due to even spacing, some simplification is possible.
If spacing is not just even but also a power of two, significant simplifications are possible
for fixed-point implementations.

Uneven Case

For the uneven case, one possible implementation of the ideal interpolation in fixed point
is as follows:

xNum = uAngle - xuneven[iLeft];

xDen = xuneven[iRght] - xuneven[iLeft];

yDiff = yuneven[iRght] - yuneven[iLeft];

MUL_S32_S16_U16(bigProd, yDiff, xNum);

 DIV_NZP_S16_S32_U16_FLOOR(yDiff, bigProd, xDen);

 yUneven = yuneven[iLeft] + yDiff;

The multiplication and division routines are not shown here. These routines can be
complex and depend on the target processor. For example, these routines look different
for a 16-bit processor than for a 32-bit processor.

Even Case

Evenly-spaced breakpoints implement interpolation using slightly different calculations
than the uneven case. The key difference is that the calculations do not directly use
the breakpoints. When the breakpoints are not required in ROM, you can save a lot of
memory:

xNum = uAngle - (iLeft * 455U);

 Effects of Spacing on Speed, Error, and Memory Usage

37-27

 yDiff = yeven[iLeft+1] - yeven[iLeft];

 MUL_S32_S16_U16(bigProd, yDiff, xNum);

 DIV_NZP_S16_S32_U16_FLOOR(yDiff, bigProd, 455U);

 yEven = yeven[iLeft] + yDiff;

Power of Two Case

Power of two spaced breakpoints implement interpolation using very different
calculations than the other two cases. As in the even case, breakpoints are not used in
the generated code and therefore not required in ROM:

lambda = uAngle & 0x00FFU;

 yPow2 = ypow2[iLeft)+1] - ypow2[iLeft];

 MUL_S16_U16_S16_SR8(yPow2,lambda,yPow2);

 yPow2 += ypow2[iLeft];

This implementation has significant advantages over the uneven and even
implementations:

• A bitwise AND combined with a shift right at the end of the multiplication replaces a
subtraction and a division.

• The term (u - xData[iLeft]) / (xData[iRght] - xData[iLeft]) results
in no loss of precision, because the spacing is a power of two.

In contrast, the uneven and even cases usually introduce rounding error in this
calculation.

37 Producing Lookup Table Data

37-28

Summary of the Effects of Breakpoint Spacing

The following table summarizes the effects of breakpoint spacing on execution speed,
error, and memory usage.

Parameter Even Power of 2 Spaced
Data

Evenly Spaced Data Unevenly Spaced Data

Execution speed The execution speed
is the fastest. The
position search and
interpolation are the
same as for evenly-
spaced data. However,
to increase the speed
more, a bit shift
replaces the position
search, and a bit
mask replaces the
interpolation.

The execution speed
is faster than that for
unevenly-spaced data,
because the position
search is faster and the
interpolation requires a
simple division.

The execution speed
is the slowest of the
different spacings
because the position
search is slower, and
the interpolation
requires more
operations.

Error The error can be
larger than that for
unevenly-spaced data
because approximating
a function with
nonuniform curvature
requires more points
to achieve the same
accuracy.

The error can be
larger than that for
unevenly-spaced data
because approximating
a function with
nonuniform curvature
requires more points
to achieve the same
accuracy.

The error can be
smaller because
approximating
a function with
nonuniform curvature
requires fewer points
to achieve the same
accuracy.

ROM usage Uses less command
ROM, but more data
ROM.

Uses less command
ROM, but more data
ROM.

Uses more command
ROM, but less data
ROM.

RAM usage Not significant. Not significant. Not significant.

The number of Y data points follows the expected pattern. For the same worst-case error,
unrestricted spacing (uneven) requires the fewest data points, and power-of-two-spaced
breakpoints require the most. However, the implementation for the evenly-spaced and
the power of two cases does not need the breakpoints in the generated code. This reduces
their data ROM requirements by half. As a result, the evenly-spaced case actually uses

 Effects of Spacing on Speed, Error, and Memory Usage

37-29

less data ROM than the unevenly-spaced case. Also, the power of two case requires only
slightly more ROM than the uneven case. Changing the worst-case error can change
these rankings. Nonetheless, when you compare data ROM usage, you should always
take into account the fact that the evenly-spaced and power of two spaced cases do not
require their breakpoints in ROM.

The effort of determining where the current input is relative to the breakpoints strongly
favors the evenly-spaced and power of two spaced cases. With uneven spacing, you use
a binary search method that loops up to log2(N) times. With even and power of two
spacing, you can determine the location with the execution of one line of C code. But
you cannot decide the relative advantages of power of two versus evenly spaced without
detailed knowledge of the hardware and the C compiler.

The effort of calculating the interpolation favors the power of two case, which uses a
bitwise AND operation and a shift to replace a subtraction and a division. The advantage
of this behavior depends on the specific hardware, but you can expect an advantage in
code size, speed, and also in accuracy. The evenly-spaced case calculates the interpolation
with a minor improvement in efficiency over the unevenly-spaced case.

38

Automatic Data Typing

• “About Automatic Data Typing” on page 38-2
• “Before Proposing Data Types for Your Model” on page 38-3
• “Best Practices for Fixed-Point Workflow” on page 38-5
• “Models That Might Cause Data Type Propagation Errors” on page 38-8
• “Automatic Data Typing Using Simulation Data” on page 38-10
• “Automatic Data Typing Using Derived Ranges” on page 38-21
• “Propose Fraction Lengths” on page 38-33
• “How the Fixed-Point Tool Proposes Word Lengths” on page 38-48
• “Propose Word Lengths” on page 38-51
• “Propose Word Lengths Based on Simulation Data” on page 38-52
• “Propose Data Types Using Multiple Simulations” on page 38-58
• “View Simulation Results” on page 38-63
• “Viewing Results With the Simulation Data Inspector” on page 38-68

38 Automatic Data Typing

38-2

About Automatic Data Typing

The Fixed-Point Tool automates the task of specifying fixed-point data types in a
Simulink model. This process is also known as autoscaling. The tool collects range data
for model objects, either from design minimum and maximum values that objects specify
explicitly, from logged minimum and maximum values that occur during simulation,
or from minimum and maximum values derived using range analysis. Based on these
values, the tool proposes fixed-point data types that maximize precision and cover
the range. The tool allows you to review the data type proposals and then apply them
selectively to objects in your model.

You can use the Fixed-Point Tool to select data types automatically for your model using
the following methods.

Automatic Data Typing Method Advantages Disadvantages

Using simulation minimum and
maximum values

• Useful if you know the
inputs to use for the model.

• You do not need to
specify any design range
information.

• Not always feasible to collect
full simulation range.

• Simulation might take a very
long time.

Using design minimum and
maximum values

You can use this method if
the model contains blocks
that range analysis does not
support. However, if possible,
use simulation data to propose
data types.

• Design range often available
only on some input and
output signals.

• Can propose data types only
for signals with specified
design minimum and
maximum values.

Using derived minimum and
maximum values

You do not have to simulate
multiple times to ensure that
simulation data covers the full
intended operating range.

• Derivation might take a very
long time.

 Before Proposing Data Types for Your Model

38-3

Before Proposing Data Types for Your Model

Before you use the Fixed-Point Tool to propose data types your Simulink model, consider
how automatic data typing affects your model:

• The Fixed-Point Tool proposes new data types for the fixed-point data types in your
model. If you choose to apply the proposed data types, the tool changes the data types
in your model. Before using the Fixed-Point Tool, back up your model and workspace
variables to ensure that you can recover your original data type settings and capture
the fixed-point instrumentation and data type override settings using the Shortcut
Editor.

For more information, see “Best Practices for Fixed-Point Workflow” on page
38-5.

• Before proposing data types, verify that you can update diagram successfully .
Sometimes, changing the data types in your model results in subsequent update
diagram errors. Immediately before and after applying data type proposals, it is good
practice to test update diagram again. This practice enables you to fix any errors
before making further modifications to your model.

For more information, see “Update a Block Diagram”.
• The Fixed-Point Tool alerts you to potential issues with proposed data types for each

object in your model:

• If the Fixed-Point Tool detects that the proposed data type introduces data type
errors when applied to an object, the tool marks the object with an error, . You
must inspect this proposal and fix the problem in the Simulink model. After fixing
the problem, rerun the simulation and generate a proposal again to confirm that
you have resolved the issue.

For more information, see “Examine Results to Resolve Conflicts” on page
38-15.

• If the Fixed-Point Tool detects that the proposed data type poses potential issues
for an object, the tool marks the object with a yellow caution, . Review the
proposal before accepting it.

• If the Fixed-Point Tool detects that the proposed data type poses no issues for an
object, the tool marks the object with a green check, .

38 Automatic Data Typing

38-4

Caution The Fixed-Point Tool does not detect all potential data type issues. If the
Fixed-Point Tool does not detect any issues for your model, it is still possible to
experience subsequent data type propagation issues. For more information, see
“Models That Might Cause Data Type Propagation Errors” on page 38-8.

 Best Practices for Fixed-Point Workflow

38-5

Best Practices for Fixed-Point Workflow

Use a Known Working Simulink Model

Before you begin automatic data typing, verify that update diagram succeeds for your
model. To update diagram, press Ctrl+D. If update diagram fails, before automatic
data typing to propose data types, fix the failure in your model.

Back Up Your Simulink Model

Before using the Fixed-Point Tool, back up your Simulink model and associated
workspace variables.

Backing up your model provides a backup of your original model in case of error and a
baseline for testing and validation.

Capture the Current Data Type Override Settings

Before changing the current fixed-point instrumentation and data type override settings,
use the Fixed-Point Tool Shortcut Editor to create a shortcut for these settings. Creating
a shortcut allows you to revert to the original model settings. For more information, see
“Capture Model Settings Using the Shortcut Editor” on page 35-10.

Convert Individual Subsystems

Convert individual subsystems in your model one at a time. This practice facilitates
debugging by isolating the source of fixed-point issues. For example, see “Debug a Fixed-
Point Model” on page 35-11.

Isolate the System Under Conversion

If you encounter data type propagation issues with a particular subsystem during the
conversion, isolate this subsystem by placing Data Type Conversion blocks on the inputs
and outputs of the system. The Data Type Conversion block converts an input signal
of any Simulink data type to the data type and scaling you specify for its Output data
type parameter. This practice enables you to continue automatic data typing for the rest
of your model.

38 Automatic Data Typing

38-6

Do Not Use “Save as” on Referenced Models and MATLAB Function
blocks

During the fixed-point conversion process using the Fixed-Point Tool, do not use the
“Save as” option to save referenced models or MATLAB Function blocks with a different
name. If you do, you might lose existing results for the original model.

Use Lock Output Data Type Setting

You can prevent the Fixed-Point Tool from replacing the current data type. Use the Lock
output data type setting against changes by the fixed-point tools parameter that
is available on many blocks. The default setting allows for replacement. Use this setting
when:

• You already know the fixed-point data types that you want to use for a particular
block.

For example, the block is modeling a real-world component. Set up the block to allow
for known hardware limitations, such as restricting outputs to integer values.

Explicitly specify the output data type of the block and select Lock output data type
setting against changes by the fixed-point tools.

• You are debugging a model and know that a particular block accepts only certain
input signal data types.

Explicitly specify the output data type of upstream blocks and select Lock output
data type setting against changes by the fixed-point tools.

Save Simulink Signal Objects

If your model contains Simulink signal objects and you accept proposed data types, the
Fixed-Point Tool automatically applies the changes to the signal objects. However, the
Fixed-Point Tool does not automatically save changes that it makes to Simulink signal
objects. To preserve changes, before closing your model, save the Simulink signal objects
in your workspace and model.

Test Update Diagram Failure

Immediately after applying data type proposals, test update diagram. If update
diagram fails, perform one of the following actions:

 Best Practices for Fixed-Point Workflow

38-7

• Use the failure information to fix the errors in your model. After fixing the errors, test
update diagram again.

• If you are unable to fix the errors, restore your back-up model. After restoring the
model, try to fix the errors by, for example, locking output data type settings and
isolating the system, as described in the preceding sections. After addressing the
errors, test update diagram again.

Disable Fast Restart

The Fixed-Point Tool provides limited support when the model is simulated in Fast
Restart. You must disable Fast Restart to collect simulation and derived ranges, and
propose data types.

38 Automatic Data Typing

38-8

Models That Might Cause Data Type Propagation Errors

When the Fixed-Point Tool proposes changes to the data types in your model, it alerts
you to potential issues. If the Fixed-Point Tool alerts you to data type errors, you must
diagnose the errors and fix the problems. For more information, see “Examine Results to
Resolve Conflicts” on page 38-15.

The Fixed-Point Tool does not detect all potential data type issues. If the tool does not
report any issues for your model, it is still possible to experience subsequent data type
propagation errors. Before you use the Fixed-Point Tool, back up your model to ensure
that you can recover your original data type settings. For more information, see “Best
Practices for Fixed-Point Workflow” on page 38-5.

The following models are likely to cause data type propagation issues.

Model Uses... Fixed-Point Tool Behavior Data Type Propagation Issue

Simulink parameter
objects

Does not consider any
data type information
for Simulink parameter
objects and does not use
them for automatic data
typing.

Fixed-Point Tool might propose
data types that are inconsistent
with the data types for the
parameter object or generate
proposals that cause overflows.

User-defined S-
functions

Cannot detect the
operation of user-defined S-
functions.

• The user-defined S-function
accepts only certain input data
types. The Fixed-Point Tool
cannot detect this requirement
and proposes a different data
type upstream of the S-function.
Update diagram fails on
the model due to data type
mismatch errors.

• The user-defined S-function
specifies certain output
data types. The Fixed-Point
Tool is not aware of this
requirement and does not use
it for automatic data typing.
Therefore, the tool might
propose data types that are

 Models That Might Cause Data Type Propagation Errors

38-9

Model Uses... Fixed-Point Tool Behavior Data Type Propagation Issue

inconsistent with the data types
for the S-function or generate
proposals that cause overflows.

User-defined masked
subsystems

Has no knowledge of
the masked subsystem
workspace and cannot
take this subsystem into
account when proposing
data types.

Fixed-Point Tool might propose
data types that are inconsistent
with the requirements of the
masked subsystem, particularly
if the subsystem uses mask
initialization. The proposed data
types might cause data type
mismatch errors or overflows.

Linked subsystems Does not include linked
subsystems when
proposing data types.

Data type mismatch errors might
occur at the linked subsystem
boundaries.

38 Automatic Data Typing

38-10

Automatic Data Typing Using Simulation Data

In this section...

“Workflow for Automatic Data Typing Using Simulation Data” on page 38-10
“Set Up the Model” on page 38-10
“Prepare the Model for Fixed-Point Conversion” on page 38-11
“Gather a Floating-Point Benchmark” on page 38-12
“Proposing Data Types” on page 38-13
“Propose Data Types” on page 38-15
“Examine Results to Resolve Conflicts” on page 38-15
“Apply Proposed Data Types” on page 38-18
“Verify New Settings” on page 38-19
“Automatic Data Typing of Simulink Signal Objects” on page 38-20

Workflow for Automatic Data Typing Using Simulation Data

1 Set up the model
2 Prepare the model for fixed-point conversion
3 Run the model to gather floating-point benchmark
4 Propose data types
5 Examine results to resolve conflicts
6 Apply proposed data types
7 Verify new settings

Set Up the Model

To use the Fixed-Point Tool to generate data type proposals for your model based on
simulation minimum and maximum values only, you must first set up your model in
Simulink.

1 Back up your model in case of error and as a baseline for testing and validation.

 Automatic Data Typing Using Simulation Data

38-11

2 Open your model in Simulink.
3 From the Simulink menu, select Simulation > Mode > Normal so that the model

runs in Normal mode. The Fixed-Point Tool supports only Normal mode.
4 If you are using design minimum and maximum range information, add this

information to blocks.

You specify a design range for model objects using parameters typically titled
Output minimum and Output maximum. For a list of blocks that permit you to
specify these values, see “Blocks That Allow Signal Range Specification”.

5 Specify fixed-point data types for blocks and signals in your model. For blocks with
the Data Type Assistant, use the Calculate Best-Precision Scaling button to
calculate best-precision scaling automatically. For more information, see “Specify
Fixed-Point Data Types with the Data Type Assistant” on page 30-22. Use the Fixed-
Point Advisor to prepare your model for conversion to an equivalent fixed-point
representation For more information, see “Preparation for Fixed-Point Conversion”.

6 You can choose to lock some blocks against automatic data typing by selecting the
Lock output data type setting against changes by the fixed-point tools
parameter. If you select the Lock output data type setting against changes
by the fixed-point tools parameter, the tool does not propose data types for that
object.

7 From the Simulink Simulation menu, select Update Diagram to perform
parameter range checking for all blocks in the model.

If update diagram fails, use the failure information to fix the errors in your model.
After fixing the errors, test update diagram again. If you are unable to fix the
errors, restore your back-up model.

8 If the model changed, back up the model again in case of error and as a baseline for
testing and validation.

9 Create a shortcut to capture the initial fixed-point instrumentation and data type
override settings. For more information, see “Capture Model Settings Using the
Shortcut Editor” on page 35-10.

Prepare the Model for Fixed-Point Conversion

First use the Fixed-Point Advisor to prepare the model for conversion to fixed point. You
do this preparation only once. The Fixed-Point Advisor gives advice about model and
block configuration settings to prepare for automatic conversion to fixed point using the
Fixed-Point Tool. The Fixed-Point Advisor:

38 Automatic Data Typing

38-12

• Checks the model against fixed-point guidelines.
• Identifies unsupported blocks.
• Removes output data type inheritance from blocks.

The Fixed-Point Advisor also makes recommendations for a model, such as model-
level diagnostic settings and removal of inheritance rules. It configures the model for
autoscaling by the Fixed-Point Tool. Therefore, even if your model uses only fixed-point
data types, it is useful to run the Fixed-Point Advisor on the model.

To open the Fixed-Point Advisor:

1 From the Simulink Analysis menu, select Fixed-Point Tool.
2 On the Fixed-Point Tool Model Hierarchy pane, select the system or subsystem of

interest.
3 On the Fixed-point preparation for selected system pane, click Fixed-Point

Advisor.

Use the Fixed-Point Advisor to prepare the model for conversion. For more
information, see “Preparation for Fixed-Point Conversion”.

Gather a Floating-Point Benchmark

First, run the model with a global override of the fixed-point data types using double-
precision numbers to avoid quantization effects. This action provides a floating-point
benchmark that represents the ideal output. The Simulink software logs the signal
logging results to the MATLAB workspace. The Fixed-Point Tool displays the simulation
results, including minimum and maximum values, that occur during the run.

1 From the Simulink Analysis menu, select Fixed-Point Tool.
2 Enable signal logging for the system or subsystem of interest. Using the Fixed-Point

Tool you can enable signal logging for multiple signals simultaneously. For more
information, see “Signal Logging Options” in the fxptdlg Reference.

To enable signal logging:

a On the Fixed-Point Tool Model Hierarchy pane, select the system or
subsystem.

b Right-click the selected system to open the context menu.
c Use the Enable Signal Logging option to enable signal logging, as necessary.

 Automatic Data Typing Using Simulation Data

38-13

The Contents pane of the Fixed-Point Tool displays an antenna icon next to
items that have signal logging enabled.

Note: You can plot results only for signals that have signal logging enabled.
3 On the Fixed-Point Tool Model Hierarchy pane, select the system or subsystem for

which you want a proposal.
4 On the Model settings pane, click the Model-wide double override and full

instrumentation button to set:

• Data type override to Double
• Data type override applies to to All numeric types
• Fixed-point instrumentation mode to Minimums, maximums and

overflows

• The run name (in the Data collection pane Run name field) to
DoubleOverride

The Fixed-Point Tool performs a global override of the fixed-point data types with
double-precision data types, thus avoiding quantization effects. During simulation,
the tool logs minimum value, maximum value, and overflow data for all blocks in the
current system or subsystem in the run DoubleOverride.

Note: Data type override does not apply to boolean or enumerated data types.
5

Click the Fixed-Point Tool Simulate button to run the simulation.

The Fixed-Point Tool highlights any simulation results that have issues, such as
overflows or saturations.

Proposing Data Types

Unless you select an object’s Lock output data type setting against changes by the
fixed-point tools parameter or the data types are using inheritance rules, the Fixed-
Point Tool proposes data types for model objects that specify fixed-point data types.

When proposing data types, the Fixed-Point Tool collects the following types of range
data for model objects:

38 Automatic Data Typing

38-14

• Design minimum or maximum values — You specify a design range for model objects
using parameters typically titled Output minimum and Output maximum. For a
list of blocks that permit you to specify these values, see “Blocks That Allow Signal
Range Specification”.

• Simulation minimum or maximum values — When simulating a system whose
Fixed-point instrumentation mode parameter specifies Minimums, maximums
and overflows, the Fixed-Point Tool logs the minimum and maximum values
generated by model objects. For more information about the Fixed-point
instrumentation mode parameter, see fxptdlg.

• Derived minimum or maximum values — When deriving minimum and maximum
values for a selected system, the Fixed-Point Tool uses the design minimum and
maximum values that you specify for the model to derive range information for
signals in your model. For more information, see “Derive Ranges”.

The Fixed-Point Tool uses available range data to calculate data type proposals according
to the following rules:

• Design minimum and maximum values take precedence over the simulation and
derived range.

The Safety margin for design and derived min/max (%) parameter specifies a
range that differs from that defined by the design range. For example, a value of 20
specifies that a range of at least 20 percent larger is desired. A value of -10 specifies
that a range of up to 10 percent smaller is acceptable. If this parameter is not visible
in the Automatic data typing for selected system pane, click the Configure link.

• The tool observes the derived range only when the Derived min/max option is
selected. Otherwise, the tool ignores the derived range.

The Safety margin for design and derived min/max (%) parameter specifies a
range that differs from that defined by the derived range. For example, a value of 20
specifies that a range of at least 20 percent larger is desired. A value of -10 specifies
that a range of up to 10 percent smaller is acceptable. If this parameter is not visible
in the Automatic data typing for selected system pane, click the Configure link.

• The tool observes the simulation range only when the Simulation min/max option is
selected. Otherwise, the tool ignores the simulation range.

The Safety margin for simulation min/max (%) parameter specifies a range that
differs from that defined by the simulation range. For example, a value of 20 specifies
that a range of at least 20 percent larger is desired. A value of -10 specifies that a

 Automatic Data Typing Using Simulation Data

38-15

range of up to 10 percent smaller is acceptable. If this parameter is not visible in the
Automatic data typing for selected system pane, click the Configure link.

Propose Data Types

1 In the Automatic data typing for selected system Settings pane, select either
Propose fraction lengths for specified word lengths or Propose word
lengths for specified fraction lengths.

If these options are not visible, use the Configure link to display them.
2 To use simulation min/max information only, clear Derived min/max.
3 If you have safety margins to apply:

a Enter Safety margin for design and derived min/max (%), if applicable. For
example, enter 10 for a 10% safety margin. If this parameter is not visible in the
Automatic data typing for selected system pane, click the Configure link.

b Enter Safety margin for simulation min/max (%), if applicable.
4 Click the Propose fraction lengths or Propose word lengths button to generate

a proposal, .

Note: When the Fixed-Point Tool proposes data types, it does not alter your model.

Examine Results to Resolve Conflicts

You can examine each proposal using the Result Details tab, which displays the
rationale underlying the proposed data types. Also, this tab describes potential issues or
errors, and it suggests methods for resolving them. To view the details, on the Contents
pane, select an object that has proposed data types and click the Result Details tab in
the upper right corner of the Fixed-Point Tool.

The Result Details tab provides the following information about the proposed data
types, as appropriate.

Proposed Data Type Summary

Describes a proposal in terms of how it differs from the object's current data type. For
cases when the Fixed-Point Tool does not propose data types, this section provides a

38 Automatic Data Typing

38-16

rationale. For example, the data type might be locked against changes by the fixed-point
tools.

This section of the Result Details tab also informs you if the selected object must share
the same data type as other objects in the model because of data type propagation rules.
For example, the inputs to a Merge block must have the same data type. Therefore, the
outputs of blocks that connect to these inputs must share the same data type. Similarly,
blocks that are connected by the same element of a virtual bus must share the same data
type.

The tab provides a hyperlink that you can click to highlight the objects that share
data types in the model. To clear this highlighting, from the model View menu, select
Remove Highlighting.

The Fixed-Point Tool allocates an identification tag to objects that must share the same
data type. The tool displays this identification tag in the DTGroup column for the object.
To display only the objects that must share data types, from the Fixed-Point Tool main
toolbar, select the Show option.

Some Simulink blocks accept only certain data types on some ports. This section of the
Result Details tab also informs you when a block that connects to the selected object
has data type constraints that impact the proposed data type of the selected object. The
tab lists the blocks that have data type constraints, provides details of the constrained
data types, and links to the blocks in the model.

The Proposed Data Type Summary section of the Result Details tab provides a table
with the proposed data type information.

Item Description

ProposedDT Data type that the Fixed-Point Tool
proposes for this object and the minimum
and maximum values that the proposed
data type can represent.

SpecifiedDT Data type that an object specifies.

Needs Attention

Lists potential issues and errors associated with data type proposals. It describes
the issues and suggests methods for resolving them. It uses the following icons to
differentiate warnings from errors:

 Automatic Data Typing Using Simulation Data

38-17

Indicates a warning message.

Indicates an error message.

Range Information

Provides a table with model object attributes that influence its data type proposal.

Item Description

Design Design maximum and minimum values that an object
specifies, e.g., its Output maximum and Output minimum
parameters.

Simulation Maximum and minimum values that occur during simulation.

Shared Values

When proposing data types, the Fixed-Point Tool attempts to satisfy data type
requirements that model objects impose on one another. For example, the Sum
block provides an option that requires all of its inputs to have the same data type.
Consequently, the table might also list attributes of other model objects that impact the
proposal for the selected object. In such cases, the table displays the following types of
shared values:

• Initial Values

Some model objects provide parameters that allow you to specify the initial values of
their signals. For example, the Constant block includes a Constant value parameter
that initializes the block output signal. The Fixed-Point Tool uses initial values
to propose data types for model objects whose design and simulation ranges are
unavailable. When data type dependencies exist, the tool considers how initial values
impact the proposals for neighboring objects.

• Model-Required Parameters

Some model objects require the specification of numeric parameters to compute the
value of their outputs. For example, the Table data parameter of an n-D Lookup
Table block specifies values that the block requires to perform a lookup operation and
generate output. When proposing data types, the Fixed-Point Tool considers how this
“model-required” parameter value impacts the proposals for neighboring objects.

38 Automatic Data Typing

38-18

To Examine the Results and Resolve Conflicts

1 On the Fixed-Point Tool toolbar, use the Show option to filter the results to show
Conflicts with proposed data types.

The Fixed-Point Tool lists its data type proposals on the Contents pane under the
ProposedDT column. The tool alerts you to potential issues for each object in the
list by displaying a green, yellow, or red icon.

The proposed data type poses no issues for this object.

The proposed data type poses potential issues for this object.

The proposed data type will introduce data type errors if applied to this object.

2 Review and fix each error.

a Select the error, right-click and select Highlight in Editor from the context
menu to identify which block has a conflict.

b Click the Result Details tab.
c Use the information provided in the Needs Attention section of the Result

Details tab to resolve the conflict by fixing the problem in the Simulink model.
3 Review the Result Details for the warnings and correct the problem if necessary.
4 You have changed the Simulink model, so the benchmark data is not up to date.

Click the Fixed-Point Tool Start button to rerun the simulation.

The Fixed-Point Tool warns you that you have not applied proposals. Click the
Ignore and Simulate button to continue.

5 Click the Propose fraction lengths or Propose word lengths button to generate

a proposal, .
6 On the Fixed-Point Tool toolbar, use the Show option to filter the results to show All

results.

Apply Proposed Data Types

After reviewing the data type proposals, apply the proposed data types to your model.
The Fixed-Point Tool allows you to apply its data type proposals selectively to objects in

 Automatic Data Typing Using Simulation Data

38-19

your model. On the Contents pane, use the Accept check box to specify the proposals
that you want to assign to model objects. The check box indicates the status of a proposal:

The Fixed-Point Tool will apply the proposed data type to this object. By default,
the tool selects the Accept check box when a proposal differs from the object's
current data type.
The Fixed-Point Tool will ignore the proposed data type and leave the current
data type intact for this object.
No proposal exists for this object, for example, when the object specifies a data
type inheritance rule or is locked against automatic data typing.

1 Examine each result. For more information about a particular result, select the
result and then click the Result Details tab.

2 If you do not want to accept the proposal for a result, on the Fixed-Point Tool
Contents pane, clear the Accept check box for that result.

Before applying proposals to your model, you can customize them with the Fixed-
Point Tool. On the Contents pane, click a ProposedDT cell and edit the data type
expression. For information about specifying fixed-point data types, see fixdt.

3 Click the Apply accepted fraction lengths or Apply accepted word lengths

button to write the proposed data types to the model.

If you have not fixed all the warnings in the model, the Fixed-Point Tool displays a
warning dialog box.

Verify New Settings

After applying proposed data types to your model, you simulate the model using the
applied fixed-point data types.

1 On the Fixed-Point Tool Model Hierarchy pane, select the system or subsystem for
which you want a proposal.

2 On the Model settings pane, click the Model-wide no override and full
instrumentation button to use the locally specified data type settings.

This sets:

• Data type override to Use local settings.

38 Automatic Data Typing

38-20

• Fixed-point instrumentation mode to Minimums, maximums and
overflows.

• The run name (in the Data collection pane Run name field) to NoOverride.

Using these settings, the Fixed-Point Tool simulates the model using the new fixed-
point settings and logs minimum value, maximum value, and overflow data for all
blocks in the current system or subsystem in the run NoOverride.

3 Click the Fixed-Point Tool Start button to run the simulation.
4 Compare the ideal results stored in the DoubleOverride run with the fixed-point

results in the NoOverride run:

a On the Contents pane, select a result that has logged signal data. These results
are annotated with the icon.

b Click the Compare Signals to view the difference between the fixed-point
and double override runs for the selected result.

If you have more than two runs, in the Compare Runs Selector dialog box,
select the two runs that you want to compare.

Automatic Data Typing of Simulink Signal Objects

The Fixed-Point Tool can propose new data types for Simulink signal objects in the
base or model workspace. If you accept the proposed data types, the Fixed-Point Tool
automatically applies them to the Simulink signal objects.

Caution The Fixed-Point Tool does not save the changes to the signal object. Before
closing the model, you must save the changes.

After automatic data typing, if you delete or manipulate a signal object in the base
workspace, you must rerun the automatic data typing.

 Automatic Data Typing Using Derived Ranges

38-21

Automatic Data Typing Using Derived Ranges

In this section...

“Prerequisites for Autoscaling Using Derived Ranges” on page 38-21
“Workflow for Autoscaling Using Derived Data” on page 38-21
“Set Up the Model” on page 38-22
“Prepare Model for Autoscaling Using Derived Data” on page 38-23
“Derive Minimum and Maximum Values” on page 38-24
“Resolve Range Analysis Issues” on page 38-25
“Proposing Data Types” on page 38-25
“Propose Data Types” on page 38-27
“Examine Results to Resolve Conflicts” on page 38-27
“Apply Proposed Data Types” on page 38-31
“Update Diagram” on page 38-32

Prerequisites for Autoscaling Using Derived Ranges

The Fixed-Point Tool uses range analysis to derive minimum and maximum values for
objects in your model.

Range analysis:

• Requires a Fixed-Point Designer license.
• Works only for compatible models. For more information, see “Model Compatibility

with Range Analysis”.

Workflow for Autoscaling Using Derived Data

1 Verify that your model is compatible with range analysis. See “Model Compatibility
with Range Analysis”.

2 Set up model.
3 Prepare model prior to automatic data typing using derived data.
4 Derive minimum and maximum values.

38 Automatic Data Typing

38-22

5 Resolve any issues.
6 Derive minimum and maximum values.
7 Propose data types.
8 Examine results to resolve conflicts.
9 Apply proposed data types.
10 Update diagram.

Set Up the Model

To use the Fixed-Point Tool to generate data type proposals for your model based on
derived minimum and maximum values only, you must first set up your model in
Simulink.

1 Back up your model in case of error and as a baseline for testing and validation.
2 Open your model in Simulink.
3 Select Simulation > Normal in the Simulink menu so that the model runs in

Normal mode. The Fixed-Point Tool supports only Normal mode.
4 To autoscale using derived data, you must specify design minimum and maximum

values on at least the model inputs. The range analysis tries to narrow the derived
range by using all the specified design ranges in the model. The more design range
information you specify, the more likely the range analysis is to succeed. As the
analysis is performed, it derives new range information for the model and then
attempts to use this new information together with the specified ranges to derive
ranges for the remaining objects in the model. For this reason, the analysis results
might depend on block priorities because these priorities determine the order in
which the software analyzes the blocks.

You specify a design range for model objects using parameters typically titled
Output minimum and Output maximum. For a list of blocks that permit you to
specify these values, see “Blocks That Allow Signal Range Specification”.

5 Specify fixed-point data types for blocks and signals in your model. For blocks with
the Data Type Assistant, use the Calculate Best-Precision Scaling button to
calculate best-precision scaling automatically. For more information, see “Specify
Fixed-Point Data Types with the Data Type Assistant” on page 30-22.

6 You can choose to lock some blocks against automatic data typing by selecting the
Lock output data type setting against changes by the fixed-point tools
parameter. If you select the Lock output data type setting against changes

 Automatic Data Typing Using Derived Ranges

38-23

by the fixed-point tools parameter, the tool does not propose data types for that
object.

7 From the Simulink Simulation menu, select Update Diagram to perform
parameter range checking for all blocks in the model.

If update diagram fails, use the failure information to fix the errors in your model.
After fixing the errors, test update diagram again. If you are unable to fix the
errors, restore your back-up model.

8 If the model changed, back up the model in case of error and as a baseline for testing
and validation.

9 Create a shortcut to capture the initial fixed-point instrumentation and data type
override settings. For more information, see “Capture Model Settings Using the
Shortcut Editor” on page 35-10.

Prepare Model for Autoscaling Using Derived Data

First use the Fixed-Point Advisor to prepare the model for conversion to fixed point. You
do this preparation only once. The Fixed-Point Advisor gives advice about model and
block configuration settings to prepare for automatic conversion to fixed point using the
Fixed-Point Tool. The Fixed-Point Advisor:

• Checks the model against fixed-point guidelines.
• Identifies unsupported blocks.
• Removes output data type inheritance from blocks.
• Allows you to promote simulation minimum and maximum values to design minimum

and maximum values. This capability is useful if you have not specified design ranges
and you have simulated the model with inputs that cover the full intended operating
range. For more information, see “Specify block minimum and maximum values”.

• Runs simulation range detection diagnostics. When preparing the model for automatic
data typing using derived data, you can complete the preparation without setting up
signal logging and creating a simulation reference run. However, creating at least one
simulation run is useful for early error detection. Simulating the model helps to verify
that the design minimum and maximum values specified on the model are correct and
that the model conforms to modeling guidelines.

To open the Fixed-Point Advisor:

1 From the Simulink Analysis menu, select Fixed-Point Tool.

38 Automatic Data Typing

38-24

2 On the Fixed-Point Tool Model Hierarchy pane, select the system or subsystem of
interest.

3 On the Fixed-point preparation for selected system pane, click Fixed-Point
Advisor.

Use the Fixed-Point Advisor to prepare the model for conversion. For more
information, see “Preparation for Fixed-Point Conversion”.

Derive Minimum and Maximum Values

1 On the Fixed-Point Tool Model Hierarchy pane, select the system or subsystem of
interest.

2 On the Settings for selected system pane, set Data type override to Double.
3 Optionally, in the Data collection pane Run name field, specify a run name.

Specifying a unique run name avoids overwriting results from previous runs.
4 In the Fixed-Point Tool, click Derive ranges for selected system.

The analysis runs and tries to derive range information for objects in the selected
system.

If the analysis successfully derives range data for the model, the Fixed-Point Tool
displays the derived minimum and maximum values for the blocks in the selected
system. (See “View Derived Ranges in the Fixed-Point Tool” on page 39-11.)
Before proposing data types, review the results.

If the analysis fails, examine the error messages and resolve the issues. See “Resolve
Range Analysis Issues” on page 38-25.

 Automatic Data Typing Using Derived Ranges

38-25

Resolve Range Analysis Issues

The following table shows the different types of range analysis issues and the steps to
resolve them.

Analysis Results Next Steps For More Information

The analysis fails because
the model contains blocks
that it does not support. The
Fixed-Point Tool generates
an error.

Review the error message
information and replace the
unsupported blocks.

“Model Compatibility with
Range Analysis” on page
39-6

The analysis cannot derive
range data because the
model contains conflicting
design range information.
The Fixed-Point Tool
generates an error.

Examine the design ranges
specified in the model
to identify inconsistent
design specifications and
modify them to make them
consistent.

“Fixing Design Range
Conflicts” on page 39-26

The analysis cannot derive
range data for an object
because there is insufficient
design range information
specified on the model. The
Fixed-Point Tool highlights
the results for the object.

Examine the model to
determine which design
range information is
missing.

“Providing More Design
Range Information” on page
39-23

Proposing Data Types

Unless you select an object’s Lock output data type setting against changes by the
fixed-point tools parameter or the data types are using inheritance rules, the Fixed-
Point Tool proposes data types for model objects that specify fixed-point data types. You
set up the tool to either propose fraction lengths for specified word lengths or to propose
word lengths for specified fraction lengths. For more information, see “Propose Fraction
Lengths” on page 38-33 and .

When generating data type proposals, the Fixed-Point Tool collects the following types of
range data for model objects:

• Design minimum or maximum values — You specify a design range for model objects
using parameters typically titled Output minimum and Output maximum. For a

38 Automatic Data Typing

38-26

list of blocks that permit you to specify these values, see “Blocks That Allow Signal
Range Specification”.

• Simulation minimum or maximum values — When simulating a system whose
Fixed-point instrumentation mode parameter specifies Minimums, maximums
and overflows, the Fixed-Point Tool logs the minimum and maximum values
generated by model objects. For more information about the Fixed-point
instrumentation mode parameter, see fxptdlg.

• Derived minimum or maximum values — When deriving minimum and maximum
values for a selected system, the Fixed-Point Tool uses the design minimum and
maximum values that you specify for the model to derive range information for
signals in your model. For more information, see “Derive Ranges”.

For models that contain floating-point operations, range analysis might report a
range that is slightly larger than expected due to rounding errors in the analysis.
Automatic data typing bases its proposal on this slightly larger derived range. To
avoid this issue, use the safety margin for design and derived min/max.

The Fixed-Point Tool uses available range data to calculate data type proposals according
to the following rules:

• Design minimum and maximum values take precedence over the simulation and
derived range.

The Safety margin for design and derived min/max (%) parameter specifies a
range that differs from that defined by the design range. For example, a value of 20
specifies that a range of at least 20 percent larger is desired. A value of -10 specifies
that a range of up to 10 percent smaller is acceptable. If this parameter is not visible
in the Automatic data typing for selected system pane, click the Configure link.

For more information, see “Safety margin for design and derived min/max (%)” in the
fxptdlg reference.

• The tool observes the derived range only when the Derived min/max option is
selected. Otherwise, the tool ignores the derived range.

The Safety margin for design and derived min/max (%) parameter specifies a
range that differs from that defined by the derived range. For more information, see
Percent safety margin for design and derived min/max in the fxptdlg reference.

• The tool observes the simulation range only when the Simulation min/max option is
selected. Otherwise, the tool ignores the simulation range.

 Automatic Data Typing Using Derived Ranges

38-27

The Safety margin for simulation min/max (%) parameter specifies a range that
differs from that defined by the simulation range. For more information, see “Safety
margin for simulation min/max (%)” in the fxptdlg reference.

Propose Data Types

1 On the Automatic data typing for selected system Settings pane, select
either Propose fraction lengths for specified word lengths or Propose word
lengths for specified fraction lengths, as applicable.

If these options are not visible, use the Configure link to display them.
2 If you have a safety margin to apply, set Safety margin for design and derived

min/max (%). For example, enter 10 for a 10% safety margin.
3 Click the Propose fraction lengths or Propose word lengths button to generate

a proposal, .

Note: When the Fixed-Point Tool proposes data types, it does not alter your model.

Examine Results to Resolve Conflicts

You can examine each data type proposal using the Result Details tab, which displays
the rationale underlying the proposal. Also, this tab describes potential issues or errors,
and provides methods for resolving them. To view the details, on the Contents pane,
select an object that has proposed data types and click the Result Details tab in the
upper right corner of the Fixed-Point Tool.

38 Automatic Data Typing

38-28

The Result Details tab provides the following information about the proposed data type,
as appropriate.

Proposed Data Type Summary

Describes a proposal in terms of how it differs from the object's current data type. For
cases when the Fixed-Point Tool does not propose data types, this section provides a
rationale. For example, the data type might be locked against changes by the fixed-point
tools.

 Automatic Data Typing Using Derived Ranges

38-29

This section of the Result Details tab also informs you if the selected object must share
the same data type as other objects in the model because of data type propagation rules.
For example, the inputs to a Merge block must have the same data type. Therefore, the
outputs of blocks that connect to these inputs must share the same data type. Similarly,
blocks that are connected by the same element of a virtual bus must share the same data
type.

The tab provides a hyperlink that you can click to highlight the objects that share
data types in the model. To clear this highlighting, from the model View menu, select
Remove Highlighting.

The Fixed-Point Tool allocates an identification tag to objects that must share the same
data type. The tool displays this identification tag in the DTGroup column for the object.
To display only the objects that must share data types, from the Fixed-Point Tool main
toolbar, select the Show option.

Some Simulink blocks accept only certain data types on some ports. This section of the
Result Details tab also informs you when a block that connects to the selected object
has data type constraints that impact the proposed data type of the selected object. The
tab lists the blocks that have data type constraints, provides details of the constrained
data types, and links to the blocks in the model.

The Proposed Data Type Summary section of the Result Details tab provides a table
with the proposed data type information.

Item Description

ProposedDT Data type that the Fixed-Point Tool
proposes for this object and the minimum
and maximum values that the proposed
data type can represent.

SpecifiedDT Data type that an object specifies.

Needs Attention

Lists potential issues and errors associated with data type proposals. Describes the
issues and suggests methods for resolving them. The tab uses the following icons to
differentiate warnings from errors.

Indicates a warning message.

38 Automatic Data Typing

38-30

Indicates an error message.

Range Information

Provides a table that lists a model object attributes that influence its data type proposal.

Item Description

Design Design maximum and minimum values that an object
specifies, e.g., its Output maximum and Output minimum
parameters.

Simulation Maximum and minimum values that occur during simulation.

Shared Values

When proposing data types, the Fixed-Point Tool attempts to satisfy data type
requirements that model objects impose on one another. For example, the Sum
block provides an option that requires all of its inputs to have the same data type.
Consequently, the table might also list attributes of other model objects that impact the
data type proposal for the selected object. In such cases, the table displays the following
types of shared values:

• Initial Values

Some model objects provide parameters that allow you to specify the initial values of
their signals. For example, the Constant block includes a Constant value parameter
that initializes the block output signal. The Fixed-Point Tool uses initial values
to propose data types for model objects whose design and simulation ranges are
unavailable. When data type dependencies exist, the tool considers how initial values
impact the proposals for neighboring objects.

• Model-Required Parameters

Some model objects require the specification of numeric parameters to compute the
value of their outputs. For example, the Table data parameter of an n-D Lookup
Table block specifies values that the block requires to perform a lookup operation and
generate output. When proposing data types, the Fixed-Point Tool considers how this
“model-required” parameter value impacts the proposals for neighboring objects.

To Examine the Results and Resolve Conflicts

1 On the Fixed-Point Tool toolbar, use the Show option to filter the results to show
Conflicts with proposed data types.

 Automatic Data Typing Using Derived Ranges

38-31

The Fixed-Point Tool lists its data type proposals on the Contents pane under the
ProposedDT column. The tool alerts you to potential issues for each object in the
list by displaying a green, yellow, or red icon.

The proposed data type poses no issues for this object.

The proposed data type poses potential issues for this object.

The proposed data type will introduce data type errors if applied to this object.

2 Review and fix each error.

a Select the error, right-click, and from the context menu, select Highlight Block
In Model to identify which block has a conflict.

b Click the Result Details tab.
c Use the information provided in the Needs Attention section of the Result

Details tab to resolve the conflict by fixing the problem in the Simulink model.
3 Review the Result Details for the warnings and correct the problem if necessary.
4 You have changed the Simulink model, so the benchmark data is not up to date.

Click the Fixed-Point Tool Start button to rerun the simulation.

The Fixed-Point Tool warns you that you have not applied proposals. Click the
Ignore and Simulate button to continue.

5 Click the Propose fraction lengths or Propose word lengths button to generate

a data type proposal, .
6 On the Fixed-Point Tool toolbar, use the Show option to filter the results to show All

results.

Apply Proposed Data Types

After reviewing the data type proposals, apply the proposed data types to your model.
The Fixed-Point Tool allows you to apply its data type proposals selectively to objects in
your model. On the Contents pane, use the Accept check box to specify the proposals
that you want to assign to model objects. The check box indicates the status of a proposal:

38 Automatic Data Typing

38-32

The Fixed-Point Tool will apply the proposed data type to this object. By default,
the tool selects the Accept check box when a proposal differs from the object's
current data type.
The Fixed-Point Tool will ignore the proposed data type and leave the current
data type intact for this object.
No proposal exists for this object, for example, when the object specifies a data
type inheritance rule or is locked against automatic data typing.

1 Examine each result. For more information about a particular result, select the
result and then click the Result Details tab.

2 If you do not want to accept the proposal for a result, on the Fixed-Point Tool
Contents pane, clear the Accept check box for that result.

Before applying proposals to your model, the Fixed-Point Tool enables you to
customize them. On the Contents pane, click a ProposedDT cell and edit the data
type expression. For information about specifying fixed-point data types, see fixdt.

3 Click the Apply accepted fraction lengths or Apply accepted word lengths
button to write the proposed data types to the model.

If you have not fixed all the warnings in the model, the Fixed-Point Tool displays a
warning dialog box.

Update Diagram

From the model’s Simulation menu, select Update Diagram.

After applying the data types to the model, update diagram to check for data type
propagation issues.

If update diagram fails, use the failure information to fix the errors in your model.
After fixing the errors, test update diagram again. If you are unable to fix the errors,
restore your backed up model.

 Propose Fraction Lengths

38-33

Propose Fraction Lengths

In this section...

“Propose Fraction Lengths” on page 38-33
“About the Feedback Controller Example Model” on page 38-33
“Propose Fraction Lengths Using Simulation Range Data” on page 38-40

Propose Fraction Lengths

1 On the Fixed-Point Tool Automatic data typing for selected system pane, select
Propose fraction lengths for specified word lengths. If you cannot see this
option, click Configure to display more options.

2 On the same pane:

• For simulation min/max information only, clear Derived min/max.
• For derived min/max information only, clear Simulation min/max.

3 If you have safety margins to apply, set Safety margin for design and derived
min/max (%) and Safety margin for design and derived min/max (%), as
applicable.

4 Click the Propose fraction lengths button, .

Note: When the Fixed-Point Tool proposes data types, it does not alter your model.

About the Feedback Controller Example Model

• “Opening the Feedback Controller Model” on page 38-33
• “Simulation Setup” on page 38-35
• “Idealized Feedback Design” on page 38-36
• “Digital Controller Realization” on page 38-37

Opening the Feedback Controller Model

To open the Simulink feedback design model for this tutorial, at the MATLAB command
line, type fxpdemo_feedback.

38 Automatic Data Typing

38-34

The Simulink model of the feedback design consists of the following blocks and
subsystems:

• Reference

This Signal Generator block generates a continuous-time reference signal. It is
configured to output a square wave.

• Sum

This Sum block subtracts the plant output from the reference signal.
• ZOH

The Zero-Order Hold block samples and holds the continuous signal. This block is
configured so that it quantizes the signal in time by 0.01 seconds.

• Analog to Digital Interface

The analog to digital (A/D) interface consists of a Data Type Conversion block that
converts a double to a fixed-point data type. It represents any hardware that

 Propose Fraction Lengths

38-35

digitizes the amplitude of the analog input signal. In the real world, its characteristics
are fixed.

• Controller

The digital controller is a subsystem that represents the software running on the
hardware target. Refer to “Digital Controller Realization” on page 38-37.

• Digital to Analog Interface

The digital to analog (D/A) interface consists of a Data Type Conversion block that
converts a fixed-point data type into a double. It represents any hardware that
converts a digitized signal into an analog signal. In the real world, its characteristics
are fixed.

• Analog Plant

The analog plant is described by a transfer function, and is controlled by the digital
controller. In the real world, its characteristics are fixed.

• Scope

The model includes a Scope block that displays the plant output signal.

Simulation Setup

To set up this kind of fixed-point feedback controller simulation:

1 Identify all design components.

In the real world, there are design components with fixed characteristics (the
hardware) and design components with characteristics that you can change (the
software). In this feedback design, the main hardware components are the A/D
hardware, the D/A hardware, and the analog plant. The main software component is
the digital controller.

2 Develop a theoretical model of the plant and controller.

For the feedback design in this tutorial, the plant is characterized by a transfer
function.

The digital controller model in this tutorial is described by a z-domain transfer
function and is implemented using a direct-form realization.

3 Evaluate the behavior of the plant and controller.

38 Automatic Data Typing

38-36

You evaluate the behavior of the plant and the controller with a Bode plot. This
evaluation is idealized, because all numbers, operations, and states are double-
precision.

4 Simulate the system.

You simulate the feedback controller design using Simulink and Fixed-Point
Designer software. In a simulation environment, you can treat all components
(software and hardware) as though their characteristics are not fixed.

Idealized Feedback Design

Open loop (controller and plant) and plant-only Bode plots for the “Scaling a Fixed-Point
Control Design” model are shown in the following figure. The open loop Bode plot results
from a digital controller described in the idealized world of continuous time, double-
precision coefficients, storage of states, and math operations.

 Propose Fraction Lengths

38-37

10
−1

10
0

10
1

10
2

10
3

10
−5

10
0

Bode Plots: Plant Only (dashed) and Open Loop (solid)

Freq (rad/sec)

M
ag

ni
tu

de

10
−1

10
0

10
1

10
2

10
3

−400

−300

−200

−100

0

Freq (rad/sec)

P
ha

se

The Bode plots were created using workspace variables produced by a script named
preload_feedback.m.

Digital Controller Realization

In this simulation, the digital controller is implemented using the fixed-point direct
form realization shown in the following diagram. The hardware target is a 16-bit
processor. Variables and coefficients are generally represented using 16 bits, especially
if these quantities are stored in ROM or global RAM. Use of 32-bit numbers is limited to
temporary variables that exist briefly in CPU registers or in a stack.

38 Automatic Data Typing

38-38

The realization consists of these blocks:

• Up Cast

Up Cast is a Data Type Conversion block that connects the A/D hardware with the
digital controller. It pads the output word size of the A/D hardware with trailing zeros
to a 16-bit number (the base data type).

 Propose Fraction Lengths

38-39

• Numerator Terms and Denominator Terms

Each of these Discrete FIR Filter blocks represents a weighted sum carried out
in the CPU target. The word size and precision in the calculations reflect those of
the accumulator. Numerator Terms multiplies and accumulates the most recent
inputs with the FIR numerator coefficients. Denominator Terms multiples and
accumulates the most recent delayed outputs with the FIR denominator coefficients.
The coefficients are stored in ROM using the base data type. The most recent inputs
are stored in global RAM using the base data type.

• Combine Terms

Combine Terms is a Sum block that represents the accumulator in the CPU. Its word
size and precision are twice that of the RAM (double bits).

• Down Cast

Down Cast is a Data Type Conversion block that represents taking the number from
the CPU and storing it in RAM. The word size and precision are reduced to half that
of the accumulator when converted back to the base data type.

• Prev Out

Prev Out is a Unit Delay block that delays the feedback signal in memory by one
sample period. The signals are stored in global RAM using the base data type.

Direct Form Realization

The controller directly implements this equation:

y k b u k a y ki i

i

N

i

N

() = -() - -()
==

ÂÂ 1 1

10

,

• u(k – 1) represents the input from the previous time step.
• y(k) represents the current output, and y(k – 1) represents the output from the

previous time step.
• bi represents the FIR numerator coefficients.
• ai represents the FIR denominator coefficients.

The first summation in y(k) represents multiplication and accumulation of the most
recent inputs and numerator coefficients in the accumulator. The second summation

38 Automatic Data Typing

38-40

in y(k) represents multiplication and accumulation of the most recent outputs and
denominator coefficients in the accumulator. Because the FIR coefficients, inputs, and
outputs are all represented by 16-bit numbers (the base data type), any multiplication
involving these numbers produces a 32-bit output (the accumulator data type).

Propose Fraction Lengths Using Simulation Range Data

• “Initial Guess at Scaling” on page 38-40
• “Data Type Override” on page 38-43
• “Automatic Data Typing” on page 38-44

This example shows you how to use the Fixed-Point Tool to refine the scaling of fixed-
point data types associated with a feedback controller model (see “About the Feedback
Controller Example Model” on page 38-33). Although the tool enables multiple
workflows for converting a digital controller described in ideal double-precision numbers
to one realized in fixed-point numbers, this example uses the following approach:

• “Initial Guess at Scaling” on page 38-40. Run an initial “proof of concept”
simulation using a reasonable guess at the fixed-point word size and scaling. This
task illustrates how difficult it is to guess the best scaling.

• “Data Type Override” on page 38-43. Perform a global override of the fixed-
point data types using double-precision numbers. The Simulink software logs the
simulation results to the MATLAB workspace, and the Fixed-Point Tool displays
them.

• “Automatic Data Typing” on page 38-44. Perform the automatic data typing
procedure, which uses the double-precision simulation results to propose fixed-point
scaling for appropriately configured blocks. The Fixed-Point Tool allows you to accept
and apply the scaling proposals selectively. Afterward, you determine the quality of
the results by examining the input and output of the model's analog plant.

Initial Guess at Scaling

Initial guesses for the scaling of each block are already specified in each block mask in
the model. This task illustrates the difficulty of guessing the best scaling.

1 Open both the fxpdemo_feedback model and the Fixed-Point Tool.
2 On the Fixed-Point Tool Model settings pane, click the Model-wide no override

and full instrumentation button to set:

 Propose Fraction Lengths

38-41

• Data type override to Use local settings. This option enables each of the
model's subsystems to use its locally specified data type settings.

• Fixed-point instrumentation mode to Minimums, maximums and
overflows.

• The run name to NoOverride.
3 In the Fixed-Point Tool, click the Simulate button .

The Simulink software simulates the fxpdemo_feedback model. Afterward,
on its Contents pane, the Fixed-Point Tool displays the simulation results for
each block that logged fixed-point data. By default, it displays the Simulation
View of these results. You can customize this view by clicking Show Details. For
more information about the standard views provided by the Fixed-Point Tool, see
“Customizing the Contents Pane View” in the fxptdlg function reference. For more
information about customizing views, see “Control Model Explorer Contents Using
Views”.

The tool stores the results in the NoOverride run, denoted by the NoOverride
label in the Run column. The Fixed-Point tool highlights the Up Cast block to
indicate that there is an issue with this result. The OvfSat column for this result
shows that the block saturated 23 times, which indicates a poor guess for its scaling.

Tip In the main toolbar, use the Show option to view only blocks that have
Overflows.

4 On the Contents pane of the Fixed-Point Tool, select the Transfer Fcn block named
Analog Plant and then click the Inspect Signal button .

The Fixed-Point Tool plots the signal associated with the plant output.

38 Automatic Data Typing

38-42

The preceding plot of the plant output signal reflects the initial guess at scaling. The
Bode plot design sought to produce a well-behaved linear response for the closed-loop
system. Clearly, the response is nonlinear. Significant quantization effects cause the
nonlinear features. An important part of fixed-point design is finding a scaling that
reduces quantization effects to acceptable levels.

Tip Use the Fixed-Point Tool plotting tools to plot simulation results associated with
logged signal data. To view a list of all logged signals, in the main toolbar, use the Show
option and select Signal logging results.

 Propose Fraction Lengths

38-43

Data Type Override

Data type override mode enables you to perform a global override of the fixed-point data
types with double-precision data types, thereby avoiding quantization effects. When
performing automatic scaling to propose higher fidelity fixed-point scaling, the Fixed-
Point Tool uses these simulation results.

1 On the Fixed-Point Tool Model settings pane, click the Model-wide double
override and full instrumentation button to set:

• Data type override to Double
• Data type override applies to to All numeric types
• Fixed-point instrumentation mode to Minimums, maximums and

overflows

• The run name (on the Data collection pane Run name field) to
DoubleOverride

2
In the Fixed-Point Tool, click the Simulate button .

The Simulink software simulates the fxpdemo_feedback model in data type
override mode and stores the results as the DoubleOverride run. Afterward, on
its Contents pane, the Fixed-Point Tool displays the DoubleOverride run results
along with those of the NoOverride run that you generated previously (see “Initial
Guess at Scaling” on page 38-40). The compiled data type (CompiledDT) column
for the DoubleOverride run shows that the model's blocks used a double data
type during simulation.

3 On the Contents pane of the Fixed-Point Tool, select the Transfer Fcn block named
Analog Plant in the NoOverride run, and then click the Compare Signals
button .

The Fixed-Point Tool plots both the DoubleOverride and NoOverride versions
of the signal associated with the plant output (upper axes), and plots the difference
between the active and reference versions of that signal (lower axes). Compare the
ideal (double data type) plant output signal with its fixed-point version.

Tip From the Simulation Data Inspector menu bar, use the zoom tools to zoom in on
an area.

38 Automatic Data Typing

38-44

Automatic Data Typing

Using the automatic data typing procedure, you can easily maximize the precision of the
output data type while spanning the full simulation range.

Because no design min/max information is supplied, the simulation min/max data that
was collected during the simulation run is used for proposing data types. The Safety
margin for simulation min/max (%) parameter value multiplies the “raw” simulation
values. Setting this parameter to a value greater than 1 decreases the likelihood that
an overflow will occur when fixed-point data types are being used. For more information
about how the Fixed-Point Tool calculates data type proposals, see “Proposing Data
Types” on page 38-13.

 Propose Fraction Lengths

38-45

Because of the nonlinear effects of quantization, a fixed-point simulation produces results
that are different from an idealized, doubles-based simulation. Signals in a fixed-point
simulation can cover a larger or smaller range than in a doubles-based simulation. If the
range increases enough, overflows or saturations could occur. A safety margin decreases
this likelihood, but it might also decrease the precision of the simulation.

Note: When the maximum and minimum simulation values cover the full, intended
operating range of your design, the Fixed-Point Tool yields meaningful automatic data
typing results.

Perform automatic data typing for the Controller block. This block is a subsystem that
represents software running on the target, and it requires optimization.

1 On the Model Hierarchy pane of the Fixed-Point Tool, select the Controller
subsystem. On the Automatic data typing for selected system pane, click the
Configure link. Select Simulation min/max for Propose using information
from design min/max and, then specify the Safety margin for simulation min/
max parameter as 20. Click Apply.

2 In the Fixed-Point Tool:

a Click the Propose fraction lengths button .
b In the Propose Data Types dialog box, select DoubleOverride, and then click

OK.

The Fixed-Point Tool analyzes the scaling of all fixed-point blocks whose:

• Lock output data type setting against changes by the fixed-point
tools parameter is not selected.

• Output data type parameter specifies a generalized fixed-point number.
• Data types are not inherited types.

The Fixed-Point Tool uses the minimum and maximum values stored in the
DoubleOverride run to propose each block's data types such that the precision
is maximized while the full range of simulation values is spanned. The tool
displays the proposed data types on its Contents pane. Now, it displays the
Automatic Data Typing with Simulation Min/Max View to provide

38 Automatic Data Typing

38-46

information, such as ProposedDT, ProposedMin, ProposedMax, which are
relevant at this stage of the fixed-point conversion.

Tip In the main toolbar, use the Show option to view the groups that must share
data types. For more information, see fxptdlg in the Simulink Reference.

3 Review the scaling that the Fixed-Point Tool proposes. You can choose to accept the
scaling proposal for each block. On the Contents pane, select the corresponding
Accept check box. By default, the Fixed-Point Tool accepts all scaling proposals that
differ from the current scaling. For this example, ensure that the Accept check
box associated with the DoubleOverride run is selected for each of the Controller
subsystem's blocks.

4 In the Fixed-Point Tool, click the Apply accepted fraction lengths button .

The Fixed-Point Tool applies the scaling proposals that you accepted in the previous
step to the Controller subsystem's blocks.

5 On the Model Hierarchy pane of the Fixed-Point Tool, select the
fxpdemo_feedback system.

a On the Model settings pane, click the Model-wide no override and full
instrumentation button to use the locally specified data type settings.

b On the Data collection pane, set Run name to FixedPoint so that the Fixed-
Point Tool stores the results with a new run name and does not overwrite the
results for the initial fixed-point set up. Storing the results in different runs
allows you to compare the initial system behavior with the behavior of the
autoscaled model.

6 In the Fixed-Point Tool, click Simulate.

The Simulink software simulates the fxpdemo_feedback model using the new
scaling that you applied. Afterward, in its Contents pane, the Fixed-Point Tool
displays information about blocks that logged fixed-point data. The compiled data
type (CompiledDT) column for the FixedPoint run shows that the Controller
subsystem's blocks used fixed-point data types with the new scaling.

7 On the Model Hierarchy pane of the Fixed-Point Tool, select the
fxpdemo_feedback system.

a On the Contents pane, select the Transfer Fcn block named Analog Plant for
the FixedPoint run, and then click the Compare Signals button .

 Propose Fraction Lengths

38-47

b In the Compare Runs Selector dialog box, select DoubleOverride, and then
click OK.

The Fixed-Point Tool plots the fixed-point and double override versions of the
plant output signal, as well as their difference.

Tip Optionally, you can zoom in to view the steady-state region with greater detail.
From the Tools menu of the figure window, select Zoom In and then drag the
pointer to draw a box around the area that you want to view more closely.

The plant output signal represented by the fixed-point run achieves a steady state,
but a small limit cycle is present because of poor A/D design.

38 Automatic Data Typing

38-48

How the Fixed-Point Tool Proposes Word Lengths

To use the Fixed-Point Tool to propose word lengths, you must specify the target
hardware and the fraction length requirements for data types in the model. Select the
fraction lengths based on the precision required for the system that you are modeling. If
you do not specify fraction lengths, the Fixed-Point Tool sets the fraction length to zero.
The Fixed-Point Tool uses these specified fraction lengths to recommend the minimum
word length for fixed-point data types in the selected model or subsystem to avoid
overflow for the collected range information.

The proposed word length is based on:

• Design range information and range information that the Fixed-Point Tool or Fixed-
Point Advisor collects. This collected range information can be either simulation or
derived range data.

• The signedness and fraction lengths of data types that you specify for blocks, signal
objects.

• The signedness and fraction lengths of the default data types that you specify in the
Fixed-Point Tool or Fixed-Point Advisor.

• The production hardware implementation settings specified in the Configuration
Parameters dialog box.

How the Fixed-Point Tool Uses Range Information

The Fixed-Point Tool determines whether to use different types of range information
based on its availability and on the Fixed-Point Tool Derived min/max and Simulation
min/max settings.

Design range information always takes precedence over both simulation and derived
range data. When there is no design range information, the Fixed-Point Tool uses the
union of available simulation and derived range data. If you specify safety margins, the
Fixed-Point Tool takes these margins into account.

For example, if a signal has a design range of [-10,10], the Fixed-Point Tool uses this
range for the proposal and ignores all simulation and derived range information. If you
specify a safety margin of 10% for design range, the Fixed-Point Tool uses a range of
[-11,11] for the proposal.

 How the Fixed-Point Tool Proposes Word Lengths

38-49

If the signal has no specified design information, but does have a simulation range
of [-8,8] and a derived range of [-2,2], the proposal uses the union of the ranges,
[-8,8]. If you specify a safety margin of 50%, the proposal uses a range of [-12, 12].

How the Fixed-Point Tool Uses Target Hardware Information

The Fixed-Point Tool calculates the ideal word length and then checks this length
against the production hardware implementation settings for the target hardware. The
tool uses the following rules.

Target
Hardware

Ideal Word Length Proposed Word Length Restrictions

Ideal word
length=<128

Ideal word length NoneFPGA/ASIC

Ideal word length>128 128 Maximum word length
is 128

Ideal word length=<
character bit length
for the embedded
processor (char)

char Rounds up word length

char <Ideal word
length=< short
bit length for the
embedded processor
(short)

short Rounds up word length

short<Ideal word
length=< integer
bit length for the
embedded processor
(int)

int Rounds up word length

Embedded
Processor

int<Ideal word
length=<long bit
length for the
embedded processor
(long)

long Rounds up word length

38 Automatic Data Typing

38-50

Target
Hardware

Ideal Word Length Proposed Word Length Restrictions

Ideal word length>long
bit length for the
embedded processor

long Maximum word length
is the target hardware
long

 Propose Word Lengths

38-51

Propose Word Lengths

1 Specify the target hardware.

a In the model, select Simulation > Model Configuration Parameters.
b In the Configuration Parameters dialog box, select Hardware

Implementation.
c On the Hardware Implementation pane, specify the Device vendor and

Device type, and then click Apply.
2 On the Fixed-Point Tool Automatic data typing for selected system pane, select

Propose word lengths for specified fraction lengths. If you cannot see this
option, click Configure to display more options.

3 On the same pane:

• For simulation min/max information only, clear Derived min/max.
• For derived min/max information only, clear Simulation min/max.

4 If you have safety margins to apply, set Safety margin for design and derived
min/max (%) and Safety margin for design and derived min/max (%), as
applicable.

5 Click the Propose word lengths button, .

Note: When the Fixed-Point Tool proposes data types, it does not alter your model.

38 Automatic Data Typing

38-52

Propose Word Lengths Based on Simulation Data

This example shows how to use the Fixed-Point Tool to propose word lengths for a model
that implements a simple moving average algorithm. The model already uses fixed-point
data types, but they are not optimal. Simulate the model and propose data types based
on simulation data. To see how the target hardware affects the word length proposals,
first set the target hardware to an embedded processor and propose word lengths. Then,
set the target hardware to an FPGA and propose word lengths.

1 Open the ex_moving_average model. At the MATLAB command line, enter:

addpath(fullfile(docroot,'toolbox','fixpoint','examples'))

ex_moving_average

Some blocks in the model already have specified fixed-point data types.

 Propose Word Lengths Based on Simulation Data

38-53

Block Data Type Specified on Block

Dbl2Fixpt fixdt(1,16,10)

Gain1 fixdt(1,32,17)

Gain2 fixdt(1,32,17)

Gain3 fixdt(1,32,17)

Gain4 fixdt(1,16,1)

Add1 fixdt(1,32,17)

Add2 fixdt(1,32,17)

Add3 fixdt(1,32,17)

2 Verify that the target hardware is an embedded processor.

a In the model, select Simulation > Model Configuration Parameters.
b In the Configuration Parameters dialog box, select Hardware

Implementation.

On the Hardware Implementation pane, the Device vendor is Generic and
the Device type is 16–bit embedded processor.

c Close the Configuration Parameters dialog box.
3 From the model Analysis menu, select Fixed-Point Tool.
4 On the Model settings pane, click the Model-wide double override and full

instrumentation button to set:

• Data type override to Double
• Data type override applies to to All numeric types
• Fixed-point instrumentation mode to Minimums, maximums and

overflows

• The run name (in the Data collection pane Run name field) to
DoubleOverride

Using these settings, the Fixed-Point Tool performs a global override of the fixed-
point data types with double-precision data types, avoiding quantization effects.
During simulation, the tool logs minimum value, maximum value, and overflow data
for all blocks in the current system or subsystem in the run DoubleOverride.

38 Automatic Data Typing

38-54

5 Click the Fixed-Point Tool Simulate button to run the simulation.

The Fixed-Point Tool simulates the model and displays the results on the Contents
pane in the run named DoubleOverride.

6 On the Automatic data typing for selected system pane:

a Click Configure to display more options.
b Select Propose word lengths for specified fraction lengths, then click

Apply.
7 Click the Propose word lengths button.

The Fixed-Point Tool uses available range data to calculate data type proposals
according to the following rules:

• Design minimum and maximum values take precedence over the simulation
range.

The Safety margin for design and derived min/max (%) parameter specifies
a range that differs from that defined by the design range. In this example, no
safety margins are set.

 Propose Word Lengths Based on Simulation Data

38-55

• The tool observes the simulation range because you selected the Simulation
min/max option.

The Safety margin for simulation min/max (%) parameter specifies a range
that differs from that defined by the simulation range. In this example, no safety
margins are set.

The Fixed-Point Tool analyzes the data types of all fixed-point blocks whose:

• Lock output data type setting against changes by the fixed-point tools
parameter is not selected.

• Output data type parameter specifies a generalized fixed-point number.
• Data types are not inherited types.

For each object in the model, the Fixed-Point Tool proposes the minimum word
length that avoids overflow for the collected range information. Because the target
hardware is a 16–bit embedded processor, the Fixed-Point tool proposes word lengths
based on the number of bits used by the processor for each data type. For more
information, see “How the Fixed-Point Tool Uses Target Hardware Information” on
page 38-49.

The tool proposes smaller word lengths for Gain4 and Gain4:Gain. The tool
calculated that their ideal word length is less than or equal to the character bit
length for the embedded processor (8), so the tool rounds up the word length to 8.

38 Automatic Data Typing

38-56

8 To see how the target hardware affects the word length proposal, change the target
hardware to FPGA/ASIC.

a In the model, select Simulation > Model Configuration Parameters.
b In the Configuration Parameters dialog box, select Hardware

Implementation.
c On the Hardware Implementation pane, set Device vendor to ASIC/FPGA.

Simulink automatically sets the Device type to ASIC/FPGA.
d Click Apply and close the Configuration Parameters dialog box.

9 On the Fixed-Point Tool Automatic data typing for selected system pane, click
the Propose word lengths button.

Because the target hardware is an FPGA, there are no constraints on the word
lengths that the Fixed-Point Tool proposes. The word length for Gain4:Gain is now
3.

 Propose Word Lengths Based on Simulation Data

38-57

38 Automatic Data Typing

38-58

Propose Data Types Using Multiple Simulations

In this section...

“About This Example” on page 38-58
“Running the Simulation” on page 38-60

About This Example

This example shows how to use the Fixed-Point Tool to propose fraction lengths for a
model based on the simulation minimum and maximum values captured over multiple
simulations.

This example uses the ex_fpt_merge model.

 Propose Data Types Using Multiple Simulations

38-59

About the Model

The model contains a sine wave input and two alternate noise sources, band-limited
white noise and random uniform noise. The software converts the sine wave input and
selected noise signal to fixed point and then adds them.

• The Data Type Conversion block Dbl-to-FixPt1 converts the double-precision noise
input to the fixed-point data type fixdt(1,16,15).

• The Data Type Conversion block Dbl-to-FixPt2 converts the double-precision sine
wave input to the fixed-point data type fixdt(1,16,10).

• The Add block Accumulator data type is fixdt(1,32,30) and Output data type
is fixdt(1,16,14).

38 Automatic Data Typing

38-60

Merging Results from Two Simulation Runs

In this example, you use the Fixed-Point Tool to merge the results from two simulation
runs. Merging results allows you to autoscale your model over the complete simulation
range.

1 “Simulate the Model Using Random Uniform Noise” on page 38-60. Using the
Fixed-Point Tool, you simulate the model with the random uniform noise signal and
observe the simulation minimum and maximum values for the Add block. The Fixed-
Point Tool uses these simulation settings:

• Fixed-point instrumentation mode: Minimums, maximums and overflows
• Data type override: Double
• Data type override applies to: All numeric types
• Merge instrumentation results from multiple simulations is not selected.

This run provides the simulation results for the random uniform noise input only.
2 “Simulate Model Using Band-Limited White Noise” on page 38-61. You select the

band-limited white noise signal and run another simulation using the same Fixed-
Point Tool simulation settings. The Fixed-Point Tool overwrites the results of the
previous run.

This run provides the simulation range for the band-limited white noise input only.
3 “Merge Results” on page 38-62. You configure the Fixed-Point Tool to merge

results. Select the random uniform noise input again, rerun the simulation, and
observe the simulation results for the Add block.

This run provides the simulation range based on the entire set of input data for both
noise sources.

4 “Propose Fraction Lengths Based on Merged Results” on page 38-62. The Fixed-
Point Tool uses the merged simulation minimum and maximum values to propose
scaling for each block to ensure maximum precision while spanning the full range of
simulation values.

Running the Simulation

Simulate the Model Using Random Uniform Noise

1 Open the ex_fpt_merge model. At the MATLAB command line, enter:

 Propose Data Types Using Multiple Simulations

38-61

addpath(fullfile(docroot,'toolbox','fixpoint','examples'))

ex_fpt_merge

2 From the model main menu, select Analysis > Fixed-Point Tool.
3 On the Fixed-Point Tool Model settings pane, click the Model-wide double

override and full instrumentation button to set:

• Data type override to Double. This option enables each of the model's
subsystems to use its locally specified data type settings.

• Fixed-point instrumentation mode to Minimums, maximums and
overflows.

• The run name to DoubleOverride.
4 In the Fixed-Point Tool, click the Simulate button .

The Simulink software simulates the ex_fpt_merge model, using the random
uniform noise signal. Afterward, the Fixed-Point Tool Contents pane displays the
simulation results for each block that logged fixed-point data. The tool stores the
results in a run named DoubleOverride, denoted by the DoubleOverride label in
the Run column.

5 The SimMin and SimMax values for the Add block are:

SimMin is -3.5822

SimMax is 2.7598

Simulate Model Using Band-Limited White Noise

1 In the model, double-click the switch to select the band-limited white noise signal.
2 In the Fixed-Point Tool, click the Simulate button.

The Simulink software simulates the ex_fpt_merge model, now using the band-
limited white noise signal.

3 The changed values for SimMin and SimMax for the Add block are:

SimMin is now-2.5317

SimMax is now 3.1542

38 Automatic Data Typing

38-62

Merge Results

1 In the model, double-click the switch to select the random uniform noise signal.
2 On the Fixed-Point Tool Data collection pane, select Merge results from

multiple simulations, click Apply and rerun the simulation.
3 The SimMin and SimMax values for the Add block now cover the entire simulation

range for both the random uniform and band-limited white noise signals.

SimMin is -3.5822

SimMax is 3.1542

Propose Fraction Lengths Based on Merged Results

1 On the Automatic data typing for selected system pane, click the Propose
fraction lengths button.

The Fixed-Point Tool analyzes the data types of all fixed-point blocks whose:

• Lock output data type setting against changes by the fixed-point tools
parameter is not selected.

• Output data type parameter specifies a generalized fixed-point number.
• Data types are not inherited.

The Fixed-Point Tool uses the merged minimum and maximum values to propose
fraction lengths for each block. These values ensure maximum precision while
spanning the full range of simulation values. The tool displays the proposed data
types in the Contents pane.

 View Simulation Results

38-63

View Simulation Results

In this section...

“Compare Runs” on page 38-63
“Compare Signals” on page 38-64
“Inspect Signals” on page 38-65
“Histogram Plot of Signal” on page 38-66
“See Also” on page 38-67

Compare Runs

To compare runs:

1 In one of the runs that you want to compare, select a logged signal.
2 From the Fixed-Point Tool menu, select Results > Compare Runs or click .
3 If there are more than two runs, in the Compare Runs Selector dialog box, select

the run that you want to compare, and then click OK.

On the upper axes, the Simulation Data Inspector plots the signal in both selected runs.
On the lower axes, the Simulation Data Inspector plots the difference between those
runs.

38 Automatic Data Typing

38-64

Compare Signals

To compare signals:

1 In one of the runs that you want to compare, select a logged signal.
2

From the Fixed-Point Tool menu, select Results > Compare Signals or click .
3 If there are more than two runs, in the Compare Runs Selector dialog box, select

the run that you want to compare, and then click OK.

On the upper axes, the Simulation Data Inspector plots the signal in both selected runs.
On the lower axes, the Simulation Data Inspector plots the difference between those
runs.

 View Simulation Results

38-65

Inspect Signals

To inspect a signal:

1 Select the logged signal that you want to inspect.
2

From the Fixed-Point Tool menu, select Results > Inspect Signal or click .

The Simulation Data Inspector plots data as a function of time.

38 Automatic Data Typing

38-66

Histogram Plot of Signal

To view the histogram plot of a signal:

1 Select the logged signal that you want to plot.
2 From the Fixed-Point Tool menu, select Results > Histogram Plot of Signal or

click .

The histogram plot helps you visualize the dynamic range of a signal. It provides
information about the:

• Total number of samples (N).
• Maximum number of bits to prevent overflow.

 View Simulation Results

38-67

• Number of times each bit has represented the data (as a percentage of the total
number of samples).

• Number of times that exact zero occurred (without the effect of quantization). This
number does not include the number of zeroes that occurred due to rounding.

You can use this information to estimate the word size required to represent the signal.

See Also

• “Viewing Results With the Simulation Data Inspector” on page 38-68
• “Propose Fraction Lengths Using Simulation Range Data”

38 Automatic Data Typing

38-68

Viewing Results With the Simulation Data Inspector

Why Use the Simulation Data Inspector

Using the Simulation Data Inspector to inspect and compare data after converting your
floating-point model to fixed point facilitates tracking numerical error propagation.

When to Use the Simulation Data Inspector

Use the Simulation Data Inspector to:

• Plot multiple signals in one or more axes
• Compare a signal in different runs
• Compare all logged signal data from different runs
• Export signal logging results to a MAT-file
• Specify tolerances for signal comparison
• Create a report of the current view and data in the Simulation Data Inspector

What You Can Inspect in the Simulation Data Inspector

The Fixed-Point Tool uses the Simulation Data Inspector tool plotting capabilities that
enable you to plot signals for graphical analysis. The tool can access signal data that
resides in the MATLAB workspace, allowing you to plot simulation results associated
with:

• Scope blocks whose Save data to workspace parameter is selected
• To Workspace blocks
• Root-level Outport blocks, when the Output check box on the Data Import/Export

pane of the Configuration Parameters dialog box is selected
• Logged signal data

Tip The Contents pane of the Fixed-Point Tool displays an antenna icon next to items
that you can plot.

 Viewing Results With the Simulation Data Inspector

38-69

See Also

• “Validate System Behavior”
• fxptdlg

39

Range Analysis

• “How Range Analysis Works” on page 39-2
• “Derive Ranges” on page 39-7
• “Derive Ranges at the Subsystem Level” on page 39-9
• “View Derived Ranges in the Fixed-Point Tool” on page 39-11
• “Derive Ranges Using Design Ranges” on page 39-13
• “Derive Ranges Using Block Initial Conditions” on page 39-15
• “Derive Ranges Using Design Ranges for Simulink.Parameter Objects” on page

39-17
• “Insufficient Design Range Information” on page 39-20
• “Providing More Design Range Information” on page 39-23
• “Fixing Design Range Conflicts” on page 39-26
• “Derive Ranges for a Referenced Model” on page 39-28
• “Propose Data Types for a Referenced Model” on page 39-34
• “Deriving Ranges for a Referenced Model” on page 39-36
• “Intermediate Range Results” on page 39-38
• “Unsupported Simulink Software Features” on page 39-41
• “Supported and Unsupported Simulink Blocks” on page 39-43

39 Range Analysis

39-2

How Range Analysis Works

In this section...

“Analyzing a Model with Range Analysis” on page 39-2
“Automatic Stubbing” on page 39-5
“Model Compatibility with Range Analysis” on page 39-6

Analyzing a Model with Range Analysis

The model that you want to analyze must be compatible with range analysis. If your
model is not compatible, either replace unsupported blocks or divide the model so that
you can analyze the parts of the model that are compatible. For more information, see
“Model Compatibility with Range Analysis” on page 39-6.

The Fixed-Point Designer software performs a static range analysis of your model to
derive minimum and maximum range values for signals in the model. The software
analyzes the model behavior and computes the values that can occur during simulation
for each block Outport. The range of these values is called a derived range.

The software statically analyzes the ranges of the individual computations in the model
based on:

• Specified design ranges, known as design minimum and maximum values, for
example, minimum and maximum values specified for:

• Inport and Outport blocks
• Block outputs
• Input, output, and local data used in MATLAB Function and Stateflow Chart

blocks
• Simulink data objects (Simulink.Signal and Simulink.Parameter objects)

• Inputs
• The semantics of each calculation in the blocks

If the model contains objects that the analysis cannot support, where possible, the
software uses automatic stubbing. For more information, see “Automatic Stubbing” on
page 39-5.

 How Range Analysis Works

39-3

The range analysis tries to narrow the derived range by using all the specified design
ranges in the model. The more design range information you specify, the more likely
the range analysis is to succeed. As the software performs the analysis, it derives new
range information for the model. The software then attempts to use this new information,
together with the specified ranges, to derive ranges for the remaining objects in the
model.

For models that contain floating-point operations, range analysis might report a range
that is slightly larger than expected. This difference is due to rounding errors because the
software approximates floating-point numbers with infinite-precision rational numbers
for analysis and then converts to floating point for reporting.

39 Range Analysis

39-4

The following table summarizes how the analysis derives range information and provides
links to examples.

When... How the Analysis Works Examples

You specify design
minimum and maximum
data for a block output.

The derived range at the
block output is based on
these specified values and
on the following values
for blocks connected to its
inputs and outputs:

• Specified minimum and
maximum values

• Derived minimum and
maximum values

“Derive Ranges Using Design
Ranges” on page 39-13

A parameter on a block
has initial conditions and a
design range.

The analysis takes both
factors into account by
taking the union of the
design range and the initial
conditions.

“Derive Ranges Using Block
Initial Conditions” on page
39-15

The model contains a
parameter with a specified
range and the parameter
storage class is set to Auto.

The analysis does not
take into account the
range specified for the
parameter. Instead, it uses
the parameter value.

“Derive Ranges Using
Design Ranges for
Simulink.Parameter Objects”
on page 39-17

The model contains a
parameter with a specified
range and the parameter
storage class is not set to
Auto.

The analysis takes into
account the range specified
for the parameter and
ignores the value.

“Derive Ranges Using
Design Ranges for
Simulink.Parameter Objects”
on page 39-17

The model contains
insufficient design range
information.

The analysis cannot
determine derived ranges.
Specify more design range
information and rerun the
analysis.

“Providing More Design
Range Information” on page
39-23

The analysis results might
depend on block sorting
order which determines
the order in which the

 How Range Analysis Works

39-5

When... How the Analysis Works Examples

software analyzes the blocks.
For more information, see
“Control and Display the
Sorted Order”.

The model contains
conflicting design range
information.

The analysis cannot
determine the derived
minimum or derived
maximum value for an
object. The Fixed-Point
Tool generates an error.
To fix this error, examine
the design ranges specified
in the model to identify
inconsistent design
specifications. Modify them
to make them consistent.

“Fixing Design Range
Conflicts” on page 39-26

Automatic Stubbing

What is Automatic Stubbing?

Automatic stubbing is when the software considers only the interface of the unsupported
objects in a model, not their actual behavior. Automatic stubbing lets you analyze a
model that contains objects that the Fixed-Point Designer software does not support.
However, if any unsupported model element affects the derivation results, the analysis
might achieve only partial results.

How Automatic Stubbing Works

With automatic stubbing, when the range analysis comes to an unsupported block, the
software ignores ("stubs") that block. The analysis ignores the behavior of the block. As a
result, the block output can take any value.

The software cannot “stub” all Simulink blocks, such as the Integrator block. See the
blocks marked “not stubbable” in “Supported and Unsupported Simulink Blocks” on page
39-43.

39 Range Analysis

39-6

Model Compatibility with Range Analysis

To verify that your model is compatible with range analysis, see:

• “Unsupported Simulink Software Features” on page 39-41
• “Supported and Unsupported Simulink Blocks” on page 39-43
• “Limitations of Support for Model Blocks” on page 39-53

 Derive Ranges

39-7

Derive Ranges

1 Verify that your model is compatible with range analysis. See “Model Compatibility
with Range Analysis”.

2 In Simulink, open your model and set it up for use with the Fixed-Point Tool. For
more information, see “Set Up the Model”.

3 From the Simulink Analysis menu, select Fixed-Point Tool.
4 In the Fixed-Point Tool Model Hierarchy pane, select the system or subsystem of

interest.
5 Use the Fixed-Point Advisor to prepare the model for conversion.

a In the Fixed-Point Tool Fixed-point preparation for selected system pane,
click the Fixed-Point Advisor button.

b Run each task in the Fixed-Point Advisor. For more information, see
“Preparation for Fixed-Point Conversion”.

The Fixed-Point Advisor:

• Checks the model against fixed-point guidelines.
• Identifies unsupported blocks.
• Removes output data type inheritance from blocks.
• Allows you to promote simulation minimum and maximum values to design

minimum and maximum values. This capability is useful if you have not specified
design ranges and you have simulated the model with inputs that cover the full
intended operating range. For more information, see “Specify block minimum and
maximum values”.

6 In the Settings for selected system pane, set Data type override to Double,
then click Apply.

This global override of the fixed-point data types using double-precision numbers
avoids quantization effects.

7 Optionally, in the Data collection pane Store results in run field, specify a run
name. Specifying a unique run name avoids overwriting results from previous runs.

8 In the Fixed-Point Tool, click the Derive ranges for selected system button.

The analysis runs and tries to derive range information for objects in the selected
system. Your next steps depend on the analysis results.

39 Range Analysis

39-8

Analysis Results Fixed-Point Tool Behavior Next Steps For More Information

Successfully derives
range data for the
model.

Displays the derived
minimum and
maximum values
for the blocks in the
selected system.

Review the derived
ranges to determine if
the results are suitable
for proposing data
types. If not, you must
specify additional
design information and
rerun the analysis.

“View Derived Ranges
in the Fixed-Point Tool”
on page 39-11

Fails because the model
contains blocks that
the software does not
support.

Generates an error and
provides information
about the unsupported
blocks.

To fix the error, review
the error message
information and replace
the unsupported blocks.

“Model Compatibility
with Range Analysis”
on page 39-6

Cannot derive range
data because the
model contains
conflicting design range
information.

Generates an error. To fix this error,
examine the design
ranges specified in
the model to identify
inconsistent design
specifications. Modify
them to make them
consistent.

“Fixing Design Range
Conflicts” on page
39-26

Cannot derive range
data for an object
because there is
insufficient design
range information
specified on the model.

Highlights the results
for the object.

Examine the model to
determine which design
range information is
missing.

“Providing More Design
Range Information” on
page 39-23

 Derive Ranges at the Subsystem Level

39-9

Derive Ranges at the Subsystem Level

In this section...

“Deriving Ranges at the Subsystem Level” on page 39-9
“Derive Ranges at the Subsystem Level” on page 39-10

Deriving Ranges at the Subsystem Level

You can derive range information for individual atomic subsystems and atomic
charts. When you derive ranges at the model level, the software takes into account all
information in the scope of the model. When you derive ranges at the subsystem level
only, the software treats the subsystem as a standalone unit and the derived ranges are
based on only the local design range information specified in the subsystem or chart.
Therefore, when you derive ranges at the subsystem level, the analysis results might
differ from the results of the analysis at the model level.

For example, consider a subsystem that has an input with a design minimum of -10 and
a design maximum of 10 that is connected to an input signal with a constant value of 1.
When you derive ranges at the model level, the range analysis software uses the constant
value 1 as the input. When you derive ranges at the subsystem level, the range analysis
software does not take the constant value into account and instead uses [-10..10] as
the range.

When to Derive Ranges at the Subsystem Level

Derive ranges at the subsystem level to facilitate:

• System validation

It is a best practice to analyze individual subsystems in your model one at a time.
This practice makes it easier to understand the atomic behavior of the subsystem. It
also makes debugging easier by isolating the source of any issues.

• Calibration

The results from the analysis at subsystem level are based only on the settings
specified within the subsystem. The proposed data types cover the full intended
design range of the subsystem. Based on these results, you can determine whether
you can reuse the subsystem in other parts of your model.

39 Range Analysis

39-10

Derive Ranges at the Subsystem Level

The complete procedure for deriving ranges is described in “Derive Ranges” on page 39-7.

To derive ranges at the subsystem level, the key points to remember are:

• The subsystem or subchart must be atomic.
• In the Fixed-Point Tool Model Hierarchy pane, select the subsystem of interest.
• In the Settings for selected system pane, set Data type override to Double, then

click Apply.

Tip If the parent of the selected subsystem controls the data type override setting of
the subsystem, first set the parent Data type override to Use local settings
and then set the subsystem Data type override to Double.

This global override of the fixed-point data types using double-precision numbers
avoids quantization effects.

• In the Data collection pane Run name field, specify a run name. Specifying a
unique run name avoids overwriting results from previous runs. This run contains
derived minimum and maximum values that take into account the full intended
design range of the subsystem.

 View Derived Ranges in the Fixed-Point Tool

39-11

View Derived Ranges in the Fixed-Point Tool

After you use the Fixed-Point Tool to derive ranges for a model, the Fixed-Point Tool
Contents pane displays the derived minimum and maximum values for each object in
the selected system.

If the analysis cannot derive a minimum or maximum value, the Fixed-Point Tool
highlights the result. To fix the issue, examine the model to identify which objects have
no specified design ranges and add this information. See “Insufficient Design Range
Information” on page 39-20.

39 Range Analysis

39-12

 Derive Ranges Using Design Ranges

39-13

Derive Ranges Using Design Ranges

This example shows how the range analysis narrows the derived range for the Outport
block. This range is based on the range derived for the Add block using the design ranges
specified on the two Inport blocks and the design range specified for the Add block.

1 Open the ex_derived_min_max_1 model. At the MATLAB command line, enter:

addpath(fullfile(docroot,'toolbox','fixpoint','examples'))

ex_derived_min_max_1

39 Range Analysis

39-14

The model displays the specified design minimum and maximum values for each
block.

• In1 design range is [-50..100].
• In2 design range is [-50..35].
• Add block design range is [-125..55].

Tip To display design ranges in your model, from the model menu, select Display >
Signals & Ports and select Design Ranges.

2 From the Simulink Analysis menu, select Fixed-Point Tool.
3 In the Settings for selected system pane, set Data type override to Double,

then click Apply.

This global override of the fixed-point data types using double-precision numbers
avoids quantization effects.

4 In the Fixed-Point Tool, click the Derive ranges for selected system button.

To calculate the derived range at the Add block input, the software uses the design
minimum and maximum values specified for the Inport blocks, [-50..100] and
[-50..35]. The derived range at the Add block input is [-85..150].

In the Contents pane, the Fixed-Point Tool displays the derived and design
minimum and maximum values for the blocks in the selected system.

• The derived range for the Add block output signal is narrowed to [-85..55].
This derived range is the intersection of the range derived from the block inputs,
[-85..150], and the design minimum and maximum values specified for the
block output, [-125..55].

• The derived range for the Outport block Out1 is [-85..55], the same as the Add
block output.

 Derive Ranges Using Block Initial Conditions

39-15

Derive Ranges Using Block Initial Conditions

This example shows how range analysis takes into account block initial conditions.

1 Open the ex_derived_min_max_2 model. At the MATLAB command line, enter:

addpath(fullfile(docroot,'toolbox','fixpoint','examples'))

ex_derived_min_max_2

39 Range Analysis

39-16

The model uses block annotations to display the specified design minimum and
maximum values for the Inport block and the initial conditions for the Unit Delay
block.

• In1 design range is [5..10].
• Unit Delay block initial condition is 0.

Tip To display design ranges in your model, from the model menu, select Display >
Signals & Ports and select Design Ranges.

2 From the Simulink Analysis menu, select Fixed-Point Tool.
3 In the Settings for selected system pane, set Data type override to Double,

then click Apply.

This global override of the fixed-point data types using double-precision numbers
avoids quantization effects.

4 In the Fixed-Point Tool, click the Derive ranges for selected system button.

In the Contents pane, the Fixed-Point Tool displays the derived minimum and
maximum values for the blocks in the model.

The derived minimum and maximum range for the Outport block, Out1, is [0..10].
The range analysis derives this range by taking the union of the initial value, 0, on
the Unit Delay block and the design range on the block, [5..10].

5 Change the initial value of the Unit Delay block to 7.

a Double-click the Unit Delay block.
b In the Block Parameters dialog box, set Initial conditions to 7, then click

OK.
c In the Fixed-Point Tool, click the Derive ranges for selected system button.

Because the analysis takes the union of the initial conditions, 7, and the design
range, [5..10], on the Unit Delay block, the derived range for the block is still
[5..10].

 Derive Ranges Using Design Ranges for Simulink.Parameter Objects

39-17

Derive Ranges Using Design Ranges for Simulink.Parameter
Objects

This example shows how the range analysis takes into account design range information
for Simulink.Parameter objects unless the parameter storage class is set to Auto. If
the parameter storage class is set to Auto, the analysis uses the value of the parameter.

1 Open the ex_derived_min_max_3 model. At the MATLAB command line, enter:

addpath(fullfile(docroot,'toolbox','fixpoint','examples'))

ex_derived_min_max_3

39 Range Analysis

39-18

The model displays the specified design minimum and maximum values for the
Inport blocks. The design range for both Inport blocks is [1..2].

Tip To display design ranges in your model, from the model menu, select Display >
Signals & Ports and select Design Ranges.

2 Examine the gain parameters for the Gain blocks.

a Double-click each Gain block and note the name of the Gain parameter on the
Main tab.

Gain Block Gain Parameter

Gain1 paramObjOne

Gain2 paramObjTwo

b From the model menu, select Tools > Model Explorer.
c In Model Explorer window, select the base workspace and view information for

each of the gain parameters used in the model.

Gain Parameter Type Information

paramObjOne Simulink.Parameter object. Value
2. Storage class set to Auto.

paramObjTwo Simulink.Parameter object.
Value 2. Storage class set to
SimulinkGlobal.

3 From the Simulink Analysis menu, select Fixed-Point Tool.
4 In the Settings for selected system pane, set Data type override to Double ,

then click Apply.

This global override of the fixed-point data types using double-precision numbers
avoids quantization effects.

5 In the Fixed-Point Tool, click the Derive ranges for selected system button.

In the Contents pane, the Fixed-Point Tool displays the derived minimum and
maximum values for the blocks in the model.

 Derive Ranges Using Design Ranges for Simulink.Parameter Objects

39-19

Block Derived
Range

Reason

Gain1 [2..4] The gain parameter, paramObjOne, specified on Gain
block Gain1 is a Simulink.Parameter object that
has its storage class specified as Auto. The range
analysis uses the value of the Simulink.Parameter
object, which is 2, and ignores the design range
specified for these parameters.

Gain2 [1..20] The gain parameter, paramObjTwo, specified on Gain
block Gain2 is a Simulink.Parameter object that
has its storage class specified as SimulinkGlobal.
The range analysis takes into account the design
range, [1..10], specified for this parameter.

39 Range Analysis

39-20

Insufficient Design Range Information

This example shows that if the analysis cannot derive range information because there is
insufficient design range information, you can fix the issue by providing additional input
design minimum and maximum values.

1 Open the ex_derived_min_max_4 model. At the MATLAB command line, enter:

addpath(fullfile(docroot,'toolbox','fixpoint','examples'))

ex_derived_min_max_4

The model displays the specified design minimum and maximum values for the
blocks in the model.

 Insufficient Design Range Information

39-21

• The Inport block In1 has a design minimum of -1 but no specified maximum
value, as shown by the annotation, Max=[].

• The Gain block has a design range of [-1.5..1.5].
• The Outport block Out1 has no design range specified, as shown by the

annotations, Min=[], Max=[].

Tip To display design ranges in your model, from the model menu select Display >
Signals & Ports and select Design Ranges.

2 From the Simulink Analysis menu, select Fixed-Point Tool.
3 In the Settings for selected system pane, set Data type override to Double,

then click Apply.

This global override of the fixed-point data types using double-precision numbers
avoids quantization effects.

4 In the Fixed-Point Tool, click the Derive ranges for selected system button.

In the Contents pane, the Fixed-Point Tool displays the derived minimum and
maximum values for the blocks in the model. The range analysis is unable to derive
a maximum value for the Inport block, In1. The tool highlights this result.

5 To fix the issue, specify a design maximum value for In1:

a In the model, double-click the Inport block, In1.
b In the block parameters dialog box, select the Signal Attributes tab.
c On this tab, set Maximum to 1 and click OK.

The model displays the updated maximum value in the block annotation for In1.

39 Range Analysis

39-22

6 In the Fixed-Point Tool, click the Derive ranges for selected system button to
rerun the range analysis.

The range analysis can now derive ranges for the Inport and Gain blocks.

Block Derived Range Reason

Inport In1 [-1..1] Uses specified design range on the block.
Gain [-1.5..1.5] The design range specified on the Gain block

is[-1.5..1.5]. The derived range at the block input
is [-1..1] (the derived range at the output of In1).
Therefore, because the gain is 2, the derived range
at the Gain block output is the intersection of the
propagated range, [-2..2], and the design range,
[-1.5..1.5].

Outport
In2

[-1.5..1.5] Same as Gain block output because no locally specified
design range on Outport block.

 Providing More Design Range Information

39-23

Providing More Design Range Information

This example shows that if the analysis cannot derive range information because there
is insufficient design range information, you can fix the issue by providing additional
output design minimum and maximum values.

1 Open the ex_derived_min_max_5 model. At the MATLAB command line, enter:

addpath(fullfile(docroot,'toolbox','fixpoint','examples'))

ex_derived_min_max_5

The model displays the specified design minimum and maximum values for the
blocks in the model.

• The Inport block In1 has a design range of -10,20.
• The rest of the blocks in the model have no specified design range.

39 Range Analysis

39-24

Tip To display design ranges in your model, from the model menu select Display >
Signals & Ports and select Design Ranges.

2 From the Simulink Analysis menu, select Fixed-Point Tool.
3 In the Settings for selected system pane, set Data type override to Double ,

then click Apply.

This global override of the fixed-point data types using double-precision numbers
avoids quantization effects.

4 In the Fixed-Point Tool, click the Derive ranges for selected system button.

In the Contents pane, the Fixed-Point Tool displays the derived minimum and
maximum values for the blocks in the model. Because one of the Add block inputs
is fed back from its output, the analysis is unable to derive an output range for the
Add block or for any of the blocks connected to this output. The Fixed-Point Tool
highlights these results.

5 To fix the issue, specify design minimum and maximum values for Out1:

a In the model, double-click the Outport block, Out1.
b In the block parameters dialog box, select the Signal Attributes tab.
c On this tab, set Minimum to -20 and Maximum to 40 and click OK.

6 In the Fixed-Point Tool, click the Derive ranges for selected system button to
rerun the range analysis.

 Providing More Design Range Information

39-25

The range analysis uses the minimum and maximum values specified for Out1,
[-20..40] and the gain value of Gain3, 2, to derive an input range for Gain3,
[-10..20]. Because the input of Gain3 feeds back to the input of the Add block, the
analysis now derives ranges for all objects in the model.

39 Range Analysis

39-26

Fixing Design Range Conflicts

This example shows how to fix design range conflicts. If you specify conflicting design
minimum and maximum values in your model, the range analysis software reports an
error. To fix this error, examine the design ranges specified in the model to identify
inconsistent design specifications. Modify them to make them consistent. In this
example, the output design range specified on the Outport block conflicts with the input
design ranges specified on the Inport blocks.

1 Open the ex_range_conflict model. At the MATLAB command line, enter:

addpath(fullfile(docroot,'toolbox','fixpoint','examples'))

ex_range_conflict

 Fixing Design Range Conflicts

39-27

The model displays the specified design minimum and maximum values for the
blocks in the model.

• The Inport blocks In1 and In2 have a design range of [-1..1].
• The Outport block Out1 has a design range of [10..20].

Tip To display design ranges in your model, from the model menu select Display >
Signals & Ports and select Design Ranges.

2 From the Simulink Analysis menu, select Fixed-Point Tool.
3 In the Settings for selected system pane, set Data type override to Double ,

then click Apply.

This global override of the fixed-point data types using double-precision numbers
avoids quantization effects.

4 In the Fixed-Point Tool, click the Derive ranges for selected system button.

The Fixed-Point Tool generates an error because the range analysis fails. It reports
an error because the derived range for the Sum block, [-2..2] is outside the
specified design range for the Outport block, [10..20].

5 Close the error dialog box.
6 To fix the conflict, change the design range on the Outport block to [-10..20] so

that this range includes the derived range for the Sum block.

a In the model, double-click the Outport block.
b In the block parameters dialog box, click the Signal Attributes tab.
c On this tab, set Minimum to -10 and click OK.

7 In the Fixed-Point Tool, click the Derive ranges for selected system button to
rerun the range analysis.

The range analysis derives a minimum value of -2 and a maximum value of 2 for the
Outport block.

39 Range Analysis

39-28

Derive Ranges for a Referenced Model

This example shows how to derive ranges for a model that contains multiple instances of
the same referenced model.

Derive Ranges

1 Open the ex_derived_sum_multi_instance model. At the MATLAB command
line, enter:

addpath(fullfile(docroot,'toolbox','fixpoint','examples'))

ex_derived_sum_multi_instance

The model displays the specified design minimum and maximum values for the
blocks in the model.

 Derive Ranges for a Referenced Model

39-29

• The Inport block In1 has a design range of [-50..100].
• The Inport block In2 has a design range of [-50..35].

Tip To display design ranges in your model, from the model menu select Display >
Signals & Ports and select Design Ranges.

The model contains two Model blocks that both reference the ex_sum model.

39 Range Analysis

39-30

Initially, the Sum block has no design range information.
2 From the ex_derived_sum_multi_instance model Analysis menu, select Fixed-

Point Tool.
3 In the Fixed-Point Tool Model Hierarchy pane, select the

ex_derived_sum_multi_instance model.
4 In the Settings for selected system pane, set Data type override to Double.

 Derive Ranges for a Referenced Model

39-31

This global override of the fixed-point data types using double-precision numbers
avoids quantization effects.

5 In the Fixed-Point Tool Data collection pane, set Run name to double_run and
then click Apply.

Providing a unique name for the run avoids accidentally overwriting results from
previous runs and enables you to identify the run more easily.

6 In the Fixed-Point Tool Model Hierarchy pane, select the ex_sum model.

The Data type override setting is Off. The setting in the parent model does not
affect the setting in the referenced model — you must change it manually in the
referenced model.

7 For the ex_sum model, set Data type override to Double and then click Apply.

Changing the setting for any instance of the referenced model changes the setting on
all instances and on the referenced model itself.

8 Save the models in a local writable folder.

The Fixed-Point Tool cannot derive ranges if your model contains unsaved changes.
9 In the Fixed-Point Tool, select the ex_derived_sum_multi_instance model and

then click Derive ranges for selected system.

To calculate the derived ranges, the software uses the design minimum and
maximum values specified for the Inport blocks in the top-level model, In1 and In2.

In the Contents pane, the Fixed-Point Tool displays the derived and design
minimum and maximum values for the blocks and referenced models in the
ex_derived_sum_multi_instance model. Some of the derived values that the
Fixed-Point Tool reports are slightly larger than expected. This difference is due
to rounding errors because the software approximates floating-point numbers with
infinite-precision rational numbers for analysis and then converts them to floating
point for reporting.

39 Range Analysis

39-32

View Derived Ranges for Referenced Model

1 In the Model Hierarchy pane, select the first instance of the referenced model,
Model(ex_sum).

The tool displays the derived minimum and maximum values for this instance of the
referenced model, [-82.001..140.001]. This range is derived from the outputs of
the two Gain blocks, [-40,80] and [-60..42.001].

2 Select the second instance of the referenced model, Model1(ex_sum).

The tool displays the derived values for the second instance, [-85..150]. This
range is derived from the referenced model inputs, In1 and In2, [-50..100] and
[-50..35] respectively.

3 Select the node for the referenced model, ex_sum.

For this node, the Fixed-Point Tool displays the merged results for the derived range
for the referenced model which is the union of the results for each instance of the
model, [-85..150].

Next, you set design range on Sum block in referenced model to see how the range
analysis takes this information into account.

Add Design Range for Sum Block and Derive Ranges

1 In the ex_sum model, double-click the Sum block.
2 In the block parameters dialog box, on the Signal Attributes tab, set Output

minimum to -125 and Output maximum to 50, click OK, and then save the
model.

 Derive Ranges for a Referenced Model

39-33

3 In the Fixed-Point Tool, select the ex_derived_sum_multi_instance model and
then click Derive ranges for selected system.

This time, to calculate the derived ranges, the software uses the design minimum
and maximum values specified for the Inport blocks in the parent model, In1 and
In2, and the design minimum and maximum values specified for the Sum block in
the referenced model.

4 You can now propose data types for the model based on these derived minimum and
maximum values.

39 Range Analysis

39-34

Propose Data Types for a Referenced Model

This example shows how to propose data types for a referenced model. To run this
example, you must first run the “Derive Ranges for a Referenced Model” example.

1 In the Fixed-Point Tool Model Hierarchy pane, select the
ex_derived_sum_multi_instance model.

2 In the Automatic data typing for selected system pane, click the Configure
link, set Default data type of all floating-point signals to fixdt(1,16,4) and
then click Apply.

3 In the same pane, click Propose fraction lengths, .

The Fixed-Point Tool proposes fraction lengths for the inputs In1 and In2 based on
the design minimum and maximum values specified on the blocks in the model and
on the derived minimum and maximum values.

The tool does not propose data types for the other blocks because they use inherited
data types. Instead, it displays n/a in the ProposedDT column. The Fixed-
Point Tool might not be able to propose data types for other reasons, to view more
information, click the Result Details tab.

The tool displays the proposed scaling in its Contents pane. It displays the
Automatic Data Typing View to provide information, such as ProposedDT,
ProposedMin, ProposedMax, which are relevant at this stage of the fixed-point
conversion.

 Propose Data Types for a Referenced Model

39-35

4 After reviewing the data type proposals, click Apply accepted fraction lengths to
apply the proposed data types to your model.

39 Range Analysis

39-36

Deriving Ranges for a Referenced Model
In this section...

“Viewing Derived Minimum and Maximum Values for Referenced Models” on page
39-36
“Data Type Override Settings” on page 39-37
“See Also” on page 39-37

Viewing Derived Minimum and Maximum Values for Referenced Models

The Fixed-Point Tool derives minimum and maximum values for referenced models. The
simulation mode is not relevant for the analysis — instances of the referenced models can
be in any simulation mode.

The Fixed-Point Tool displays the top-level model that contains the referenced
models and the referenced models in its Model Hierarchy pane. For example, the
ex_derived_sum_multi_instance model contains two instances of the referenced
model ex_sum. The Fixed-Point Tool displays both models and both instances of the
referenced model in the model hierarchy.

If a model contains multiple instances of the referenced model, the tool displays
each instance of the referenced model as well as a node for the referenced model. For
example, here are the results for the first instance of the referenced model ex_sum1 in
ex_multi_instance.

 Deriving Ranges for a Referenced Model

39-37

Here are the results for the second instance of ex_sum1.

In the referenced model node, the tool displays the union of the results for each instance
of the referenced model.

Data Type Override Settings

When you derive minimum and maximum values for a model that contains referenced
models, the data type override setting for the top-level model does not control the setting
for the referenced models. You must specify the data type override setting separately for
the referenced model.

You can set up user-defined shortcuts across referenced model boundaries. The factory
default shortcuts apply only to the top-level model and so do not affect the settings of any
referenced model.

When you change the fixed-point instrumentation and data type override settings for any
instance of a referenced model, the settings change on all instances of the model and on
the referenced model itself.

See Also

• “Derive Ranges for a Referenced Model” on page 39-28

39 Range Analysis

39-38

Intermediate Range Results

This example shows the Intermediate Maximum and Intermediate Minimum results in
the Result Details tab.

Open the model. At the MATLAB command line, enter:

addpath(fullfile(docroot,'toolbox','fixpoint','examples'))

ex_intermediateRange

1 Press CTRL+D to update the diagram. Notice the design range information for each
of the input ports.

 Intermediate Range Results

39-39

2 Open the Fixed-Point Tool. From the model menu, select Analysis > Fixed-Point
Tool.

3
Click the Derive ranges for selected system button .

The Fixed-Point Tool Contents pane displays the derived minimum and maximum
values for each object in the ex_intermediateRange model.

4 In the Automatic data typing for selected system pane, click Configure.

Under Default data type of all floating-point signals, select int32.
5 Click the Propose fraction lengths button .

The proposed data types appear in the Contents pane of the Fixed-Point Tool.
6 Look at the proposed data type of the Product block. The Fixed-Point Tool proposed a

data type with 32-bit word length and 11-bit fraction length. The derived maximum
value of the Product block is 1, but the maximum representable value for the
proposed data type is approximately 1,048,575.

To learn more about the data type proposal, in the Contents pane, select the
product block and then click the Result Details tab.

7 In the Result Details tab, in the Range Information table, notice the row labeled
Intermediate. After the first two inputs to the Product block are multiplied, the
block has a maximum value of 1000000 before being multiplied by the next two
inputs for a final maximum value of 1. The data type proposal for the Product block
in this model is based on the intermediate minimum and maximum values. It is not
based on the derived minimum and maximum values to prevent overflows at the
intermediate stages of the block.

39 Range Analysis

39-40

 Unsupported Simulink Software Features

39-41

Unsupported Simulink Software Features

The software does not support the following Simulink software features. Avoid using
these unsupported features.

Not Supported Description

Variable-step solvers The software supports only fixed-step solvers.

For more information, see “Choosing a Fixed-Step Solver”.
Callback functions The software does not execute model callback functions

during the analysis. The results that the analysis generates
may behave inconsistently with the expected behavior.

• If a model or any referenced model calls a callback
function that changes any block parameters, model
parameters, or workspace variables, the analysis does not
reflect those changes.

• Changing the storage class of base workspace variables
on model callback functions or mask initializations is not
supported.

• Callback functions called prior to analysis, such as the
PreLoadFcn or PostLoadFcn model callbacks, are fully
supported.

Model callback functions The software only supports model callback functions if the
InitFcn callback of the model is empty.

Algebraic loops The software does not support models that contain algebraic
loops.

For more information, see “Algebraic Loops”.
Masked subsystem
initialization functions

The software does not support models whose masked
subsystem initialization modifies any attribute of any
workspace parameter.

Variable-size signals The software does not support variable-size signals. A
variable-size signal is a signal whose size (number of
elements in a dimension), in addition to its values, can
change during model execution.

Arrays of buses The software does not support arrays of buses.

39 Range Analysis

39-42

Not Supported Description

For more information, see “Combine Buses into an Array of
Buses”.

Multiword fixed-point
data types

The software does not support multiword fixed-point data
types.

Nonfinite data The software does not support nonfinite data (for example,
NaN and Inf) and related operations.

Signals with nonzero
sample time offset

The software does not support models with signals that have
nonzero sample time offsets.

Models with no output
ports

The software only supports models that have one or more
output ports.

Note: The software does not report initial or intermediate values for Stateflow variables.
Range analysis will only report the ranges at the output of the block.

 Supported and Unsupported Simulink Blocks

39-43

Supported and Unsupported Simulink Blocks

Overview of Simulink Block Support

The following tables summarize the analysis support for Simulink blocks. Each table
lists all the blocks in each Simulink library and describes support information for that
particular block. If the software does not support a given block, where possible, automatic
stubbing considers the interface of the unsupported blocks, but not their behavior, during
the analysis. However, if any of the unsupported blocks affect the simulation outcome,
the analysis may achieve only partial results. If the analysis cannot use automatic
stubbing for a block, the block is marked as “not stubbable”. For more information, see
“Automatic Stubbing” on page 39-5.

Additional Math and Discrete Library

The software supports all blocks in the Additional Math and Discrete library.

Commonly Used Blocks Library

The Commonly Used Blocks library includes blocks from other libraries. Those blocks are
listed under their respective libraries.

Continuous Library

Block Support Notes

Derivative Not supported
Integrator Not supported and not stubbable
Integrator Limited Not supported and not stubbable
PID Controller Not supported
PID Controller (2 DOF) Not supported
Second Order Integrator Not supported and not stubbable
Second Order Integrator Limited Not supported and not stubbable
State-Space Not supported and not stubbable
Transfer Fcn Not supported and not stubbable
Transport Delay Not supported
Variable Time Delay Not supported

39 Range Analysis

39-44

Block Support Notes

Variable Transport Delay Not supported
Zero-Pole Not supported and not stubbable

Discontinuities Library

The software supports all blocks in the Discontinuities library.

Discrete Library

Block Support Notes

Delay Supported
Difference Supported
Discrete Derivative Supported
Discrete Filter The software analyzes through the filter. It does not derive

any range information for the filter.
Discrete FIR Filter The software analyzes through the filter. It does not derive

any range information for the filter.
Discrete PID Controller Supported
Discrete PID Controller (2 DOF) Supported
Discrete State-Space Not supported
Discrete Transfer Fcn Supported
Discrete Zero-Pole Not supported
Discrete-Time Integrator Supported
First-Order Hold Supported
Memory Supported
Tapped Delay Supported
Transfer Fcn First Order Supported
Transfer Fcn Lead or Lag Supported
Transfer Fcn Real Zero Supported
Unit Delay Supported
Zero-Order Hold Supported

 Supported and Unsupported Simulink Blocks

39-45

Logic and Bit Operations Library

The software supports all blocks in the Logic and Bit Operations library.

Lookup Tables Library

Block Support Notes

Cosine Supported
Direct Lookup Table (n-D) Supported
Interpolation Using Prelookup Not supported when:

• The Interpolation method parameter is Linear and the
Number of table dimensions parameter is greater than
4.

or

• The Interpolation method parameter is Linear and the
Number of sub-table selection dimensions parameter
is not 0.

1-D Lookup Table Not supported when the Interpolation method or the
Extrapolation method parameter is Cubic Spline.

2-D Lookup Table Not supported when the Interpolation method or the
Extrapolation method parameter is Cubic Spline.

n-D Lookup Table Not supported when:

• The Interpolation method or the Extrapolation
method parameter is Cubic Spline.

or

• The Interpolation method parameter is Linear and the
Number of table dimensions parameter is greater than
5.

Lookup Table Dynamic Supported
Prelookup Supported
Sine Supported

39 Range Analysis

39-46

Math Operations Library

Block Support Notes

Abs Supported
Add Supported
Algebraic Constraint Supported
Assignment Supported
Bias Supported
Complex to Magnitude-Angle Not supported
Complex to Real-Imag Not supported
Divide Supported
Dot Product Supported
Find Nonzero Elements Supported
Gain Supported
Magnitude-Angle to Complex Not supported
Math Function All signal types support the following Function

parameter settings.

conj hermitian magnitude^2 mod

rem reciprocal square transpose

The software does not support the following Function
parameter settings.

10^u exp hypot

log log10 pow

Matrix Concatenate Supported
MinMax Supported
MinMax Running Resettable Supported
Permute Dimensions Supported
Polynomial Supported
Product Supported

 Supported and Unsupported Simulink Blocks

39-47

Block Support Notes

Product of Elements Supported
Real-Imag to Complex Not supported
Reciprocal Sqrt Not supported
Reshape Supported
Rounding Function Supported
Sign Supported
Signed Sqrt Not supported
Sine Wave Function Not supported
Slider Gain Supported
Sqrt Not supported
Squeeze Supported
Subtract Supported
Sum Supported
Sum of Elements Supported
Trigonometric Function Supported if Function is sin, cos, or sincos, and

Approximation method is CORDIC.
Unary Minus Supported
Vector Concatenate Supported
Weighted Sample Time Math Supported

Model Verification Library

The software supports all blocks in the Model Verification library.

Model-Wide Utilities Library

Block Support Notes

Block Support Table Supported
DocBlock Supported
Model Info Supported
Timed-Based Linearization Not supported

39 Range Analysis

39-48

Block Support Notes

Trigger-Based Linearization Not supported

Ports & Subsystems Library

Block Support Notes

Atomic Subsystem Supported
Code Reuse Subsystem Supported
Configurable Subsystem Supported
Enable Supported
Enabled Subsystem Range analysis does not consider the design minimum

and maximum values specified for blocks connected to the
outport of the subsystem.

Enabled and Triggered Subsystem Not supported when the trigger control signal specifies a
fixed-point data type.

Range analysis does not consider the design minimum
and maximum values specified for blocks connected to the
outport of the subsystem.

For Each Supported with the following limitations:

• When For Each Subsystem contains another For Each
Subsystem, not supported.

• When For Each Subsystem contains one or more
Simulink Design Verifier™ Test Condition, Test
Objective, Proof Assumption, or Proof Objective blocks,
not supported.

For Each Subsystem Supported with the following limitations:

• When For Each Subsystem contains another For Each
Subsystem, not supported.

• When For Each Subsystem contains one or more
Simulink Design Verifier Test Condition, Test
Objective, Proof Assumption, or Proof Objective blocks,
not supported.

For Iterator Subsystem Supported

 Supported and Unsupported Simulink Blocks

39-49

Block Support Notes

Function-Call Feedback Latch Supported
Function-Call Generator Supported
Function-Call Split Supported
Function-Call Subsystem Range analysis does not consider the design minimum

and maximum values specified for blocks connected to the
outport of the subsystem.

If Supported
If Action Subsystem Supported
Inport —
Model Supported except for the limitations described in

“Limitations of Support for Model Blocks” on page
39-53.

Model Variants Supported except for the limitations described in
“Limitations of Support for Model Blocks” on page
39-53.

Outport Supported
Subsystem Supported
Switch Case Supported
Switch Case Action Subsystem Supported
Trigger Supported
Triggered Subsystem Not supported when the trigger control signal specifies a

fixed-point data type.

Range analysis does not consider the design minimum
and maximum values specified for blocks connected to the
outport of the subsystem.

Variant Subsystem Supported
While Iterator Subsystem Supported

Signal Attributes Library

The software supports all blocks in the Signal Attributes library.

39 Range Analysis

39-50

Signal Routing Library

Block Support Notes

Bus Assignment Supported
Bus Creator Supported
Bus Selector Supported
Data Store Memory • When the Data Store Memory variable is tunable,

range analysis considers the design ranges specified on
the block, and ignores local model writes.

• When the Data Store Memory variable is not tunable,
or Auto, the analysis considers only local model writes.
The derived range is the range of the last write to the
variable.

• When the Data Store Memory variable is defined
outside of the analyzed system, range analysis uses
design ranges.

Data Store Read Supported
Data Store Write Supported
Demux Supported
Environment Controller Supported
From Supported
Goto Supported
Goto Tag Visibility Supported
Index Vector Supported
Manual Switch The Manual Switch block is compatible with the software,

but the analysis ignores this block in a model.
Merge Supported
Multiport Switch Supported
Mux Supported
Selector Supported
Switch Supported
Vector Concatenate Supported

 Supported and Unsupported Simulink Blocks

39-51

Sinks Library

Block Support Notes

Display Supported
Floating Scope Supported
Outport (Out1) Supported
Scope Supported
Stop Simulation Not supported and not stubbable
Terminator Supported
To File Supported
To Workspace Supported
XY Graph Supported

Sources Library

Block Support Notes

Band-Limited White Noise Not supported
Chirp Signal Not supported
Clock Supported
Constant Supported unless Constant value is inf.
Counter Free-Running Supported
Counter Limited Supported
Digital Clock Supported
Enumerated Constant Supported
From File Not supported. When MAT-file data is stored in MATLAB

timeseries format, not stubbable.
From Workspace Not supported
Ground Supported
Inport (In1) Supported
Pulse Generator Supported

39 Range Analysis

39-52

Block Support Notes

Ramp Supported
Random Number Not supported and not stubbable
Repeating Sequence Not supported
Repeating Sequence Interpolated Not supported
Repeating Sequence Stair Supported
Signal Builder Not supported
Signal Generator Not supported
Sine Wave Not supported
Step Supported
Uniform Random Number Not supported and not stubbable

User-Defined Functions Library

Block Support Notes

Fcn Supports all operators except ^. Supports only the
mathematical functions abs, ceil, fabs, floor, rem, and
sgn.

Interpreted MATLAB Function Not supported
MATLAB Function The software uses the specified design minimum and

maximum values and returned derived minimum
and maximum values for instances of variables that
correspond to input and output ports. It does not consider
intermediate instances of these variables. For example,
consider a MATLAB Function block that contains the
following code:

function y = fcn(u,v)

%#codegen

y = 2*u;

y = y + v;

Range analysis considers the design ranges specified for u
and v for the instance of y in y = y + v; because this is
the instance of y associated with the outport of the block.

 Supported and Unsupported Simulink Blocks

39-53

Block Support Notes

The analysis does not consider design ranges for the
instance of y in y = 2*u; because it is an intermediate
instance.

Level-2 MATLAB S-Function Not supported
S-Function Not supported
S-Function Builder Not supported
Simulink Function Not supported

Limitations of Support for Model Blocks

The software supports the Model block with the following limitations. The software
cannot analyze a model containing one or more Model blocks if:

• The referenced model is protected. Protected referenced models are encoded to
obscure their contents. This allows third parties to use the referenced model without
being able to view the intellectual property that makes up the model.

For more information, see “Protected Model”.
• The parent model or any of the referenced models returns an error when you set the

Configuration Parameters > Diagnostics > Connectivity > Element name
mismatch parameter to error.

You can use the Element name mismatch diagnostic along with bus objects so that
your model meets the bus element naming requirements imposed by some blocks.

• The Model block uses asynchronous function-call inputs.
• Any of the Model blocks in the model reference hierarchy creates an artificial

algebraic loop. If this occurs, take the following steps:

1 On the Diagnostics pane of the Configuration Parameters dialog box, set the
Minimize algebraic loop parameter to error so that Simulink reports an
algebraic loop error.

2 On the Model Referencing Pane of the Configuration Parameters dialog box,
select the Minimize algebraic loop occurrences parameter.

Simulink tries to eliminate the artificial algebraic loop during simulation.
3 Simulate the model.

39 Range Analysis

39-54

4 If Simulink cannot eliminate the artificial algebraic loop, highlight the location of
the algebraic loop by selecting Simulation > Update Diagram.

5 Eliminate the artificial algebraic loop so that the software can analyze the model.
Break the loop with Unit Delay blocks so that the execution order is predictable.

Note: For more information, see “Algebraic Loops”.
• The parent model uses the base workspace and the referenced model uses a data

dictionary.
• The parent model and the referenced model have mismatched data type override

settings. The data type override setting of the parent model and its referenced models
must be the same, unless the data type override setting of the parent model is Use
local settings. You can select the data type override settings for your model
in the Analysis menu, in the Fixed Point Tool dialog box under the Settings for
selected system pane.

40

Working with the MATLAB Function
Block

• “Convert Model Containing MATLAB Function Block to Fixed Point” on page
40-2

• “Working with the MATLAB Function Block in the Fixed-Point Tool” on page
40-16

• “Detect Overflows in a MATLAB Function Block” on page 40-17
• “Derive Ranges of MATLAB Function Block Variables” on page 40-20

40 Working with the MATLAB Function Block

40-2

Convert Model Containing MATLAB Function Block to Fixed Point

This example shows how to use the Fixed-Point Tool to convert a model containing a
MATLAB Function block to fixed point.

In this section...

“Open Model” on page 40-2
“Decouple the MATLAB Function Block” on page 40-4
“Collect Range Information” on page 40-5
“Propose Data Types” on page 40-5
“Examine Data Type Proposals” on page 40-6
“Apply Proposed Data Types” on page 40-8
“Verify Results” on page 40-13

Open Model

addpath(fullfile(docroot,'toolbox','fixpoint','examples'))

ex_kalman_filter

 Convert Model Containing MATLAB Function Block to Fixed Point

40-3

This model generates a noisy sine signal, and then filters noise from the signal using a
Kalman filter inside a MATLAB Function block.

Simulate the model. Inspect the noisy and filtered signals by double-clicking the Scope
block.

40 Working with the MATLAB Function Block

40-4

Inspect the Kalman Filter algorithm by double-clicking the MATLAB Function block.

Decouple the MATLAB Function Block

Decouple the MATLAB Function block from the model in order to isolate the system for
conversion.

1 Open the Simulink Library Browser.
2 Under Commonly Used Blocks, drag three Data Type Conversion blocks into the

model.
3 Insert each block at an input or output of the MATLAB Function block.
4 Open each Data Type Conversion block and set Output data type to double.
5 Click OK to close each block and apply the changes.

 Convert Model Containing MATLAB Function Block to Fixed Point

40-5

Collect Range Information

1 Right-click the MATLAB Function block and select Fixed-Point Tool.
2 In the Model Hierarchy pane, select MATLAB Function.
3 Under Data collection, click Simulate to store the range information in Run1.

Examine the range information in the Contents pane of the Fixed-Point Tool.

In the Model Hierarchy pane, notice that all of the functions called by the
kalman_filter function are visible in the tree view.

Propose Data Types

Configure the proposal settings and propose fixed-point data types for the model.

1 On the right side of the Fixed-Point Tool, under Automatic data typing for
selected system, click Configure.

2 Set Default data type of all floating point signals to int16.

The Fixed-Point Tool uses the collected range information to propose data types
using a 16-bit word length.

3 Click Propose fraction lengths.
4 The data type proposals appear in the ProposedDT column of the Contents pane.

40 Working with the MATLAB Function Block

40-6

Note: The SpecifiedDT column is always blank for MATLAB Function block
variables.

Examine Data Type Proposals

1 In the Fixed-Point Tool, on the Contents pane, right-click a variable whose data
type you want to see. Select Result Details.

 Convert Model Containing MATLAB Function Block to Fixed Point

40-7

In the Result Details dialog box, you can view the details of the variable, including
complexity, associated fimath, and the proposed data type.

2 Click OK to close the Result Details dialog box.

40 Working with the MATLAB Function Block

40-8

Apply Proposed Data Types

Notice that the Accept column in the Contents pane shows manual for all of the
variables inside of the MATLAB Function Block. You need to apply data types for
MATLAB variables manually.

1 In the model, open the MATLAB Function block. Add a kalman_filter_types
function that contains the data types proposed by the Fixed-Point Tool for the
variables in the kalman_filter function.

function T = kalman_filter_types(dt)

 switch dt

 case 'double'

 T.f0 = double([]);

 T.dt = double([]);

 T.A = double([]);

 T.H = double([]);

 T.Q = double([]);

 T.R = double([]);

 T.x_est = double([]);

 T.p_est = double([]);

 T.x_prd = double([]);

 T.p_prd = double([]);

 T.S = double([]);

 T.B = double([]);

 T.klm_gain = double([]);

 T.y = double([]);

 case 'fixed'

 T.f0 = fi([],1,16,7);

 T.dt = fi([],1,16,28);

 T.A = fi([],1,16,15);

 T.H = fi([],1,16,14);

 T.Q = fi([],1,16,4);

 T.R = fi([],1,16,14);

 T.x_est = fi([],1,16,14);

 T.p_est = fi([],1,16,14);

 T.x_prd = fi([],1,16,14);

 T.p_prd = fi([],1,16,14);

 T.S = fi([],1,16,13);

 T.B = fi([],1,16,14);

 T.klm_gain = fi([],1,16,15);

 T.y = fi([],1,16,15);

 end

end

 Convert Model Containing MATLAB Function Block to Fixed Point

40-9

2 Make the kalman_filter function type-aware. Include a call to the
kalman_filter_types function you just created. Set the input to 'double'. Use
the cast and zeros functions to cast the first instance of each variable to a type
specified in the kalman_filter_types function.

To improve readability, you can define the variable type using the zeros function.
Then define its value using subscripted assignment, as shown in the definitions for
the variables S and B.

function y = kalman_filter(z,N0)

 %#codegen

 T = kalman_filter_types('double');

 f0 = cast(200, 'like', T.f0);

 dt = cast(1/1e4, 'like', T.dt);

 % Kalman filter initialization

 % State transition Matrix

 A = cast([cos(2*pi*f0*dt), -sin(2*pi*f0*dt);

 sin(2*pi*f0*dt), cos(2*pi*f0*dt)],'like',T.A);

 % Measurement Matrix

 H = cast([1 0],'like',T.H);

 % Process noise variance

 Q = cast(0,'like',T.Q);

 % Measurement noise variance

 R = cast(N0,'like',T.R);

 persistent x_est p_est

 if isempty(x_est)

 % Estimated state

 x_est = cast([0; 1],'like',T.x_est);

 % Estimated error covariance

 p_est = cast(N0 * eye(2,2),'like',T.p_est);

 end

 % Kalman algorithm

 % Predicted state and covariance

 x_prd = cast(A * x_est,'like',T.x_prd);

 p_prd = cast(A * p_est * A' + Q,'like',T.p_prd);

 % Estimation

 S = zeros(1,1,'like',T.S);

40 Working with the MATLAB Function Block

40-10

 B = zeros(1,2,'like',T.B);

 S(:) = H * p_prd' * H' + R;

 B(:) = H * p_prd';

 klm_gain = cast(matrix_solve(S,B)','like',T.klm_gain);

 % Estimated state and covariance

 x_est(:) = x_prd + klm_gain * (z - H * x_prd);

 p_est(:) = p_prd - klm_gain * H * p_prd;

 % Compute the estimated measurements

 y = cast(H * x_est,'like',T.y);

end

3 Create another function with a types table that specifies the data type for each
variable in the matrix_solve function. Cast the first instance of each variable
in the matrix_solve function to a type specified in the matrix_solve_types
function.

function x = matrix_solve(a,b)

 %fixed-point friendly matrix solve: A * x = b

 T = matrix_solve_types('double');

 % initialize x

 x = zeros(size(a,1), size(b,2), 'like', T.x);

 % compute lu decomposition of a

 [l, u] = lu_replacement(a);

 % solve x = a\b for every column of b

 % through forward and backward substitution

 for col = 1:size(b,2)

 bcol = b(:,col);

 y = forward_substitute(l, bcol);

 x(:,col) = back_substitute(u, y);

 end

end

function T = matrix_solve_types(dt)

 switch dt

 case 'double'

 T.x = double([]);

 case 'fixed'

 T.x = fi([],1,16,15);

 end

end

 Convert Model Containing MATLAB Function Block to Fixed Point

40-11

4 Follow the same pattern for the other functions that matrix_solve calls:
forward_substitute, back_substitute, and lu_replacement.

function [L,A]=lu_replacement(A)

 T = lu_replacement_types('double');

 % Fixed-point friendly LU

 N = cast(size(A,1), 'like', T.N);

 L = cast(eye(N), 'like', T.L);

 DivideType = numerictype(1,64,32);

 for n=1:N-1

 piv = A(n,n);

 for k=n+1:N

 mult = divide_no_zero(DivideType,A(k,n),piv);

 A(k,:) = -mult*A(n,:) + A(k,:);

 L(k,n) = mult;

 end

 end

end

function T = lu_replacement_types(dt)

 switch dt

 case 'double'

 T.N = double([]);

 T.L = double([]);

 case 'fixed'

 T.N = int16([]);

 T.L = fi([],1,16,14);

 end

end

function y = forward_substitute(l,b)

 T = forward_substitute_types('double');

 % forward substitution

 DivideType = numerictype(1,64,32);

 N = cast(size(b,1), 'like', T.N);

 y = zeros(N, 1, 'like', T.y);

 % forward substitution

 y(1) = divide_no_zero(DivideType,b(1),l(1,1));

 for n = 2:N

 acc = cast(0, 'like', T.acc);

 for k = 1:n-1

 acc(:) = acc + y(k)*l(n,k);

 end

 y(n) = divide_no_zero(DivideType,(b(n)-acc),l(n,n));

40 Working with the MATLAB Function Block

40-12

 end

end

function T = forward_substitute_types(dt)

 switch dt

 case 'double'

 T.N = double([]);

 T.y = double([]);

 T.acc = double([]);

 case 'fixed'

 T.N = int16([]);

 T.y = fi([],1,16,14);

 T.acc = fi([],1,32,28);

 end

end

function x = back_substitute(u,y)

 T = back_substitute_types('double');

 % backwards substitution

 N = cast(size(u,1), 'like', T.N);

 DivideType = numerictype(1,64,32);

 x = zeros(N, 1, 'like', T.x);

 % backward substitution

 x(N) = divide_no_zero(DivideType,y(N),u(N,N));

 for n = (N-1):(-1):(1)

 acc = cast(0, 'like', T.acc);

 for k = n:(N)

 acc(:) = acc + x(k)*u(n,k);

 end

 x(n) = divide_no_zero(DivideType,(y(n) - acc),u(n,n));

 end

end

function T = back_substitute_types(dt)

 switch dt

 case 'double'

 T.N = double([]);

 T.x = double([]);

 T.acc = double([]);

 case 'fixed'

 T.N = int16([]);

 Convert Model Containing MATLAB Function Block to Fixed Point

40-13

 T.x = fi([],1,16,15);

 T.acc = fi([],1,32,28);

 end

end

5 Simulate the model to verify the connection between the new functions, and the
MATLAB Function block.

6 Set up the model to use the fixed-point types.

• In the kalman_filter function, change the input of the
kalman_filter_types function call to 'fixed'.

• In the matrix_solve, lu_replacement, forward_substitute, and
back_substitute functions, change the input of the call to the types table
functions to ‘fixed’.

• Change the output data type of the Data Type Conversion blocks in the model to
the proposed data types.

• Change the output data type of the Data Type Conversion block to
fixdt(1,16,12), the data type proposed for z.

• Change the output data type of the Data Type Conversion1 to
fixdt(1,16,14), the data type proposed for N0.

Verify Results

Simulate the model. The model now uses fixed-point data types.

40 Working with the MATLAB Function Block

40-14

To see the final fixed-point version of this model, open the
ex_kalman_filter_fixed_point model.

ex_kalman_filter_fixed_point

 Convert Model Containing MATLAB Function Block to Fixed Point

40-15

Related Examples
• “Detect Overflows in a MATLAB Function Block” on page 40-17

More About
• “Working with the MATLAB Function Block in the Fixed-Point Tool” on page

40-16

40 Working with the MATLAB Function Block

40-16

Working with the MATLAB Function Block in the Fixed-Point Tool

In this section...

“Best Practices for Working with a MATLAB Function Block in the Fixed-Point Tool” on
page 40-16
“Limitations of Working with the MATLAB Function Block in the Fixed-Point Tool” on
page 40-16

Best Practices for Working with a MATLAB Function Block in the Fixed-
Point Tool

• Separate data type definitions from your algorithm by creating a separate function
with a table of data type definitions. For more information on this approach, see
“Manual Fixed-Point Conversion Best Practices”.

• While collecting range information, do not edit the MATLAB code in the MATLAB
Function block. Editing the code will cause problems when trying to merge results.

• During the fixed-point conversion process using the Fixed-Point Tool, do not use the
“Save as” option to save the MATLAB Function block with a different name. If you do,
you might lose existing results for the original block.

• Override the data types in your model with scaled doubles to detect potential
overflows within a MATLAB Function block. For an example, see “Detect Overflows in
a MATLAB Function Block” on page 40-17.

Limitations of Working with the MATLAB Function Block in the Fixed-Point
Tool

• The Fixed-Point Tool proposes data types for MATLAB Function block variables, but
does not apply the proposed data types. You must apply the data types manually. For
an example, see “Convert Model Containing MATLAB Function Block to Fixed Point”
on page 40-2

• The software does not collect ranges for variables in MATLAB Function blocks used
as a reference (library) block or in a referenced model.

 Detect Overflows in a MATLAB Function Block

40-17

Detect Overflows in a MATLAB Function Block

In this section...

“Set Data Type Override to Scaled Doubles” on page 40-17
“Propose New Data Types” on page 40-18
“Apply New Data Types” on page 40-19

Open the fixed-point model, ex_kalman_filter_fixed_point.

addpath(fullfile(docroot,'toolbox','fixpoint','examples'))

ex_kalman_filter_fixed_point

Double-click the Sine block and set the Amplitude to 2. Simulate the model.

By examining the scope, you can see that a saturation occurred in the model. Use Data
Type Override to collect new range data for the model.

Set Data Type Override to Scaled Doubles

1 Open the Fixed-Point Tool. Right-click the MATLAB Function block and select
Fixed-Point Tool from the context menu.

2 In the Settings for selected system pane, set Data type override to Scaled
double.

40 Working with the MATLAB Function Block

40-18

3 In the Data collection pane, store results in run DetectOverflow, and simulate.

In the contents pane, the row containing the kalman_filter : y variable is
highlighted in red, indicating that this variable contains an overflow.

Propose New Data Types

1 In the Automatic data typing for selected system pane, click Configure.

Set Default data type of all floating point signals to int16.
2 Click Propose fraction lengths.
3 In the Propose Data Types dialog box, select DetectOverflow as the run to use

for proposing data types. Click OK.
4 The Fixed-Point Tool warns that fraction length proposals typically use floating-

point data. Click OK to proceed with the proposal.
5 The proposed data types appear in the Contents pane of the Fixed-Point Tool.

 Detect Overflows in a MATLAB Function Block

40-19

Notice that the Fixed-Point Tool proposed a new data type for y, the variable that
overflowed.

Apply New Data Types

1 Double-click the MATLAB Function block to edit the data type of y.
2 Update the data type of y by editing the kalman_filter_types function. Change

the row containing T.y to fi([],1,16,14), the data type proposed by the Fixed-
Point Tool.

3 Simulate the model in scaled doubles again. The new run contains no overflows.

Related Examples
• “Convert Model Containing MATLAB Function Block to Fixed Point” on page 40-2

40 Working with the MATLAB Function Block

40-20

Derive Ranges of MATLAB Function Block Variables

This example shows how to use the Fixed-Point Tool to convert a model containing a
MATLAB Function block to fixed point using range analysis.

Explore the Model

Open the folder where the model is located. At the MATLAB command line, enter:

cd(fullfile(docroot,'toolbox','fixpoint','examples'))

Copy the ex_range_matlab_function_block.slx file to a writable folder and open
the model.

Update the diagram to view design range information for each of the input ports.

 Derive Ranges of MATLAB Function Block Variables

40-21

Open the MATLAB Function block. The function averages the four inputs.

function out = fcn(w,x,y,z)

%#codegen

sum = w+x+y+z;

out = sum/4;

end

Derive Ranges

1 Open the Fixed-Point Tool. Select Analysis > Fixed-Point Tool.
2 In the Fixed-Point Tool, in the Workflow tab, under Data collection, click the

Derive ranges for selected system button to derive ranges for the MATLAB
variables.

Examine the derived ranges in the Contents pane.

Propose Data Types

Configure the proposal settings and propose fixed-point data types for the model based on
derived ranges.

1 In the workflow tab, under Automatic data typing for selected system, click
Configure.

2 Set Default data type of all floating point signals to int16.

The Fixed-Point Tool uses the derived range information to propose data types using
a 16-bit word length.

3 Click the Propose fraction lengths button.
4 The data type proposals appear in the ProposedDT column of the Contents pane.

40 Working with the MATLAB Function Block

40-22

Apply Proposed Data Types

The Accept column in the Contents pane shows manual for all of the variables inside
of the MATLAB Function Block. You need to apply data types for MATLAB variables
manually. For an example of how to apply the proposed data types to the model, see
“Apply Proposed Data Types” on page 40-8.

To see the final fixed-point version of this model, open the
ex_range_matlab_function_block_fixpt model.

More About
• “Working with the MATLAB Function Block in the Fixed-Point Tool” on page 40-16

41

Working with Bus Objects in the
Fixed-Point Workflow

• “Refine Data Types of a Model with Buses Using Simulation Data” on page 41-2
• “Convert a Model with Buses to Fixed-Point Using Range Analysis” on page 41-11
• “Bus Objects in the Fixed-Point Workflow” on page 41-20
• “Convert Model with Bus Object with Structure Initial Conditions to Fixed-Point” on

page 41-24

41 Working with Bus Objects in the Fixed-Point Workflow

41-2

Refine Data Types of a Model with Buses Using Simulation Data

In this section...

“Open and Simulate the Model” on page 41-2
“Use Data Type Override to Resolve Overflows” on page 41-3
“Propose New Fraction Lengths” on page 41-5
“Examine and Apply Proposed Types” on page 41-5
“Verify New Fixed-Point Settings” on page 41-8
“Save the Model and New Bus Data Types” on page 41-9

This example shows how to refine the fixed-point types of a model with bus objects based
on simulation data. The following video provides an overview of automatic data typing
and data type override for bus objects: Automatic Data Typing for Bus Objects.

Open and Simulate the Model

Open the ex_bus_Fix model. At the MATLAB command line, enter:

addpath(fullfile(docroot,'toolbox','fixpoint','examples'))

ex_bus_Fix

1 Press Ctrl+D to update the diagram. Notice the use of fixed-point data types in the
model.

http://www.mathworks.com/videos/automatic-data-typing-and-data-type-override-for-bus-objects-89774.html

 Refine Data Types of a Model with Buses Using Simulation Data

41-3

2 Simulate the model.

The Diagnostic Viewer warns that several overflows occurred during simulation.

Use Data Type Override to Resolve Overflows

1 Open the Fixed-Point Tool from the model menu by selecting Analysis > Fixed-
Point Tool.

Because the Fixed-point instrumentation mode was set to Minimums,
maximums and overflows, the rows containing the Gain3, Gain5, and Gain1
blocks are highlighted in red, indicating where the overflows occurred.

41 Working with Bus Objects in the Fixed-Point Workflow

41-4

2 Obtain the ideal numerical behavior of the model by overriding all of the data types
with floating-point singles.

In the Settings for selected system pane, set Data type override to Single. Set
Data type override applies to to All numeric types.

3 In the Data collection pane, set Run name to SingleOverride. Click Simulate.

The model is simulated using floating-point singles, so this run does not contain any
overflows.

4 Return to the model. A prefix has been added to the names on the bus signals.
This prefix indicates that the bus objects are replaced by temporary overridden
bus objects specifying single data types. For more information, see “Bus Naming
Conventions with Data Type Override” on page 41-22.

Overridden bus objects are not stored in the base workspace, so you cannot see them
in the Bus Editor. The Bus Editor continues to display the data types of the bus
objects before they were overridden.

 Refine Data Types of a Model with Buses Using Simulation Data

41-5

Propose New Fraction Lengths

Propose new fraction lengths for your model based on the simulation results from the
SingleOverride run.

1 Click the Propose fraction lengths button .
2 In the Propose Data Types dialog box, select SingleOverride as the run to use

for proposing data types. Click OK.

The proposed data types appear in the Contents pane of the Fixed-Point Tool.

Examine and Apply Proposed Types

Examine the new data types that the Fixed-Point Tool has proposed for ex_bus_Fix.

41 Working with Bus Objects in the Fixed-Point Workflow

41-6

1 On the Fixed-Point Tool toolbar, select Show > Groups that must share the same
data type to better understand the proposed data types.

2 In the Contents pane, right-click the column labeled DTGroup and select Group
by This Column.

The Fixed-Point Tool organizes the Contents pane to group the elements by data
type.

3
In the Contents pane, select the SensorData:Speed bus element (element of
the bus object). Click the Result Details tab.

In the Result Details tab, view the details of the proposed data type for the bus
element. The data type proposal for a bus element is found by taking the union of
the ranges of all blocks that must share the same data type, which includes all of
the sources driving the bus element. The software then proposes a data type for this
range.

 Refine Data Types of a Model with Buses Using Simulation Data

41-7

The Shared Simulation minimum and maximum values of the Range
Information table represent the union of the ranges of the sources driving the bus
element. The data type proposal for SensorData:Speed is based on this range.

Right-click the bus element and select Highlight Elements Sharing Same
Data Type to see all of the sources driving the bus element.

41 Working with Bus Objects in the Fixed-Point Workflow

41-8

4 Return to the Fixed-Point Tool Workflow tab. Click the Apply accepted fraction

lengths button to write the proposed data types to the model.

Verify New Fixed-Point Settings

1 In the Settings for selected system pane, set Data type override to Off so when
you simulate the model, it uses the new fixed-point types that you applied.

2 Simulate the model. This time, store the results in Fixed_Run.
3 In the Fixed-Point Tool Contents pane, verify that there are no overflows in

Fixed_Run.
4 Click Compare Runs

 Refine Data Types of a Model with Buses Using Simulation Data

41-9

to launch the Simulation Data Inspector.

In the Simulation Data Inspector, compare the results of Fixed_Run to the results of
the SingleOverride run.

5 Return to the model. Notice that the bus objects no longer contain the prefixes.

Open the Bus Editor by clicking Edit > Bus Editor. You can now view the new,
refined data types of the bus objects in the Bus Editor.

Save the Model and New Bus Data Types

Data types for bus elements are stored in the base workspace, not the model. To save
the fixed-point data types for the bus elements in ex_bus_Flt, export them from the
Bus Editor to a .mat file. For instructions, see Export Bus Objects. Alternatively, you

41 Working with Bus Objects in the Fixed-Point Workflow

41-10

can save workspace variables to a file at the MATLAB command line using the save
function .

 Convert a Model with Buses to Fixed-Point Using Range Analysis

41-11

Convert a Model with Buses to Fixed-Point Using Range Analysis

In this section...

“Open and Simulate the Model” on page 41-11
“Set Design Minimums and Maximums” on page 41-12
“Open the Fixed-Point Tool and Run the Fixed-Point Advisor” on page 41-14
“Derive Minimum and Maximum Values” on page 41-15
“Propose Fraction Lengths” on page 41-15
“Examine and Apply Proposed Types” on page 41-15
“Verify New Fixed-Point Types” on page 41-18
“Save the Model and the New Bus Data Types” on page 41-19

This example shows how to use range analysis to convert a floating-point model that
contains buses to a fixed-point model.

Open and Simulate the Model

Open the ex_bus_Flt model. At the MATLAB command line, enter:

addpath(fullfile(docroot,'toolbox','fixpoint','examples'))

ex_bus_Flt

1 Press ctrl+d to update the diagram and view the data types of each block in the
model.

This model uses floating-point doubles for all signals.

41 Working with Bus Objects in the Fixed-Point Workflow

41-12

Set Design Minimums and Maximums

1 Open the TorqueSensor1 subsystem, and double-click the output port, T.
2 Under the Signal Attributes tab, notice that the design minimum and maximum

have been set to -1 and 1, respectively.

 Convert a Model with Buses to Fixed-Point Using Range Analysis

41-13

41 Working with Bus Objects in the Fixed-Point Workflow

41-14

3 Notice that the TorqueSensor2, SpeedSensor1, SpeedSensor2, and InputFuel
subsystems also have their design minimums and maximums set to -1 and 1.

Open the Fixed-Point Tool and Run the Fixed-Point Advisor

1 Open the Fixed-Point Tool from the model menu by selecting Analysis > Fixed-
Point Tool.

2 In the Fixed-point preparation for selected system pane, open the Fixed-Point
Advisor by clicking the Fixed-Point Advisor button.

3 Run each check in the Prepare Model for Conversion folder.

The Address unsupported blocks check warns that the Sine blocks do not support
fixed-point data types. Because the Sine blocks are decoupled from the model with
Data Type Conversion blocks, you do not need to take any further action.

All other tasks in this folder pass.
4 Run each check in the Verify Fixed-Point Conversion Guidelines folder.

The Check bus usage check advises you to configure your model to detect future
changes that can result in improper bus usage.

In the Configuration Parameters > Diagnostics > Connectivity pane, set Bus
signal treated as vector: to error.

Click OK and run the check again from the Fixed-Point Advisor.

This time the check passes. All other checks under Verify Fixed-Point
Conversion Guidelines pass.

5 Run each check in the Prepare for Data Typing and Scaling folder.

The Verify hardware selection check fails. Because the target hardware is an
embedded processor, the Fixed-Point Advisor recommends that you set this value to
the hardware integer used by the embedded hardware. Set Default data type of all
floating point signals to Same as embedded hardware integer.

Rerun the check. The task passes.

All other checks under Prepare for Data Typing and Scaling pass.
6 Run check 3 to return to the Fixed-Point Tool.

 Convert a Model with Buses to Fixed-Point Using Range Analysis

41-15

Derive Minimum and Maximum Values

1
Click the Derive ranges for selected system button .

The Fixed-Point Tool Contents pane displays the derived minimum and maximum
values for each object in the ex_bus_Flt model.

Propose Fraction Lengths

1 Click the Propose fraction lengths button .

The proposed data types appear in the Contents pane of the Fixed-Point Tool.

Examine and Apply Proposed Types

Examine the new data types that the Fixed-Point Tool has proposed for ex_bus_Flt.

1 On the Fixed-Point Tool toolbar, select Show > Groups that must share the same
data type to better understand the proposed data types.

2 In the Contents pane, right-click the column labeled DTGroup and select Group
by This Column.

The Fixed-Point Tool organizes the contents pane to group the elements by data
type.

41 Working with Bus Objects in the Fixed-Point Workflow

41-16

3
Select the SensorData:Speed bus element (element of the bus object) and Click
the Result Details tab.

In the Result Details tab, view the details of the proposed data type for the bus
element. The software finds the data type proposal for a bus element by taking the
union of the ranges of all blocks that must share the same data type, which includes
all of the sources driving the bus element. It then proposes a data type for this range.

 Convert a Model with Buses to Fixed-Point Using Range Analysis

41-17

The Shared Derived minimum and maximum in the Range Information table
represent the union of the ranges of the sources driving the bus element. The data
type proposal for SensorData:Speed is based on this range.

4 Right-click the bus element. Select Highlight Elements Sharing Same Data
Type to see all of the sources driving the bus element.

41 Working with Bus Objects in the Fixed-Point Workflow

41-18

5 Return to the Fixed-Point Tool Workflow tab. Click the Apply accepted fraction

lengths button to write the proposed data types to the model.

Verify New Fixed-Point Types

1 Simulate the model. This time, store the results in Fixed_Run.
2 In the Fixed-Point Tool Contents pane, verify that there are no overflows in

Fixed_Run.
3 Click Compare Runs

to launch the Simulation Data Inspector.

 Convert a Model with Buses to Fixed-Point Using Range Analysis

41-19

In the Simulation Data Inspector, compare the results of Fixed_Run to the results of
FPA_Reference.

4 Open the Bus Editor from the model menu by clicking Edit > Bus Editor. You can
now view the new fixed-point data types of the bus elements in the Bus Editor.

Save the Model and the New Bus Data Types

Data types for bus elements are stored in the base workspace, not the model. To save
the fixed-point data types for the bus elements in ex_bus_Flt, export them from the
Bus Editor to a .mat file. For instructions, see Export Bus Objects. Alternatively, you
can save workspace variables to a file at the MATLAB command line using the save
function .

41 Working with Bus Objects in the Fixed-Point Workflow

41-20

Bus Objects in the Fixed-Point Workflow

In this section...

“How Data Type Proposals Are Determined for Bus Objects” on page 41-20
“Bus Naming Conventions with Data Type Override” on page 41-22
“Limitations of Bus Objects in the Fixed-Point Workflow” on page 41-23

How Data Type Proposals Are Determined for Bus Objects

The data type proposal for a bus object is found by taking the union of the ranges of all
sources driving the same bus element, and then proposing a data type for this range.
The Fixed-Point Tool does not log minimum and maximum ranges for elements of a bus
signal.

The following example shows how the software determines the data types for elements of
bus objects.

 Bus Objects in the Fixed-Point Workflow

41-21

Each of the four input ports in this model have specified design ranges. The In2 and In4
input ports must share the same data type because they drive the same element of the
mybus bus object.

The Fixed-Point Tool proposes a data type based on the union of these two ranges.
After proposing data types for the model, in the Result Details tab for the mybus :
b element of the bus object, notice the row labeled Shared Design in the Range
Information table. The proposed data type is based on this range, which is the union of
the design ranges of the In2 and In4 blocks.

41 Working with Bus Objects in the Fixed-Point Workflow

41-22

Bus Naming Conventions with Data Type Override

When you use Data Type Override on a model that contains buses, the Fixed-Point Tool
generates a new bus which uses the overridden data type. To indicate that a model is
using an overridden bus, the tool adds a prefix to the name of the original bus object.
While a model is in an overridden state, a bus object named myBus is renamed based on
the following pattern.

DTO Applies To

DTO Mode All numeric types Floating point Fixed point

Scaled Double dtoScl_myBus dtoSclFlt_myBus dtoSclFxp_myBus

Double dtoDbl_myBus dtoDblFlt_myBus dtoDblFxp_myBus

Single dtoSgl_myBus dtoSglFlt_myBus dtoSglFxp_myBus

 Bus Objects in the Fixed-Point Workflow

41-23

Note: You cannot see bus objects with an overridden data type within the Bus Editor
because they are not stored in the base workspace.

Limitations of Bus Objects in the Fixed-Point Workflow

An update diagram error can occur if any of the following conditions occur.

• Your model is in accelerator mode and has a bus object with an overridden data type
at the output port.

To perform data type override, run the model in normal mode.
• The data types in your model are overridden and the model contains Stateflow charts

that use MATLAB as the action language.
• Your model contains tunable MATLAB structures assigned to a bus signal (such

as Unit Delay blocks with a structure as the initial condition, Stateflow data, and
MATLAB structures from the workspace).

Change the structure to a non tunable structure to use the Fixed-Point Tool. Specify
the structure fields as doubles to avoid unnecessary quantization effects. For more
information on using a structure as an initial condition with bus objects, see “Data
Type Mismatch and Structure Initial Conditions”.

• Your model contains a structure parameter specified through the mask of an atomic
subsystem.

To use the Fixed-Point Tool, make the system non-atomic.

Related Examples
• “Refine Data Types of a Model with Buses Using Simulation Data” on page 41-2

41 Working with Bus Objects in the Fixed-Point Workflow

41-24

Convert Model with Bus Object with Structure Initial Conditions to
Fixed-Point

This example shows how to use the Fixed-Point Tool to convert a floating-point model
that contains a bus signal with a structure as the initial condition to fixed-point.

1 Open the ex_bus_struct model.

addpath(fullfile(docroot,'toolbox','fixpoint','examples'))

ex_bus_struct

This model uses a structure as the initial condition in the Constant block. The
structure fields of the Constant block and the elements of the SensorData bus object
are specified as doubles.

 Convert Model with Bus Object with Structure Initial Conditions to Fixed-Point

41-25

2 Open the Fixed-Point Tool by selecting Analysis > Fixed-Point Tool.
3 In the Workflow tab, under Settings for selected system, set the Fixed-point

instrumentation mode to Minimums, maximums and overflows.
4 Collect simulation minimum and maximum values. From the Data collection pane,

simulate the model.
5 Under Automatic data typing for selected system, click Configure. Set

Default data type of all floating-point signals to fixdt(1,16,4).

Click the Propose fraction lengths button to propose data types with 16-bit word
length and best-precision fraction length.

6 Examine the data type proposals in the Contents pane and determine whether to
accept the proposals.

7 Click the Apply accepted fraction lengths button to write the proposed data
types to the model.

8 Under Data collection, enter Fixed_Run for Run name and simulate the model
again using the new fixed-point data types.

9 In the model window, select Edit > Bus editor.

41 Working with Bus Objects in the Fixed-Point Workflow

41-26

The SensorData bus object now uses fixed-point data types. The initial condition of
the Constant block still uses a non tunable structure using double data types. During
compilation, an automatic casting of the data type of the structure field occurs so
that it matches the data type of the bus signal.

 Convert Model with Bus Object with Structure Initial Conditions to Fixed-Point

41-27

If you generate code for a model that uses a structure as the initial condition for a
bus signal, the values appear inline in the generated code.

Related Examples
• Parameter Tunability Loss
• “Refine Data Types of a Model with Buses Using Simulation Data” on page 41-2

More About
• “Bus Objects in the Fixed-Point Workflow” on page 41-20

42

Command Line Interface for the
Fixed-Point Tool

• “The Command-Line Interface for the Fixed-Point Tool” on page 42-2
• “Convert a Model to Fixed Point Using the Command-Line” on page 42-4

42 Command Line Interface for the Fixed-Point Tool

42-2

The Command-Line Interface for the Fixed-Point Tool

The methods of the DataTypeWorkflow.Converter class allow you to collect
simulation and derived data, propose and apply data types to the model, and analyze
results. The class performs the same fixed-point conversion tasks as the Fixed-Point
Tool. The following table summarizes the steps in the workflow and lists the appropriate
classes and methods to use at each step.

Step in Workflow Primary methods and classes for step in workflow

Set up model • DataTypeWorkflow.Converter

Prepare the model for fixed-
point conversion

• DataTypeWorkflow.Converter.applySettingsFromShortcut

• DataTypeWorkflow.Converter.applySettingsFromRun

Gather range information • DataTypeWorkflow.Converter.deriveMinMax

• DataTypeWorkflow.Converter.simulateSystem

Propose data types • DataTypeWorkflow.ProposalSettings

• DataTypeWorkflow.Converter.proposeDataTypes

Apply proposed data types • DataTypeWorkflow.Converter.applyDataTypes

Verify new fixed-point
settings and analyze results

• DataTypeWorkflow.Converter.compareResults

• DataTypeWorkflow.Converter.compareRuns

• DataTypeWorkflow.Converter.results

• DataTypeWorkflow.Converter.saturationOverflows

• DataTypeWorkflow.Converter.wrapOverflows

• DataTypeWorkflow.Converter.proposalIssues

Note: You should not use the Fixed-Point Tool and the command-line interface in the
same conversion session.

To decide which workflow is right for you, consult the following table:

Capability Fixed-Point Tool Command-Line Interface

Populate runs to dataset

 The Command-Line Interface for the Fixed-Point Tool

42-3

Capability Fixed-Point Tool Command-Line Interface

Delete result from dataset

Edit proposed data types

Selectively apply data type
proposals

Run multiple simulations

Script workflow

Related Examples
• “Convert a Model to Fixed Point Using the Command-Line”

42 Command Line Interface for the Fixed-Point Tool

42-4

Convert a Model to Fixed Point Using the Command-Line

This example shows how to refine the data types of a model using the MATLAB
command-line.

1 Open the fxpdemo_feedback model.

fxpdemo_feedback

The Fixed-Point Tool opens automatically. Close the Fixed-Point Tool to use the
command-line interface for fixed-point conversion.

The Controller subsystem uses fixed-point data types.

 Convert a Model to Fixed Point Using the Command-Line

42-5

2 Create a DataTypeWorkflow.Converter object to autoscale the Controller
subsystem of the fxpdemo_feedback model.

converter = DataTypeWorkflow.Converter('fxpdemo_feedback/Controller');

3 Simulate the model and store the results in InitialRun.

converter.CurrentRunName = 'InitialRun';

converter.simulateSystem();

4 Determine if there were any overflows in InitialRun.

saturations = converter.saturationOverflows('InitialRun')

42 Command Line Interface for the Fixed-Point Tool

42-6

saturations =

 Result with properties:

 ResultName: 'fxpdemo_feedback/Controller/Up Cast'

 SpecifiedDataType: 'fixdt(1,16,14)'

 CompiledDataType: 'fixdt(1,16,14)'

 ProposedDataType: ''

 Wraps: []

 Saturations: 23

 SimMin: -2

 SimMax: 1.9999

 DerivedMin: []

 DerivedMax: []

 RunName: 'InitialRun'

 Comments: ''

wraps = converter.wrapOverflows('InitialRun')

wraps =

 []

There was one saturation in InitialRun. This saturation occurred in the Up Cast
block of the Controller subsystem. There were no wrapping overflows. Refine the
data types of the model so that no saturations occur.

5 Use shortcuts to prepare the model for conversion. Find the shortcuts that are
available for the system by accessing the ShortcutsForSelectedSystem property
of the converter object.

converter.ShortcutsForSelectedSystem

ans =

 'Model-wide double override and full instrumentation'

 'Model-wide no override and full instrumentation'

 'Model-wide single override and full instrumentation'

 'Model-wide instrumentation off'

6 Gather a floating-point benchmark for the model. Apply the settings from a shortcut
to override the entire model with doubles and turn on instrumentation.

converter.applySettingsFromShortcut('Model-wide double override and full instrumentation')

 Convert a Model to Fixed Point Using the Command-Line

42-7

This shortcut also updates the CurrentRunName property of the converter object.

converter.CurrentRunName

ans =

DoubleOverride

7 Simulate the model again to gather new range information. Store these results in
DoubleOverride.

converter.simulateSystem();

42 Command Line Interface for the Fixed-Point Tool

42-8

8 Create a ProposalSettings object to control the data type proposal settings. Set
the floating point default data type to 16-bit word length. For all other properties,
use the default values.

propSettings = DataTypeWorkflow.ProposalSettings;

propSettings.FloatingPointDefaultDataType = 'fixdt(1,16,0)'

propSettings =

 ProposalSettings with properties:

 ProposeWordLengthsForDefaultFractionLength: 0

 ProposeFractionLengthsForDefaultWordLength: 1

 SimSafetyMargin: 0

 DesignSafetyMargin: 0

 UseSimMinMax: 1

 UseDerivedMinMax: 1

 FloatingPointDefaultDataType: 'fixdt(1,16,0)'

9 Propose data types for the system using the settings specified in the proposal
settings object, propSettings and the range information gathered in the
'DoubleOverride' run.

converter.proposeDataTypes('DoubleOverride', propSettings);

10 Apply the data types proposed for the DoubleOverride run to the model.

converter.applyDataTypes('DoubleOverride')

11 Turn off data type override by applying another shortcut to the model.

converter.applySettingsFromShortcut('Model-wide no override and full instrumentation')

12 Set up a new run and simulate the model with the new fixed-point data types.

converter.CurrentRunName = 'FixedRun';

converter.simulateSystem();

The model now uses the refined fixed-point types.

 Convert a Model to Fixed Point Using the Command-Line

42-9

13 Create two Result objects to use to compare the ideal floating-point behavior to the
fixed-point behavior.

DoubleOverrideResult = converter.results('DoubleOverride',@(r) (strcmp(r.ResultName, 'fxpdemo_feedback/Controller/Down Cast')))

DoubleOverrideResult =

 Result with properties:

 ResultName: 'fxpdemo_feedback/Controller/Down Cast'

 SpecifiedDataType: 'fixdt(1,16,12)'

 CompiledDataType: 'double'

42 Command Line Interface for the Fixed-Point Tool

42-10

 ProposedDataType: 'fixdt(1,16,12)'

 Wraps: []

 Saturations: []

 SimMin: -2.4135

 SimMax: 4.3270

 DerivedMin: []

 DerivedMax: []

 RunName: 'DoubleOverride'

 Comments: {}

FixedRunResult = converter.results('FixedRun',@(r) (strcmp(r.ResultName, 'fxpdemo_feedback/Controller/Down Cast')))

FixedRunResult =

 Result with properties:

 ResultName: 'fxpdemo_feedback/Controller/Down Cast'

 SpecifiedDataType: 'fixdt(1,16,12)'

 CompiledDataType: 'fixdt(1,16,12)'

 ProposedDataType: ''

 Wraps: []

 Saturations: []

 SimMin: -2.4211

 SimMax: 4.3496

 DerivedMin: []

 DerivedMax: []

 RunName: 'FixedRun'

 Comments: ''

14 Compare the Result object from the DoubleOverride run to the Result object
from the FixedRun.

diff = converter.compareResults(DoubleOverrideResult,FixedRunResult);

15 Plot the difference between the two signals.

f = figure;

plot(diff.tol);

hold on

plot(diff.diff);

 Convert a Model to Fixed Point Using the Command-Line

42-11

More About
• “The Command-Line Interface for the Fixed-Point Tool” on page 42-2

43

Code Generation

• “Generating and Deploying Production Code” on page 43-2
• “Code Generation Support” on page 43-3
• “Accelerating Fixed-Point Models” on page 43-5
• “Using External Mode or Rapid Simulation Target” on page 43-7
• “Optimize Your Generated Code” on page 43-9
• “Optimizing Your Generated Code with the Model Advisor” on page 43-32
• “Use the Model Advisor to Optimize Fixed-Point Operations in Generated Code” on

page 43-40

43 Code Generation

43-2

Generating and Deploying Production Code

You can generate C code with the Fixed-Point Designer software by using the Simulink
Coder product. The code generated from fixed-point models uses only integer types and
automatically includes all operations, such as shifts, needed to account for differences in
fixed-point locations. You can use the generated code on embedded fixed-point processors
or on rapid prototyping systems even if they contain a floating-point processor. For more
information about code generation, refer to the Simulink Coder documentation.

You can generate code for testing on a rapid prototyping system using products such as
Simulink Real-Time™, Simulink Desktop Real-Time™, or dSPACE® software. The target
compiler and processor may support floating-point operations in software or in hardware.
In any case, the fixed-point portions of a model generate pure integer code and do not
use floating-point operations. This allows valid bit-true testing even on a floating-point
processor.

You can also generate code for non-real-time testing. For example, you can generate
code to run in nonreal time on computers running any supported operating system. Even
though the processors have floating-point hardware, the code generated by fixed-point
blocks is pure integer code. The Generic Real-Time Target (GRT) in the Simulink Coder
product and acceleration modes in the Simulink software are examples of where non-
real-time code is generated and run.

When used with HDL Coder, Fixed-Point Designer lets you generate bit-true
synthesizable Verilog® and VHDL® code from Simulink models, Stateflow charts, and
MATLAB Function blocks.

 Code Generation Support

43-3

Code Generation Support

In this section...

“Introduction” on page 43-3
“Languages” on page 43-3
“Data Types” on page 43-3
“Rounding Modes” on page 43-3
“Overflow Handling” on page 43-3
“Blocks” on page 43-4
“Scaling” on page 43-4

Introduction

All fixed-point blocks support code generation, except particular simulation features. The
sections that follow describe the code generation support that the Fixed-Point Designer
software provides. You must have a Simulink Coder license to generate C code or a HDL
Coder license to generate HDL code.

Languages

C code generation is supported.

Data Types

Fixed-point code generation supports all integer and fixed-point data types that are
supported by simulation. See “Supported Data Types” on page 30-18.

Rounding Modes

All rounding modes—Ceiling, Convergent, Floor, Nearest, Round, Simplest, and
Zero —are supported.

Overflow Handling

• Saturation and wrapping are supported.

43 Code Generation

43-4

• Wrapping generates the most efficient code.
• Currently, you cannot choose to exclude saturation code automatically when

hardware saturation is available. Select wrapping in order for the Simulink Coder
product to exclude saturation code.

Blocks

All blocks generate code for all operations with a few exceptions. The Lookup Table
Dynamic block generates code for all lookup methods except Interpolation-
Extrapolation.

Scaling

Any binary-point-only scaling and [Slope Bias] scaling that is supported in simulation is
supported, bit-true, in code generation.

 Accelerating Fixed-Point Models

43-5

Accelerating Fixed-Point Models

If the model meets the code generation restrictions, you can use Simulink acceleration
modes with your fixed-point model. The acceleration modes can drastically increase the
speed of some fixed-point models. This is especially true for models that execute a very
large number of time steps. The time overhead to generate code for a fixed-point model is
generally larger than the time overhead to set up a model for simulation. As the number
of time steps increases, the relative importance of this overhead decreases.

Note: Rapid Accelerator mode does not support models with bus objects or 33+ bit fixed-
point data types as parameters.

Every Simulink model is configured to have a start time and a stop time in the
Configuration Parameters dialog box. Simulink simulations are usually configured for
non-real-time execution, which means that the Simulink software tries to simulate
the behavior from the specified start time to the stop time as quickly as possible. The
time it takes to complete a simulation consists of two parts: overhead time and core
simulation time, which is spent calculating changes from one time step to the next. For
any model, the time it takes to simulate if the stop time is the same as the start time
can be regarded as the overhead time. If the stop time is increased, the simulation takes
longer. This additional time represents the core simulation time. Using an acceleration
mode to simulate a model has an initially larger overhead time that is spent generating
and compiling code. For any model, if the simulation stop time is sufficiently close to
the start time, then Normal mode simulation is faster than an acceleration mode. But
an acceleration mode can eliminate the overhead of code generation for subsequent
simulations if structural changes to the model have not occurred.

In Normal mode, the Simulink software runs general code that can handle various
situations. In an acceleration mode, code is generated that is tailored to the current
usage. For fixed-point use, the tailored code is much leaner than the simulation code
and executes much faster. The tailored code allows an acceleration mode to be much
faster in the core simulation time. For any model, when the stop time is close to the start
time, overhead dominates the overall simulation time. As the stop time is increased,
there is a point at which the core simulation time dominates overall simulation time.
Normal mode has less overhead compared to an acceleration mode when fresh code
generation is necessary. Acceleration modes are faster in the core simulation portion. For
any model, there is a stop time for which Normal mode and acceleration mode with fresh
code generation have the same overall simulation time. If the stop time is decreased,

43 Code Generation

43-6

then Normal mode is faster. If the stop time is increased, then an acceleration mode has
an increasing speed advantage. Eventually, the acceleration mode speed advantage is
drastic.

Normal mode generally uses more tailored code for floating-point calculations compared
to fixed-point calculations. Normal mode is therefore generally much faster for floating-
point models than for similar fixed-point models. For acceleration modes, the situation
often reverses and fixed point becomes significantly faster than floating point. As
noted above, the fixed-point code goes from being general to highly tailored and
efficient. Depending on the hardware, the integer-based fixed-point code can gain speed
advantages over similar floating-point code. Many processors can do integer calculations
much faster than similar floating-point operations. In addition, if the data bus is narrow,
there can also be speed advantages to moving around 1-, 2-, or 4-byte integer signals
compared to 4- or 8-byte floating-point signals.

 Using External Mode or Rapid Simulation Target

43-7

Using External Mode or Rapid Simulation Target

In this section...

“Introduction” on page 43-7
“External Mode” on page 43-7
“Rapid Simulation Target” on page 43-8

Introduction

If you are using the Simulink Coder external mode or rapid simulation (RSim) target,
there are situations where you might get unexpected errors when tuning block
parameters. These errors can arise when you specify the Best precision scaling
option for blocks that support constant scaling for best precision. See “Constant Scaling
for Best Precision” on page 31-15 for a description of the constant scaling feature.

The sections that follow provide further details about the errors you might encounter. To
avoid these errors, specify a scaling value instead of using the Best precision scaling
option.

External Mode

If you change a parameter such that the binary point moves during an external mode
simulation or during graphical editing, and you reconnect to the target, a checksum
error occurs and you must rebuild the code. When you use Best Precision scaling,
the binary point is automatically placed based on the value of a parameter. Each power
of two roughly marks the boundary where a parameter value maps to a different binary
point. For example, a parameter value of 1 to 2 maps to a particular binary point
position. If you change the parameter to a value of 2 to 4, the binary point moves one
place to the right, while if you change the parameter to a value of 0.5 to 1, it moves one
place to the left.

For example, suppose a block has a parameter value of -2. You then build the code
and connect in external mode. While connected, you change the parameter to -4. If the
simulation is stopped and then restarted, this parameter change causes a binary point
change. In external mode, the binary point is kept fixed. If you keep the parameter value
of -4 and disconnect from the target, then when you reconnect, a checksum error occurs
and you must rebuild the code.

43 Code Generation

43-8

Rapid Simulation Target

If a parameter change is great enough, and you are using the best precision mode for
constant scaling, then you cannot use the RSim target.

If you change a block parameter by a sufficient amount (approximately a factor of two),
the best precision mode changes the location of the binary point. Any change in the
binary point location requires the code to be rebuilt because the model checksum is
changed. This means that if best precision parameters are changed over a great enough
range, you cannot use the rapid simulation target and a checksum error message occurs
when you initialize the RSim executable.

 Optimize Your Generated Code

43-9

Optimize Your Generated Code

In this section...

“Reducing ROM Consumption or Model Execution Time” on page 43-9
“Restrict Data Type Word Lengths” on page 43-10
“Avoid Fixed-Point Scalings with Bias” on page 43-10
“Wrap and Round to Floor or Simplest” on page 43-11
“Limit the Use of Custom Storage Classes” on page 43-12
“Limit the Use of Unevenly Spaced Lookup Tables” on page 43-12
“Minimize the Variety of Similar Fixed-Point Utility Functions” on page 43-13
“Handle Net Slope Computation” on page 43-13
“Use Division to Handle Net Slope Computation” on page 43-14
“Improve Numerical Accuracy of Simulation Results with Rational Approximations to
Handle Net Slope” on page 43-15
“Improve Efficiency of Generated Code with Rational Approximations to Handle Net
Slope” on page 43-20
“Use Integer Division to Handle Net Slope Computation” on page 43-26
“Optimize Generated Code Using Specified Minimum and Maximum Values” on page
43-26
“Eliminate Unnecessary Utility Functions Using Specified Minimum and Maximum
Values” on page 43-29

Reducing ROM Consumption or Model Execution Time

Tip Reduces ROM Reduces Model
Execution Time

“Restrict Data Type Word Lengths” on page 43-10 Yes Yes
“Avoid Fixed-Point Scalings with Bias” on page 43-10 Yes Yes
“Wrap and Round to Floor or Simplest” on page 43-11 Yes Yes
“Limit the Use of Custom Storage Classes” on page 43-12 Yes No
“Limit the Use of Unevenly Spaced Lookup Tables” on page
43-12 Yes Yes

43 Code Generation

43-10

Tip Reduces ROM Reduces Model
Execution Time

“Minimize the Variety of Similar Fixed-Point Utility
Functions” on page 43-13 Yes No

“Handle Net Slope Computation” on page 43-13

Dependent
on model

configuration,
compiler, and

target hardware

Dependent
on model

configuration,
compiler, and

target hardware
“Optimize Generated Code Using Specified Minimum and
Maximum Values” on page 43-26 Yes Yes

Restrict Data Type Word Lengths

If possible, restrict the fixed-point data type word lengths in your model so that they are
equal to or less than the integer size of your target microcontroller. This results in fewer
mathematical instructions in the microcontroller, and reduces ROM and execution time.

This recommendation strongly applies to global variables that consume global RAM. For
example, Unit Delay blocks have discrete states that have the same word lengths as their
input and output signals. These discrete states are global variables that consume global
RAM, which is a scarce resource on many embedded systems.

For temporary variables that only occupy a CPU register or stack location briefly, the
space consumed by a long is less critical. However, depending on the operation, the use
of long variables in math operations can be expensive. Addition and subtraction of long
integers generally requires the same effort as adding and subtracting regular integers, so
that operation is not a concern. In contrast, multiplication and division with long integers
can require significantly larger and slower code.

Avoid Fixed-Point Scalings with Bias

Whenever possible, avoid using fixed-point numbers with bias. In certain cases, if you
choose biases carefully, you can avoid significant increases in ROM and execution
time. Refer to “Recommendations for Arithmetic and Scaling” on page 32-40 for more
information on how to choose appropriate biases in cases where it is necessary; for
example if you are interfacing with a hardware device that has a built-in bias. In general,
however, it is safer to avoid using fixed-point numbers with bias altogether.

 Optimize Your Generated Code

43-11

Inputs to lookup tables are an important exception to this recommendation. If a lookup
table input and the associated input data use the same bias, then there is no penalty
associated with nonzero bias for that operation.

Wrap and Round to Floor or Simplest

For most fixed-point and integer operations, the Simulink software provides you with
options on how overflows are handled and how calculations are rounded. Traditional
handwritten code, especially for control applications, almost always uses the “no effort”
rounding mode. For example, to reduce the precision of a variable, that variable is shifted
right. For unsigned integers and two's complement signed integers, shifting right is
equivalent to rounding to floor. To get results comparable to or better than what you
expect from traditional handwritten code, you should round to floor in most cases.

The primary exception to this rule is the rounding behavior of signed integer division.
The C language leaves this rounding behavior unspecified, but for most targets the
“no effort” mode is round to zero. For unsigned division, everything is nonnegative, so
rounding to floor and rounding to zero are identical.

You can improve code efficiency by setting the value of the Model Configuration
Parameters > Hardware Implementation > Production hardware> Signed
integer division rounds to parameter to describe how your production target handles
rounding for signed division. For Product blocks that are doing only division, setting the
Integer rounding mode parameter to the rounding mode of your production target
gives the best results. You can also use the Simplest rounding mode on blocks where it
is available. For more information, refer to “Rounding Mode: Simplest” on page 32-16.

The options for overflow handling also have a big impact on the efficiency of your
generated code. Using software to detect overflow situations and saturate the results
requires the code to be much bigger and slower compared to simply ignoring the
overflows. When overflows are ignored for unsigned integers and two's complement
signed integers, the results usually wrap around modulo 2N, where N is the number of
bits. Unhandled overflows that wrap around are highly undesirable for many situations.

However, because of code size and speed needs, traditional handwritten code contains
very little software saturation. Typically, the fixed-point scaling is very carefully set so
that overflow does not occur in most calculations. The code for these calculations safely
ignores overflow. To get results comparable to or better than what you would expect from
traditional handwritten code, the Saturate on integer overflow parameter should not
be selected for Simulink blocks doing those calculations.

43 Code Generation

43-12

In a design, there might be a few places where overflow can occur and saturation
protection is needed. Traditional handwritten code includes software saturation for
these few places where it is needed. To get comparable generated code, the Saturate on
integer overflow parameter should only be selected for the few Simulink blocks that
correspond to these at-risk calculations.

A secondary benefit of using the most efficient options for overflow handling and
rounding is that calculations often reduce from multiple statements requiring several
lines of C code to small expressions that can be folded into downstream calculations.
Expression folding is a code optimization technique that produces benefits such as
minimizing the need to store intermediate computations in temporary buffers or
variables. This can reduce stack size and make it more likely that calculations can be
efficiently handled using only CPU registers. An automatic code generator can carefully
apply expression folding across parts of a model and often see optimizations that might
not be obvious. Automatic optimizations of this type often allow generated code to exceed
the efficiency of typical examples of handwritten code.

Limit the Use of Custom Storage Classes

In addition to the tip mentioned in “Wrap and Round to Floor or Simplest” on page
43-11, to obtain the maximum benefits of expression folding you also need to make
sure that the Storage class field in the Signal Properties dialog box is set to Auto for
each signal. When you choose a setting other than Auto, you need to name the signal,
and a separate statement is created in the generated code. Therefore, only use a setting
other than Auto when it is necessary for global variables.

You can access the Signal Properties dialog box by selecting any connection between
blocks in your model, and then selecting Signal Properties from the Simulink Edit
menu.

Limit the Use of Unevenly Spaced Lookup Tables

If possible, use lookup tables with nontunable, evenly spaced axes. A table with an
unevenly spaced axis requires a search routine and memory for each input axis, which
increases ROM and execution time. However, keep in mind that an unevenly spaced
lookup table might provide greater accuracy. You need to consider the needs of your
algorithm to determine whether you can forgo some accuracy with an evenly spaced table
in order to reduce ROM and execution time. Also note that this decision applies only to
lookup tables with nontunable input axes, because tables with tunable input axes always
have the potential to be unevenly spaced.

 Optimize Your Generated Code

43-13

Minimize the Variety of Similar Fixed-Point Utility Functions

The Embedded Coder product generates fixed-point utility functions that are designed to
handle specific situations efficiently. The Simulink Coder product can generate multiple
versions of these optimized utility functions depending on what a specific model requires.
For example, the division of long integers can, in theory, require eight varieties that are
combinations of the output and the two inputs being signed or unsigned. A model that
uses all these combinations can generate utility functions for all these combinations.

In some cases, it is possible to make small adjustments to a model that reduce the variety
of required utility functions. For example, suppose that across most of a model signed
data types are used, but in a small part of a model, a local decision to use unsigned data
types is made. If it is possible to switch that portion of the model to use signed data
types, then the overall variety of generated utility functions can potentially be reduced.

The best way to identify these opportunities is to inspect the generated code. For each
utility function that appears in the generated code, you can search for all the call sites.
If relatively few calls to the function are made, then trace back from the call site to the
Simulink model. By modifying those places in the Simulink model, it is possible for you to
eliminate the few cases that need a rarely used utility function.

Handle Net Slope Computation

The Fixed-Point Designer software provides an optimization parameter, Use division
for fixed-point net slope computation, that controls how the software handles net
slope computation. To learn how to enable this optimization, see “Use Division to Handle
Net Slope Computation” on page 43-14.

When a change of fixed-point slope is not a power of two, net slope computation
is necessary. Normally, net slope computation is implemented using an integer
multiplication followed by shifts. Under certain conditions, net slope computation can be
implemented using integer division or a rational approximation of the net slope. One of
the conditions is that the net slope can be accurately represented as a rational fraction
or as the reciprocal of an integer. Under this condition, the division implementation
gives more accurate numerical behavior. Depending on your compiler and embedded
hardware, a division implementation might be more desirable than the multiplication
and shifts implementation. The generated code for the rational approximation and/or
integer division implementation might require less ROM or improve model execution
time.

43 Code Generation

43-14

When to Use Division for Fixed-Point Net Slope Computation

This optimization works if:

• The net slope can be approximated with a fraction or is the reciprocal of an integer.
• Division is more efficient than multiplication followed by shifts on the target

hardware.

Note: The Fixed-Point Designer software is not aware of the target hardware. Before
selecting this option, verify that division is more efficient than multiplication followed
by shifts on your target hardware.

When Not to Use Division to Handle Net Slope Computation

This optimization does not work if:

• The software cannot perform the division using the production target long data type
and therefore must use multiword operations.

Using multiword division does not produce code suitable for embedded targets.
Therefore, do not use division to handle net slope computation in models that use
multiword operations. If your model contains blocks that use multiword operations,
change the word length of these blocks to avoid these operations.

• Net slope is a power of 2 or a rational approximation of the net slope contains division
by a power of 2.

Binary-point-only scaling, where the net slope is a power of 2, involves moving the
binary point within the fixed-point word. This scaling mode already minimizes the
number of processor arithmetic operations.

Use Division to Handle Net Slope Computation

To enable this optimization:

1 In the Configuration Parameters dialog box, set Optimization > Use
division for fixed-point net slope computation to On, or Use division for
reciprocals of integers only

For more information, see “Use division for fixed-point net slope computation”.

 Optimize Your Generated Code

43-15

2 On the Hardware Implementation > Production hardware pane, set the
Signed integer division rounds to configuration parameter to Floor or Zero, as
appropriate for your target hardware. The optimization does not occur if the Signed
integer division rounds to parameter is Undefined.

Note: You must set this parameter to a value that is appropriate for the target
hardware. Failure to do so might result in division operations that comply with the
definition on the Hardware Implementation pane, but are inappropriate for the
target hardware.

3 Set the Integer rounding mode of the blocks that require net slope computation
(for example, Product, Gain, and Data Type Conversion) to Simplest or match the
rounding mode of your target hardware.

Note: You can use the Model Advisor to alert you if you have not configured your
model correctly for this optimization. Open the Model Advisor and run the Identify
questionable fixed-point operations check. For more information, see “Use the Model
Advisor to Optimize Fixed-Point Operations in Generated Code” on page 43-40.

Improve Numerical Accuracy of Simulation Results with Rational
Approximations to Handle Net Slope

This example illustrates how setting the Optimization > Use division for fixed-
point net slope computation parameter to On improves numerical accuracy. It uses
the following model.

43 Code Generation

43-16

For the Product block in this model,

These values are represented by the general [Slope Bias] encoding scheme described in
“Scaling” on page 31-7:V S Q Bi i i i= + .

Because there is no bias for the inputs or outputs:

S Q S Q S Qa a b b c c= . , or

 Optimize Your Generated Code

43-17

Q
S S

S
Q Qa

b c

a
b c= .

where the net slope is:

S S

S

b c

a

The net slope for the Product block is 7/11. Because the net slope can be represented
as a fractional value consisting of small integers, you can use the On setting of the Use
division for fixed-point net slope computation optimization parameter if your
model and hardware configuration are suitable. For more information, see “When to Use
Division for Fixed-Point Net Slope Computation” on page 43-14.

To set up the model and run the simulation:

1 For the Constant block Vb, set the Output data type to fixdt(1, 8, 0.7, 0).
For the Constant block Vc, set the Output data type to fixdt(1, 8, 0).

2 For the Product block, set the Output data type to fixdt(1, 16, 1.1, 0). Set
the Integer rounding mode to Simplest.

3 Set the Hardware Implementation > Production hardware > Signed integer
division rounds to configuration parameter to Zero.

4 Set the Optimization > Use division for fixed-point net slope computation to
Off.

5 In your Simulink model window, select Simulation > Run.

43 Code Generation

43-18

Because the simulation uses multiplication followed by shifts to handle the net slope
computation, net slope precision loss occurs. This precision loss results in numerical
inaccuracy: the calculated product is 306.9, not 308, as you expect.

Note: You can set up the Fixed-Point Designer software to provide alerts when
precision loss occurs in fixed-point constants. For more information, see “Net Slope
and Net Bias Precision” on page 32-26.

6 Set the Optimization > Use division for fixed-point net slope computation to
On.

 Optimize Your Generated Code

43-19

Save your model, and simulate again.

The software implements the net slope computation using a rational approximation
instead of multiplication followed by shifts. The calculated product is 308, as you
expect.

The optimization works for this model because:

• The net slope is representable as a fraction with small integers in the numerator
and denominator.

• The Hardware Implementation > Production hardware > Signed integer
division rounds to configuration parameter is set to Zero.

43 Code Generation

43-20

Note: This setting must match your target hardware rounding mode.

• The Integer rounding mode of the Product block in the model is set to
Simplest.

• The model does not use multiword operations.

Improve Efficiency of Generated Code with Rational Approximations to
Handle Net Slope

This example shows how setting the optimization parameter Optimization > Use
division for fixed-point net slope computation to On improves the efficiency of
generated code.

Note: The generated code is more efficient only if division is more efficient than
multiplication followed by shifts on your target hardware.

This example uses the following model.

 Optimize Your Generated Code

43-21

For the Product block in this model,

V V V
m a b

= ¥

These values are represented by the general [Slope Bias] encoding scheme described in
“Scaling” on page 31-7:V S Q Bi i i i= + .

Because there is no bias for the inputs or outputs:

43 Code Generation

43-22

S Q S Q S Qm m a a b b= .

, or

Q
S S

S
Q Qm

a b

m
a b= .

where the net slope is:

S S

S

a b

m

The net slope for the Product block is 9/10.

Similarly, for the Data Type Conversion block in this model,

S Q B S Q Ba a a b b b+ = +

There is no bias. Therefore, the net slope is S

S

b

a

. The net slope for this block is also 9/10.

Because the net slope can be represented as a fraction, you can set the Optimization >
Use division for fixed-point net slope computation optimization parameter to On if
your model and hardware configuration are suitable. For more information, see “When to
Use Division for Fixed-Point Net Slope Computation” on page 43-14.

To set up the model and generate code:

1 For the Inport block Va, set the Data type to fixdt(1, 8, 9/10, 0); for the
Inport block Vb, set the Data type to int8.

2 For the Data Type Conversion block, set the Integer rounding mode to Simplest.
Set the Output data type to int16.

 Optimize Your Generated Code

43-23

3 For the Product block, set the Integer rounding mode to Simplest. Set the
Output data type to int16.

4 Set the Hardware Implementation > Production hardware > Signed integer
division rounds to configuration parameter to Zero.

5 Set the Optimization > Use division for fixed-point net slope computation to
Off.

6 From the Simulink model menu, select Code > C/C++ Code > Build Model.

Conceptually, the net slope computation is 9/10 or 0.9:

Vc = 0.9 * Va;

Vm = 0.9 * Va * Vb;

The generated code uses multiplication with shifts:

% For the conversion

Vc = (int16_T)(Va * 115 >> 7);

% For the multiplication

Vm = (int16_T)((Va * Vb >> 1) * 29491 >> 14);

The ideal value of the net slope computation is 0.9. In the generated code, the
approximate value of the net slope computation is 29491 >> 15 = 29491/2^15
= 0.899993896484375. This approximation introduces numerical inaccuracy. For
example, using the same model with constant inputs produces the following results.

43 Code Generation

43-24

7 In the original model with inputs Va and Vb, set the Optimization > Use division
for fixed-point net slope computation parameter to On, update the diagram, and
generate code again.

The generated code now uses integer division instead of multiplication followed by
shifts:

% For the conversion

Vc = (int16_T)(Va * 9/10);

 Optimize Your Generated Code

43-25

% For the multiplication

Vm = (int16_T)(Va * Vb * 9/10);

8 In the generated code, the value of the net slope computation is now the ideal value
of 0.9. Using division, the results are numerically accurate.

In the model with constant inputs, set the Optimization > Use division for fixed-
point net slope computation parameter to On and simulate the model.

43 Code Generation

43-26

The optimization works for this model because the:

• Net slope is representable as a fraction with small integers in the numerator and
denominator.

• Hardware Implementation > Production hardware > Signed integer
division rounds to configuration parameter is set to Zero.

Note: This setting must match your target hardware rounding mode.
• For the Product and Data Type Conversion blocks in the model, the Integer

rounding mode is set to Simplest.
• Model does not use multiword operations.

Use Integer Division to Handle Net Slope Computation

Setting the Optimization > Use division for fixed-point net slope computation
parameter to Use division for reciprocals of integers only triggers the
optimization only in cases where the net slope is the reciprocal of an integer. This setting
results in a single integer division to handle net slope computations.

Optimize Generated Code Using Specified Minimum and Maximum
Values

The Fixed-Point Designer software uses representable minimum and maximum values
and constant values to determine if it is possible to optimize the generated code, for
example, by eliminating unnecessary utility functions and saturation code from the
generated code.

This optimization results in:

• Reduced ROM and RAM consumption
• Improved execution speed

When you select the Optimize using specified minimum and maximum values
configuration parameter, the software takes into account input range information, also
known as design minimum and maximum, that you specify for signals and parameters
in your model. It uses these minimum and maximum values to derive range information

 Optimize Your Generated Code

43-27

for downstream signals in the model and then uses this derived range information to
simplify mathematical operations in the generated code whenever possible.

Prerequisites

The Optimize using specified minimum and maximum values parameter appears
for ERT-based targets only and requires an Embedded Coder license when generating
code.

How to Configure Your Model

To make optimization more likely:

• Provide as much design minimum and maximum information as possible. Specify
minimum and maximum values for signals and parameters in the model for:

• Inport and Outport blocks
• Block outputs
• Block inputs, for example, for the MATLAB Function and Stateflow Chart blocks
• Simulink.Signal objects

• Before generating code, test the minimum and maximum values for signals and
parameters. Otherwise, optimization might result in numerical mismatch with
simulation. You can simulate your model with simulation range checking enabled. If
errors or warnings occur, fix these issues before generating code.

How to Enable Simulation Range Checking

1 In your model, select Simulation > Model Configuration Parameters to open
the Configuration Parameters dialog box.

2 In the Configuration Parameters dialog box, select Diagnostics > Data
Validity.

3 On the Data Validity pane, under Signals, set Simulation range checking to
warning or error.

• Use fixed-point data types with binary-point-only (power-of-two) scaling.
• Provide design minimum and maximum information upstream of blocks as close to

the inputs of the blocks as possible. If you specify minimum and maximum values
for a block output, these values are most likely to affect the outputs of the blocks
immediately downstream. For more information, see “Eliminate Unnecessary Utility
Functions Using Specified Minimum and Maximum Values” on page 43-29.

43 Code Generation

43-28

How to Enable Optimization

1 In the Configuration Parameters dialog box, set the Code Generation > System
target file to select an Embedded Real-Time (ERT) target (requires an Embedded
Coder license).

2 Specify design minimum and maximum values for signals and parameters in your
model using the tips in “How to Configure Your Model” on page 43-27.

3 Select the Optimization > Optimize using specified minimum and maximum
values configuration parameter.

For more information, see “Optimize using the specified minimum and maximum
values”.

Limitations

• This optimization does not occur for:

• Multiword operations
• Fixed-point data types with slope and bias scaling
• Addition unless the fraction length is zero

• This optimization does not take into account minimum and maximum values for:

• Merge block inputs. To work around this issue, use a Simulink.Signal object on
the Merge block output and specify the range on this object.

• Bus elements.
• Conditionally-executed subsystem (such as a triggered subsystem) block outputs

that are directly connected to an Outport block.

Outport blocks in conditionally-executed subsystems can have an initial
value specified for use only when the system is not triggered. In this case, the
optimization cannot use the range of the block output because the range might not
cover the initial value of the block.

• There are limitations on precision because you specify the minimum and maximum
values as double-precision values. If the true value of a minimum or maximum
value cannot be represented as a double, ensure that you round the minimum and
maximum values correctly so that they cover the true design range.

• If your model contains multiple instances of a reusable subsystem and each instance
uses input signals with different specified minimum and maximum values, this
optimization might result in different generated code for each subsystem so code

 Optimize Your Generated Code

43-29

reuse does not occur. Without this optimization, the Simulink Coder software
generates code once for the subsystem and shares this code among the multiple
instances of the subsystem.

Eliminate Unnecessary Utility Functions Using Specified Minimum and
Maximum Values

This example shows how the Fixed-Point Designer software uses the input range for a
division operation to determine whether it can eliminate unnecessary utility functions
from the generated code. It uses the fxpdemo_min_max_optimization model. First,
you generate code without using the specified minimum and maximum values to
see that the generated code contains utility functions to ensure that division by zero
does not occur. You then turn on the optimization, and generate code again. With the
optimization, the generated code does not contain the utility function because it is not
necessary for the input range.

Generate Code Without Using Minimum and Maximum Values

First, generate code without taking into account the design minimum and maximum
values for the first input of the division operation to show the code without the
optimization. In this case, the software uses the representable ranges for the two inputs,
which are both uint16. With these input ranges, it is not possible to implement the
division with the specified precision using shifts, so the generated code includes a
division utility function.

1 Run the example. At the MATLAB command line, enter:

fxpdemo_min_max_optimization

2 In the example window, double-click the View Optimization Configuration
button.

The Optimization pane of the Configuration Parameters dialog box appears.

Note that the Optimize using specified minimum and maximum values
parameter is not selected.

3 Double-click the Generate Code button.

The code generation report appears.
4 In the model, right-click the Division with increased fraction length

output type block.

43 Code Generation

43-30

The context menu appears.
5 From the context menu, select C/C++ Code > Navigate To C/C++ Code.

The code generation report highlights the code generated for this block. The
generated code includes a call to the div_repeat_u32 utility function.

rtY.Out3 = div_repeat_u32((uint32_T)rtU.In5 << 16,

 (uint32_T)rtU.In6, 1U);

6 Click the div_repeat_u32 link to view the utility function, which contains code for
handling division by zero.

Generate Code Using Minimum and Maximum Values

Next, generate code for the same division operation, this time taking into account the
design minimum and maximum values for the first input of the Product block. These
minimum and maximum values are specified on the Inport block directly upstream of the
Product block. With these input ranges, the generated code implements the division by
simply using a shift. It does not need to generate a division utility function, reducing both
memory usage and execution time.

1 Double-click the Inport block labelled 5 to open the block parameters dialog box.
2 On the block parameters dialog box, select the Signal Attributes pane and note

that:

• The Minimum value for this signal is 1.
• The Maximum value for this signal is 100.

3 Click OK to close the dialog box.
4 Double-click the View Optimization Configuration button.

The Optimization pane of the Configuration Parameters dialog box appears.
5 On this pane, select the Optimize using specified minimum and maximum

values parameter and click Apply.
6 Double-click the Generate Code button.

The code generation report appears.
7 In the model, right-click the Division with increased fraction length

output type block.

The context menu appears.

 Optimize Your Generated Code

43-31

8 From the context menu, select C/C++ Code > Navigate To C/C++ Code.

The code generation report highlights the code generated for this block. This time
the generated code implements the division with a shift operation and there is no
division utility function.

tmp = rtU.In6;

rtY.Out3 = (uint32_T)tmp ==

 (uint32_T)0 ? MAX_uint32_T : ((uint32_T)rtU.In5 << 17) /

 (uint32_T)tmp;

Modify the Specified Minimum and Maximum Values

Finally, modify the minimum and maximum values for the first input to the division
operation so that its input range is too large to guarantee that the value does not
overflow when shifted. Here, you cannot shift a 16-bit number 17 bits to the right
without overflowing the 32-bit container. Generate code for the division operation, again
taking into account the minimum and maximum values. With these input ranges, the
generated code includes a division utility function to ensure that no overflow occurs.

1 Double-click the Inport block labelled 5 to open the block parameters dialog box.
2 On the block parameters dialog box, select the Signal Attributes pane and set the

Maximum value to 40000, then click OK to close the dialog box.
3 Double-click the Generate Code button.

The code generation report appears.
4 In the model, right-click the Division with increased fraction length

output type block.

The context menu appears.
5 From the context menu, select C/C++ Code > Navigate To C/C++ Code.

The code generation report highlights the code generated for this block. The
generated code includes a call to the div_repeat_32 utility function.

rtY.Out3 = div_repeat_u32((uint32_T)rtU.In5 << 16,

 (uint32_T)rtU.In6, 1U);

43 Code Generation

43-32

Optimizing Your Generated Code with the Model Advisor

In this section...

“Optimize Generated Code with Model Advisor” on page 43-32
“Identify Blocks that Generate Expensive Fixed-Point and Saturation Code” on page
43-33
“Identify Questionable Fixed-Point Operations” on page 43-36
“Identify Blocks that Generate Expensive Rounding Code” on page 43-38

Optimize Generated Code with Model Advisor

You can use the Simulink Model Advisor to help you configure your fixed-point models
to achieve a more efficient design and optimize your generated code. To use the Model
Advisor to check your fixed-point models:

1 From the Analysis menu of the model you want to analyze, select Model Advisor.
2 In the Model Advisor left pane, expand the By Product node and select Embedded

Coder.
3 From the Model Advisor Edit menu, select Select All to enable all Model Advisor

checks associated with the selected node. For fixed-point code generation, the most
important check boxes to select are Identify blocks that generate expensive
fixed-point and saturation code, Identify questionable fixed-point
operations, Identify blocks that generate expensive rounding code, and
Check the hardware implementation.

4 Click Run Selected Checks. Any tips for improving the efficiency of your fixed-
point model appear in the Model Advisor window.

The sections that follow discuss fixed-point related checks and sub-checks found in
the Model Advisor. The sections explain the checks, discuss their importance in fixed-
point code generation, and offer suggestions for tweaking your model to optimize your
generated code.

 Optimizing Your Generated Code with the Model Advisor

43-33

Identify Blocks that Generate Expensive Fixed-Point and Saturation Code

Identify Sum blocks for questionable fixed-point operations

• When the input range of a Sum block exceeds the output range, a range error occurs.
Users can get any addition or subtraction their application requires by inserting data
type conversion blocks before and/or after the sum block.

• When a Sum block has an input with a slope adjustment factor that does not equal
the slope adjustment factor of the output, the mismatch requires the Sum block to
perform a multiply operation each time the input is converted to the output’s data
type and scaling. The mismatch can be removed by changing the scaling of the output
or the input.

• When the net sum of the Sum block input biases does not equal the bias of the output,
the generated code includes one extra addition or subtraction instruction to correctly
account for the net bias adjustment. Changing the bias of the output scaling can make
the net bias adjustment zero and eliminate the need for the extra operation.

Identify Min Max blocks for questionable fixed-point operations

• When the input and output of the MinMax block have different data types, a
conversion operation is required every time the block is executed. The model is more
efficient with the same data types.

• When the data type and scaling of the input of the MinMax block does not match
the data type and scaling of the output, a conversion is required before performing a
relational operation. This could result in a range error when casting, or a precision
loss each time a conversion is performed. Change the scaling of either the input or
output to generate more efficient code.

• When the input of the MinMax block has a different slope adjustment factor than
the output, the MinMax block requires a multiply operation each time the block is
executed to convert the input to the data type and scaling of the output. You can
correct the mismatch by changing the scaling of either the input or output.

Identify Discrete Integrator blocks for questionable fixed-point operations

• When the initial condition for the Discrete-Time Integrator blocks is used to initialize
the state and output, the output equation generates excessive code and an extra
global variable is required. It is recommended that you set the Function Block
Parameters > Initial condition setting parameter to State (most efficient).

43 Code Generation

43-34

Identify Compare to Constant blocks for questionable fixed-point operations

• If the input data type of the Compare to Zero block cannot represent zero exactly,
the input signal is compared to the closest representable value of zero, resulting in
parameter overflow. To avoid this parameter overflow, select an input data type that
can represent zero.

• If the Compare to Constant block’s Constant value is outside the range that
the input data type can represent, the input signal is compared to the closest
representable value of the constant. This results in parameter overflow. To avoid
this parameter overflow, select an input data type that can represent the Constant
value, or change the Constant value to a value that can be accommodated by the
input data type.

Identify Lookup Table blocks for questionable fixed-point operations

Efficiency trade-offs related to lookup table data are described in “Effects of Spacing on
Speed, Error, and Memory Usage” on page 37-22. Based on these trade-offs, the Model
Advisor identifies blocks where there is potential for efficiency improvements, such as:

• Lookup table input data is not evenly spaced.
• Lookup table input data is not evenly spaced when quantized, but it is very close to

being evenly spaced.
• Lookup table input data is evenly spaced, but the spacing is not a power of two.

Check optimization and hardware implementation settings

• Integer division generated code contains protection against arithmetic exceptions
such as division by zero, INT_MIN/-1, and LONG_MIN/-1. If you construct models
making it impossible for exception triggering input combinations to reach a
division operation, the protection code generated as part of the division operation is
redundant.

• The index search method Evenly-spaced points requires a division operation,
which can be computationally expensive.

Identify blocks that will invoke net slope computation

When a change of fixed-point slope is not a power of two, net slope computation
is necessary. Normally, net slope computation is implemented using an integer
multiplication followed by shifts. Under some conditions, an alternate implementation
requires just an integer division by a constant. One of the conditions is that the net slope
can be very accurately represented as the reciprocal of an integer. When this condition is

 Optimizing Your Generated Code with the Model Advisor

43-35

met, the division implementation produces more accurate numerical behavior. Depending
on your compiler and embedded hardware, the division implementation might be more
desirable than the multiplication and shifts implementation. The generated code might
be more efficient in either ROM size or model execution size.

The Model Advisor alerts you when:

• You set the Use division for fixed-point net slope computation optimization
parameter to ‘On’, but your model configuration is not compatible with this selection.

• Your model configuration is suitable for using division to handle net slope
computation, but you do not set the Use division for fixed-point net slope
computation to ‘On’ optimization parameter.

For more information, see “Handle Net Slope Computation” on page 43-13.

Identify product blocks that are less efficient

The number of multiplications and divisions that a block performs can have a big impact
on accuracy and efficiency. The Model Advisor detects some, but not all, situations where
rearranging the operations can improve accuracy, efficiency, or both.

One such situation is when a calculation using more than one division operation is
computed. A general guideline from the field of numerical analysis is to multiply all
the denominator terms together first, then do one and only one division. This improves
accuracy and often speed in floating-point and especially fixed-point. This can be
accomplished in Simulink by cascading Product blocks. Note that multiple divisions
spread over a series of blocks are not detected by the Model Advisor.

Another situation is when a single Product block is configured to do more than one
multiplication or division operation. This is supported, but if the output data type is
integer or fixed-point, then better results are likely if this operation is split across several
blocks each doing one multiplication or one division. Using several blocks allows the user
to control the data type and scaling used for intermediate calculations. The choice of data
types for intermediate calculations affects precision, range errors, and efficiency.

Check for expensive saturation code

Setting the Saturate on integer overflow parameter can produce condition checking
code that your application might not require.

Check whether your application requires setting Function Block Parameters > Signal
Attributes > Saturate on integer overflow. Otherwise, clear this parameter for the
most efficient implementation of the block in the generated code.

43 Code Generation

43-36

Identify Questionable Fixed-Point Operations

This check identifies blocks that generate cumbersome multiplication and division
operations, expensive conversion code, inefficiencies in lookup table blocks, and expensive
comparison code.

Check for expensive multiplication code

• “Targeting an Embedded Processor” on page 33-4 discusses the capabilities and
limitations of embedded processors. “Design Rules” on page 33-5 recommends that
inputs to a multiply operation should not have word lengths larger than the base
integer type of your processor. Multiplication with larger word lengths can always be
handled in software, but that approach requires much more code and is much slower.
The Model Advisor identifies blocks where undesirable software multiplications
are required. Visual inspection of the generated code, including the generated
multiplication utility function, will make the cost of these operations clear. It is
strongly recommended that you adjust the model to avoid these operations.

• discusses the implementation details of fixed-point multiplication and division. That
section shows the significant increase in complexity that occurs when signals with
nonzero biases are involved in multiplication and division. It is strongly recommended
that you make changes to eliminate the need for these complicated operations.
Extra steps are required to implement the multiplication. Inserting a Data Type
Conversion block before and after the block doing the multiplication allows the biases
to be removed and allows the user to control data type and scaling for intermediate
calculations. In many cases the Data Type Conversion blocks can be moved to the
“edges” of a (sub)system. The conversion is only done once and all blocks can benefit
from simpler bias-free math.

Check for expensive division code

The rounding behavior of signed integer division is not fully specified by C language
standards. Therefore, the generated code for division is too large to provide bit-true
agreement between simulation and code generation. To avoid integer division generated
code that is too large, in the Configuration Parameters dialog box, on the Hardware
Implementation pane, set the Signed integer division rounds to parameter to the
recommended value.

Identify lookup blocks with uneven breakpoint spacing

Efficiency trade-offs related to lookup table data are described in “Effects of Spacing on
Speed, Error, and Memory Usage” on page 37-22. Based on these trade-offs, the Model

 Optimizing Your Generated Code with the Model Advisor

43-37

Advisor identifies blocks where there is potential for efficiency improvements, and issues
a warning when:

• Lookup table input data is not evenly spaced.
• Lookup table input data is not evenly spaced when quantized, but it is very close to

being evenly spaced.
• Lookup table input data is evenly spaced, but the spacing is not a power of two.

Check for expensive pre-lookup division

For a Prelookup or n-D Lookup Table block, Index search method is Evenly spaced
points. Breakpoint data does not have power of 2 spacing.

If breakpoint data is nontunable, it is recommended that you adjust the data to have
even, power of 2 spacing. Otherwise, in the block parameter dialog box, specify a different
Index search method to avoid the computation-intensive division operation.

Check for expensive data type conversions

When a block is configured such that it would generate inefficient code for a data type
conversion, the Model Advisor generates a warning and makes suggestions on how to
make your model more efficient.

Check for fixed-point comparisons with predetermined results

When you select isNan, isFinite, or isInf as the operation for the Relational
Operator block, the block switches to one-input mode. In this mode, if the input data
type is fixed point, boolean, or a built-in integer, the output is FALSE for isInf and
isNan, TRUE for isFinite. This might result in dead code which will be eliminated by
Simulink Coder.

Check for expensive binary comparison operations

• When the input data types of a Relational Operator block are not the same, a
conversion operation is required every time the block is executed. If one of the inputs
is invariant, then changing the data type and scaling of the invariant input to match
the other input improves the efficiency of the model.

• When the inputs of a Relational Operator block have different ranges, there will be a
range error when casting, and a precision loss each time a conversion is performed.
You can insert Data Type Conversion blocks before the Relational Operator block to
convert both inputs to a common data type that has enough range and precision to
represent each input.

43 Code Generation

43-38

• When the inputs of a Relational Operator block have different slope adjustment
factors, the Relational Operator block is required to perform a multiply operation each
time the input with lesser positive range is converted to the data type and scaling of
the input with greater positive range. The extra multiplication requires extra code,
slows down the speed of execution, and usually introduces additional precision loss.
By adjusting the scaling of the inputs, you can eliminate mismatched slopes.

Check for expensive comparison code

When your model is configured such that the generated code contains expensive
comparison code, the Model Advisor generates a warning.

Identify Blocks that Generate Expensive Rounding Code

This check alerts you when rounding optimizations are available. To check for blocks that
generate expensive rounding code, the Model Advisor performs the following sub-checks:

• Check for expensive rounding operations in multiplication and division
• Check optimization and Hardware Implementation settings (Lookup Blocks)
• Check for expensive rounding in a data type conversion
• Check for expensive rounding modes in the model

Traditional handwritten code, especially for control applications, almost always uses
“no effort” rounding. For example, for unsigned integers and two's complement signed
integers, shifting right and dropping the bits is equivalent to rounding to floor. To get
results comparable to, or better than, what you expect from traditional handwritten code,
use the simplest rounding mode. In general the simplest mode provides the minimum
cost solution with no overflows. If the simplest mode is not available, round to floor.

The primary exception to this rule is the rounding behavior of signed integer division.
The C standard leaves this rounding behavior unspecified, but for most production
targets the “no effort” mode is to round to zero. For unsigned division, everything is
nonnegative, so rounding to floor and rounding to zero are identical. To improve rounding
efficiency, set Model Configuration Parameters > Hardware Implementation >
Production hardware > Signed integer division rounds to using the mode that
your production target uses.

Use the Integer rounding mode parameter on your model's blocks to simulate the
rounding behavior of the C compiler that you use to compile code generated from the
model. This setting appears on the Signal Attributes pane of the parameter dialog

 Optimizing Your Generated Code with the Model Advisor

43-39

boxes of blocks that can perform signed integer arithmetic, such as the Product block.
To obtain the most efficient generated code, change the Integer rounding mode
parameter of the block to the recommended setting.

For more information on properties to consider when choosing a rounding mode, see
“Choosing a Rounding Method”.

43 Code Generation

43-40

Use the Model Advisor to Optimize Fixed-Point Operations in
Generated Code

This example uses the following model.

 Use the Model Advisor to Optimize Fixed-Point Operations in Generated Code

43-41

Open the ex_net_slope5 model. At the MATLAB command line, enter:

addpath(fullfile(docroot,'toolbox','fixpoint','examples'))

43 Code Generation

43-42

ex_net_slope5

In this model, the net slope for the Data Type Conversion and Product blocks is 1/1000.

This model has the following properties:

• The Data type of the two Inport blocks, U and V, is set to int16.
• The Integer rounding mode of the Data Type Conversion block, is set to Floor,

and the Output data type is set to fixdt(1, 33, 1000, 0).

Note: Setting the Output data type word length greater than the length of the long
data type results in multiword operations.

• The Integer rounding mode of the Product block, is set to Convergent, and the
Output data type is set to fixdt(1, 16, 1000, 0).

• The Simulation > Model Configuration Parameters > Hardware
Implementation > Production hardware > Signed integer division rounds to
configuration parameter is set to Zero.

• The Optimization > Use division for fixed-point net slope computation
configuration parameter is set to ‘On’.

To run the Model Advisor checks:

1 From the model menu, select Analysis > Model Advisor > Model Advisor.
2 In the Model Advisor left pane, expand the By Product node and then expand the

Embedded Coder node.
3 Select Identify blocks that generate expensive fixed-point and saturation

code.
4 Click Run this check.

The Model Advisor warns that your model contains a block that will invoke net slope
computation.

5 Make the suggested changes

a Double click the Data Type Conversion block and change the Integer rounding
mode to Simplest.

b Change the Output data type from fixdt(1,33,1000,0) to
fixdt(1,16,1000,0), to avoid multiword operations.

 Use the Model Advisor to Optimize Fixed-Point Operations in Generated Code

43-43

c Save the model.
6 Rerun the check.

The check now passes.
7 Run the Model Advisor Identify questionable fixed-point operations check.

The check passes.
8 Select and run Identify blocks that generate expensive rounding code.

The Model Advisor warns that your model contains blocks that will generate
expensive rounding code for multiplication and division. It also provides
recommendations on how to change your model configuration to make it more
efficient.

9 Make the suggested changes:

a Double click on the Product block, and change the Integer rounding mode to
Simplest.

b Save the model.

This is your model configuration.

43 Code Generation

43-44

10 Rerun the Model Advisor Identify blocks that generate expensive rounding
code check.

 Use the Model Advisor to Optimize Fixed-Point Operations in Generated Code

43-45

The check passes.

44

Fixed-Point Advisor Reference

• “Fixed-Point Advisor” on page 44-2
• “Preparing Model for Conversion” on page 44-6
• “Preparing for Data Typing and Scaling” on page 44-24
• “Return to the Fixed-Point Tool to Perform Data Typing and Scaling” on page

44-37

44 Fixed-Point Advisor Reference

44-2

Fixed-Point Advisor

 Fixed-Point Advisor

44-3

Fixed-Point Advisor Overview

The Fixed-Point Advisor is a tool you can use to prepare your model for conversion from
floating-point data types to fixed-point data types. The Fixed-Point Advisor also makes
recommendations for a model, such as model-level diagnostic settings and removal
of inheritance rules. It configures the model for autoscaling by the Fixed-Point Tool.
Therefore, even if your model uses only fixed-point data types, it is useful to run the
Fixed-Point Advisor on the model prior to autoscaling.

The Fixed-Point Advisor performs checks on the entire model reference hierarchy. It
checks the top model and referenced models against fixed-point guidelines and reports
results for each referenced model.

Description

Use the Fixed-Point Advisor to:

• Set model-wide configuration options.
• Set block-specific dialog parameters.
• Check for unsupported blocks.

Procedures

Automatically Run Tasks

The following steps list how you can automatically run all tasks within a folder.

1 Click the Run All button. The tasks run in order until a task fails.
2 Fix the failure:

• Manually fix the problem using the Explore Result button, if present.
• Manually fix the problem by modifying the model as instructed in the Analysis

Result box.
• Automatically fix the problem using the Modify All button, if available.

3 Continue to run the tasks by selecting Run > Continue.

Run Individual Tasks

The following steps list how you can run an individual task.

1 Specify Input Parameters, if present.

44 Fixed-Point Advisor Reference

44-4

2 Run the task by clicking Run This Task.
3 Review Results. The possible results are:

Pass: Move on to the next task.
Warning: Review results, decide whether to move on or fix.
Fail: Review results, do not move on without fixing.

4 If Status is Warning or Fail, you can:

• Manually fix the problem using the Explore Result button, if present.
• Manually fix the problem by modifying the model.
• Automatically fix the problem using the Modify All button, if available.

5 Once you have fixed a Warning or Failed task, rerun the task by clicking Run This
Task.

Run to Selected Task

If you know that a particular task causes a failure, you might want to run all the
tasks prior to this task and save a restore point before continuing the run. For more
information about restore points, see “Save a Restore Point” on page 34-7. To run all
tasks up to and including the currently selected task:

1 Select the last task that you want to run.
2 Right click this task to open the context menu.
3 From the context menu, select Run to Selected Task to run all tasks up to and

including the selected task.

Note: If a task before the selected task fails, the Fixed-Point Advisor stops the run at the
failed task.

Rerun a Task

You might want to rerun a task to see if changes you make result in a different answer.
To rerun a task that you have run before:

1 Select the task that you want to rerun.
2 Specify input parameters, if present.
3 Run the task by clicking Run This Task.

The task reruns.

 Fixed-Point Advisor

44-5

Caution All downstream tasks are reset to Not Run if:

• The task fails.

• You click the Modify All button.

View a Run Summary

To view a complete run summary of Pass, Failed, Warning, and Not Run tasks:

1 Select the Fixed-Point Advisor folder.
2 Click the path link listed for Report. A report containing a summary of all tasks is

displayed.

See Also

• “Best Practices” on page 34-2
• “Preparation for Fixed-Point Conversion” on page 34-2

44 Fixed-Point Advisor Reference

44-6

Preparing Model for Conversion

In this section...

“Prepare Model for Conversion Overview” on page 44-7
“Verify model simulation settings” on page 44-8
“Verify update diagram status” on page 44-11
“Address unsupported blocks” on page 44-12
“Set up signal logging” on page 44-14
“Create simulation reference data” on page 44-15
“Verify Fixed-Point Conversion Guidelines Overview” on page 44-17
“Check model configuration data validity diagnostic parameters settings” on page
44-18
“Implement logic signals as Boolean data” on page 44-19
“Check bus usage” on page 44-20
“Simulation range checking” on page 44-21
“Check for implicit signal resolution” on page 44-22

 Preparing Model for Conversion

44-7

Prepare Model for Conversion Overview

This folder contains tasks for configuring and setting up the model for data logging.

Description

Validate model-wide settings and create simulation reference data for downstream tasks.

See Also

• “Preparation for Fixed-Point Conversion” on page 34-2
• “Convert Floating-Point Model to Fixed Point”

44 Fixed-Point Advisor Reference

44-8

Verify model simulation settings

Validate that model simulation settings allow signal logging and disable data type
override to facilitate conversion to fixed point. Logged signals are used for analysis and
comparison in later tasks.

Description

Ensures that fixed-point data can be logged in downstream tasks.

Results and Recommended Actions

Conditions Recommended Action

The Fixed-Point Tool Data type override
setting is not set to the correct value.

Set Data type override to Use local
settings.

The Model Configuration Parameters Data
Import/Export > Signal logging check box is
set to off.

Set to on

The fipref DataTypeOverride property is not
set to ‘ForceOff’.

Set DataTypeOverride to 'ForceOff'

A Model Reference block is not in Normal mode.

Note: If your model contains Model Reference
blocks that are not in Normal mode, it does not
make recommendations for them in subsequent
tasks.

Configure all referenced models that are in non-
Normal mode to use Normal mode.

Use Modify All or manually configure each
Model Reference block to use Normal mode:

1 To identify which referenced model
instances are not in Normal mode, click the
Model Dependency Viewer link to open
the Model Dependency Viewer. The viewer
displays all instances and shows which
mode they are in.

2 To change the mode, select the referenced
model, right-click, and then select Block
Parameters (ModelReference). In
the Block Parameters dialog box, set
Simulation mode to Normal.

 Preparing Model for Conversion

44-9

Conditions Recommended Action

Tip Ignore this warning for protected models
or any other models that you do not want the
Fixed-Point Advisor to check.

A model in the model hierarchy is using a
referenced configuration set instead of an active
configuration set.

Use Modify All or manually configure all
models in the model hierarchy to use the active
configuration set. See “Manage a Configuration
Set”.

If you use Modify All, the Fixed-Point Advisor
creates an active configuration set by copying
the referenced configuration set and configuring
the model to use this new configuration set as
the active set.

If there are multiple reference sets, the Fixed-
Point Advisor creates multiple new configuration
sets.

Note: When a model uses a referenced
configuration set, its configuration settings
are read-only. Downstream tasks in the Fixed-
Point Advisor make recommendations to tune
configuration settings. If you do not update
models to use an active configuration set, these
tasks might generate warnings.

Action Results

Clicking Modify All:

• Configures the model for recommended simulation settings and fipref objects. A
table displays the current and previous block settings.

• Configures all referenced model instances to use Normal mode.
• Updates models in the model hierarchy that use referenced configuration sets to use

an active configuration set.

44 Fixed-Point Advisor Reference

44-10

See Also

• “Data Type Override”
• “Signal logging”
• “Data Type Override Preferences Using fipref”

 Preparing Model for Conversion

44-11

Verify update diagram status

Verify update diagram succeeds.

Description

A model update diagram action is necessary for most down stream tasks.

Results and Recommended Actions

Conditions Recommended Action

The model diagram does not update. Fix the model. Verify that all required mat
files are loaded.

See Also

“Update a Block Diagram” in the Simulink documentation

44 Fixed-Point Advisor Reference

44-12

Address unsupported blocks

Identify blocks that do not support fixed-point data types.

Description

Blocks that do not support fixed-point data types cannot be converted.

Results and Recommended Actions

Conditions Recommended Action

Blocks that do not support fixed-point data types
and cannot be converted exist in model.

• Replace the block with the block specified
in the Result pane by right-clicking the
block and selecting the replacement from the
context menu.

Note: The Fixed-Point Advisor provides a
preview of the replacement block. To view
the replacement and verify its settings,
click the Preview link. If the settings on the
replacement block differ from the settings
on the original block, set up the replacement
block to match the original block.

• Set the Approximation method of
Trigonometric Function blocks to CORDIC.

• Isolate the block by right-clicking the
block and selecting Insert Data Type
Conversion > All Ports.

The Fixed-Point Advisor provides separate
results for each referenced model. For this task
to pass, replace or isolate unsupported blocks in
each referenced model.

Tips

• Before inserting a replacement block, use the Preview link to view the replacement
block. If necessary, update the settings on the replacement block to match the settings
on the original block.

 Preparing Model for Conversion

44-13

• If the Fixed-Point Advisor does not recommend a corresponding fixed-point block,
replace the unsupported block with a number of lower-level blocks to provide the
same functionality.

• The goal is to replace all blocks that do not support fixed-point data types. Using Data
Type Conversion blocks to isolate blocks at this stage enables you to continue running
through the conversion process. However, this will cause the Summarize data type
task to fail downstream. To fix this failure, you must replace the block that does not
support fixed-point data types.

See Also

The Simulink Block Data Type Support table summarizes characteristics of blocks in the
Simulink and Fixed-Point Designer block libraries, including whether or not they support
fixed-point data types. To view this table, enter the following command at the MATLAB
command line:
showblockdatatypetable

44 Fixed-Point Advisor Reference

44-14

Set up signal logging

Specify at least one signal of interest to log during simulation. Logged signals are used
for analysis and comparison in other tasks. Suggested signals to log are model inports
and outports.

Description

The Fixed-Point Advisor uses logged signals to compare the initial data type to the fixed-
point data type.

Analysis Result and Recommended Actions

Conditions Recommended Action

No signals are logged. If you are using simulation minimum and
maximum values, specify at least one signal to
be logged. Otherwise, ignore this warning.

The Fixed-Point Advisor provides separate
results for each referenced model. Specify at
least one signal to be logged for each referenced
model.

A model in the model hierarchy is using a
referenced configuration set and signal logging is
disabled in this configuration set.

Enable signal logging in the referenced
configuration set.

Return to the Verify model simulation
settings task and configure all models to use an
active configuration set.

Tip

Log inports and outports of the system under conversion.

 Preparing Model for Conversion

44-15

Create simulation reference data

Simulate the model using the current solver settings, and create reference data to use
for comparison and analysis. If necessary, you can stop the simulation by selecting the
waitbar and then pressing Ctrl+C. To set Fixed-point instrumentation mode to
Minimums, maximums and overflows, click the Modify All button.

Description

Simulate the model using the current solver settings, create and archive reference signal
data to use for comparison and analysis in downstream tasks.

Input Parameters

Merge results from multiple simulations
Merges new simulation minimum and maximum results with existing simulation
results in the active run. Allows you to collect complete range information from
multiple test benches. Does not merge signal logging results.

Results and Recommended Actions

Conditions Recommended Action

Simulation does not run. Fix errors so simulation will run.
Fixed-point instrumentation mode is not set
to Minimums, maximums and overflows

If you are using simulation minimum
and maximum values, set Fixed-point
instrumentation mode to Minimums,
maximums and overflows. Otherwise, ignore
this warning.

The Fixed-Point Advisor provides separate
results for each referenced model. Use Modify
All or manually configure Fixed-point
instrumentation mode for each referenced
model. Then the Fixed-Point Advisor collects
simulation reference data for the entire model
reference hierarchy.

If your model is using a referenced configuration
set and signal logging is disabled in this
configuration set, either enable signal logging

44 Fixed-Point Advisor Reference

44-16

Conditions Recommended Action
in the referenced configuration set or return
to the Verify model simulation settings
task and configure all models to use an active
configuration set.

Action Results

Clicking Modify All sets Fixed-point instrumentation mode to Minimums,
maximums and overflows. A table displays the current and previous block settings.

If your model contains referenced models, sets Fixed-point instrumentation mode to
Minimums, maximums and overflows on all referenced models.

If your model is using a referenced configuration set and signal logging is disabled in this
configuration set, Modify All is disabled.

Tips

• If the simulation is set up to have a long simulation time, after starting the run of this
task you can stop the simulation by selecting the waitbar and then pressing Ctrl+C.
This allows you to change the simulation time and continue without having to wait for
the long simulation to complete.

• Specifying small simulation run times reduces task processing times. You can change
the simulation run time in the Configuration Parameters dialog box. See “Start time”
and “Stop time” in the Simulink reference for more information.

 Preparing Model for Conversion

44-17

Verify Fixed-Point Conversion Guidelines Overview

Verify modeling guidelines related to fixed-point conversion goals.

Description

Validate model-wide settings.

See Also

• “Preparation for Fixed-Point Conversion” on page 34-2
• “Convert Floating-Point Model to Fixed Point”

44 Fixed-Point Advisor Reference

44-18

Check model configuration data validity diagnostic parameters settings

Verify that Model Configuration Parameters > Diagnostic > Data Validity
parameters are not set to error.

Description

If the Model Configuration Parameters > Diagnostic > Data Validity parameters
are set to error, the model update diagram action fails in downstream tasks.

Results and Recommended Actions

Conditions Recommended Action

Detect downcast is set to error.
Detect overflow is set to error.
Detect underflow is set to error.
Detect precision loss is set to error.
Detect loss of tunability is set to error.

Set all Model Configuration Parameters >
Diagnostics > Data Validity > Parameters
options to warning.

The Fixed-Point Advisor provides separate
results for each referenced model. Use Modify
All or manually configure these options for each
referenced model.

Action Results

Clicking Modify All sets all Model Configuration Parameters > Diagnostics > Data
Validity > Parameters options to warning. A table displays the current and previous
settings.

If your model contains referenced models, modifies these settings on all referenced
models.

If your model is using a referenced configuration set, because the referenced
configuration set is read-only, Modify All cannot update this parameter. Either
manually modify the referenced configuration set or return to the Verify model
simulation settings task and configure all models to use an active configuration set.

 Preparing Model for Conversion

44-19

Implement logic signals as Boolean data

Confirm that Simulink simulations are configured to treat logic signals as Boolean data.

Description

Configuring logic signals as Boolean data optimizes the code generated in downstream
tasks.

Results and Recommended Actions

Conditions Recommended Action

Implement logic signals as Boolean data is
set to off.

Set Model Configuration Parameters >
Optimization > Implement logic signals as
Boolean data to on.

The Fixed-Point Advisor provides separate
results for each referenced model. Use Modify
All or manually configure this option for each
referenced model.

Action Results

Clicking Modify All selects the model Model Configuration Parameters >
Optimization > Implement logic signals as Boolean data check box. A table
displays the current and previous parameter settings.

If your model contains referenced models, modifies this setting on all referenced models.

If your model is using a referenced configuration set, because the referenced
configuration set is read-only, Modify All cannot update this parameter. Either
manually modify the referenced configuration set or return to the Verify model
simulation settings task and configure all models to use an active configuration set.

44 Fixed-Point Advisor Reference

44-20

Check bus usage

Identify any Mux block used as a bus creator and any bus signal treated as a vector.

Description

This task identifies:

• Mux blocks that are bus creators
• Bus signals that the top-level model treats as vectors

Results and Recommended Actions

Conditions Recommended Action

The Fixed-Point Advisor is not operating on a
top-level model.

If this task is important to your conversion, start
the Fixed-Point Advisor on the top-level model.
Otherwise, you can ignore this warning.

The model is not configured to detect future
changes that might result in improper bus
usage.

Set Model Configuration Parameters >
Diagnostics > Connectivity > Buses > Bus
signal treated as vector to error.

The Fixed-Point Advisor provides separate
results for each referenced model. For this task
to pass, manually configure this option for each
referenced model.

Note: This task is a Simulink task. For more information, see “Check bus usage” in the
Simulink documentation.

 Preparing Model for Conversion

44-21

Simulation range checking

Verify that Model Configuration Parameters > Diagnostics > Data Validity >
Simulation range checking is not set to none.

Description

If Model Configuration Parameters > Diagnostics > Data Validity > Simulation
range checking is set to none, the simulation does not generate any range checking
warnings.

Results and Recommended Actions

Conditions Recommended Action

Model Configuration Parameters >
Diagnostics > Data Validity > Simulation
range checking is set to none.

Set Model Configuration Parameters >
Diagnostics > Data Validity > Simulation
range checking to warning.

The Fixed-Point Advisor provides separate
results for each referenced model. For this task
to pass, use Modify All or manually configure
this option for each referenced model.

Action Results

Clicking Modify All sets Model Configuration Parameters > Diagnostics > Data
Validity > Simulation range checking to warning.

If your model contains referenced models, modifies this setting on all referenced models.

If your model is using a referenced configuration set, because the referenced
configuration set is read-only, Modify All cannot update this parameter. Either
manually modify the referenced configuration set or return to the Verify model
simulation settings task and configure all models to use an active configuration set.

44 Fixed-Point Advisor Reference

44-22

Check for implicit signal resolution

Check if model uses implicit signal resolution.

Description

Models with implicit signal resolution attempt to resolve all named signals and states to
Simulink signal objects, which is inefficient and slows incremental code generation and
model reference. This task identifies those signals and states for which you may turn off
implicit signal resolution and enforce resolution.

Results and Recommended Actions

Conditions Recommended Action

Model uses implicit signal resolution. • Set Model Configuration Parameters
> Diagnostics > Data Validity > Signal
resolution to Explicit only.

• Enforce resolution for each of the signals and
states in the model by selecting Signal name
must resolve to Simulink signal object.

The Fixed-Point Advisor provides separate
results for each referenced model. For this task
to pass, use Modify All or manually configure
these options for each referenced model.

Action Results

Clicking Modify All sets Model Configuration Parameters > Diagnostics > Data
Validity > Signal resolution to Explicit only and enforces resolution for each of the
signals and states in the model. Tables display the current and previous settings.

If your model contains referenced models, modifies these settings on all referenced
models.

If your model is using a referenced configuration set, because the referenced
configuration set is read-only, Modify All cannot update this parameter. Either
manually modify the referenced configuration set or return to the Verify model
simulation settings task and configure all models to use an active configuration set.

 Preparing Model for Conversion

44-23

See Also

“Resolve Signal Objects for Output Data” in the Simulink documentation

44 Fixed-Point Advisor Reference

44-24

Preparing for Data Typing and Scaling

In this section...

“Prepare for Data Typing and Scaling Overview” on page 44-25
“Review locked data type settings” on page 44-26
“Remove output data type inheritance” on page 44-27
“Relax input data type settings” on page 44-30
“Verify Stateflow charts have strong data typing with Simulink” on page 44-31
“Remove redundant specification between signal objects and blocks” on page 44-32
“Verify hardware selection” on page 44-34
“Specify block minimum and maximum values” on page 44-36

 Preparing for Data Typing and Scaling

44-25

Prepare for Data Typing and Scaling Overview

Configure blocks with data type inheritance or constraints to avoid data type propagation
errors.

Description

The block settings from this folder simplify the initial data typing and scaling. The
optimal block configuration is achieved in later stages. The tasks in this folder are
preparation for automatic data typing.

Tips

Block output and parameter minimum and maximum values can be specified in this step.

See Also

• “Preparation for Fixed-Point Conversion” on page 34-2
• “Convert Floating-Point Model to Fixed Point”

44 Fixed-Point Advisor Reference

44-26

Review locked data type settings

Review blocks that currently have their data types locked down and will be excluded
from automatic data typing.

Description

When blocks have their data types locked, the Fixed-Point Advisor excludes them from
automatic data typing. This task identifies blocks that have locked data types so that you
can unlock them.

Results and Recommended Actions

Conditions Recommended Action

Blocks have locked data types. Unlock data types on blocks that currently have
locked data types.

The Fixed-Point Advisor provides separate
results for each referenced model. For this task
to pass, use Modify All or unlock data types on
blocks for all referenced models.

Action Results

Clicking Modify All unlocks data types on blocks that currently have locked data types.

If your model contains referenced models, unlocks data types on blocks for all referenced
models.

 Preparing for Data Typing and Scaling

44-27

Remove output data type inheritance

Identify blocks with an inherited output signal data type.

Description

Inherited data types might lead to data type propagation errors.

For floating-point inheritance blocks with floating-point inputs or outputs, the Fixed-
Point Advisor replaces the inheritance with the fixed-point data type specified by the
user. For floating-point inheritance blocks with fixed-point output and other Simulink
and DSP System Toolbox and Communications System Toolbox blocks, the Fixed-Point
Advisor now detects inheritance and replaces it with the compiled data type.

What are Floating-Point Inheritance Blocks?

For floating-point inheritance blocks, when inputs are floating-point, all internal and
output data types are floating point.

Note: This task is preparation for automatic data typing, not actual automatic data
typing.

Input Parameters

Data type for blocks with floating-point inheritance
Enter a default fixed-point data type to use for floating-point inheritance blocks, or
select one from the list:

undefined

int8

uint8

int16

uint16

int32

uint32

fixdt(1,16,4)

44 Fixed-Point Advisor Reference

44-28

Results and Recommended Actions

Conditions Recommended Action

An input parameter is invalid. Enter or select a valid value for the Data type
for blocks with floating-point inheritance
input parameter. The value of this parameter
applies to the entire model reference hierarchy.

The system or subsystems contain floating-
point inheritance blocks that have floating-point
inputs.

Set the block output data type to the
recommended data type. Remove floating-
point inheritance for these blocks by explicitly
configuring the Output data type or
Output data type mode parameter to the
recommended value where possible. The
recommended value is based on the value that
you specify for the Data type for blocks with
floating-point inheritance input parameter.

The Fixed-Point Advisor provides separate
results for each referenced model. For this task
to pass, remove floating-point inheritance for all
blocks in all referenced models.
Remove output data type inheritance for blocks
by explicitly configuring the Output data type
or Output data type mode parameter to the
recommended value where possible.
Remove output data type inheritance for Logical
Operator blocks by clearing the Require all
inputs and outputs to have the same data
type parameter parameter.

Blocks or Stateflow output data in the current
system or subsystems have inherited output
data types.

Remove Stateflow output data type inheritance
by explicitly configuring the output data Type
property.

The Fixed-Point Advisor provides separate
results for each referenced model. For this task
to pass, remove output data type inheritance in
all referenced models.

 Preparing for Data Typing and Scaling

44-29

Action Results

Clicking Modify All explicitly configures the output data types to the recommended
values where possible. Tables list the previous and current data types for the
reconfigured blocks.

If your model contains referenced models, where possible, explicitly configures the output
data types to the recommended values for all referenced models.

44 Fixed-Point Advisor Reference

44-30

Relax input data type settings

Identify blocks with input data type constraints.

Description

Blocks that have input data type constraints might lead to data type propagation errors.

Note: This task is preparation for automatic data typing, not actual automatic data
typing.

Results and Recommended Actions

Conditions Recommended Action

Explicitly configure flexible input data types for
blocks by setting the InputSameDT parameter to
off where possible.
Explicitly configure Logical Operator blocks to
have flexible input data types by setting the
AllPortsSameDT parameter to off.

The input data types of blocks or Stateflow
charts in the current system or subsystems have
constraints.

Explicitly configure flexible Stateflow chart
input data types by setting the Type method to
Inherited.

Action Results

Clicking Modify All explicitly configures the specified settings to the recommended
value where possible. A table lists the previous and current settings for the reconfigured
blocks.

If your model contains referenced models, where possible, explicitly configures the output
data types to the recommended values for all referenced models.

Tip

Removing unnecessary data setting restrictions makes it more likely that the Propose
data types task will succeed downstream.

 Preparing for Data Typing and Scaling

44-31

Verify Stateflow charts have strong data typing with Simulink

Verify all Stateflow charts are configured to have strong data typing with Simulink I/O.

Description

Identify mismatches between input or output fixed-point data in Stateflow charts and
their counterparts in Simulink models.

Note: This task is preparation for automatic data typing, not actual automatic data
typing.

Results and Recommended Actions

Conditions Recommended Action

Stateflow charts do not have strong data typing
with Simulink I/O.

Select the Use Strong Data Typing with
Simulink I/O check box in the chart properties
dialog.

The Fixed-Point Advisor provides separate
results for each referenced model. For this task
to pass, use Modify All or manually configure
this setting in each referenced model.

Action Results

Clicking Modify All configures all Stateflow charts to have strong data typing with
Simulink I/O.

If your model contains referenced models, configures this setting for all referenced
models.

44 Fixed-Point Advisor Reference

44-32

Remove redundant specification between signal objects and blocks

Identify and remove redundant data type specification originating from blocks and
Simulink signal objects.

Description

This task prepares your model for automatic data typing by identifying and removing
redundant data type specification originating from blocks and Simulink signal objects.

Note: You must rerun this task whenever you delete or manipulate a Simulink signal
object in the base workspace.

Input Parameters

Remove redundant specification from
Select from the list:

Blocks

Identify and remove redundant data type specification from blocks.
Signal objects

Identify and remove redundant data type specification from Simulink signal
objects.

Results and Recommended Actions

Conditions Recommended Action

Blocks associated with Simulink signal objects
do not have their data type specification set to a
passive mode.

Set the data type specification of these blocks
to a passive mode, such as Inherit via back
propagation.

The Fixed-Point Advisor provides separate
results for each referenced model. For this task
to pass, use Modify All or manually configure
this setting in each referenced model.

Simulink signal objects associated with blocks
do not have their data type specification set to a
passive mode.

Set the data type specification of these Simulink
signal objects to Auto.

The Fixed-Point Advisor provides separate
results for each referenced model. For this task

 Preparing for Data Typing and Scaling

44-33

Conditions Recommended Action
to pass, use Modify All or manually configure
this setting in each referenced model.

Action Results

Clicking Modify All explicitly configures the properties of the blocks or Simulink signal
objects to the recommended value where possible. A table displays the current and
previous settings.

If your model contains referenced models, where possible, configures these settings for all
referenced models.

44 Fixed-Point Advisor Reference

44-34

Verify hardware selection

Verify target hardware setting.

Description

Review the hardware device settings and verify they are the settings you intend to use.

Input Parameters

Default type of all floating-point signals
Enter a default fixed-point data type to use for all floating-point signals, or select one
from the list. For FPGA/ASIC targets, specify the type explicitly.

Remain floating-point

Use this setting if you are converting only part of the model to fixed point and
want to leave the rest of the model as floating point.
Same as embedded hardware integer

Use this setting if the hardware device specified is a microprocessor.
int8

int16

int32

fixdt(1,16,4)

Results and Recommended Actions

Conditions Recommended Action

The model's Model Configuration
Parameters > Hardware Implementation
device parameters are not specified.

Provide values for Model Configuration
Parameters > Hardware Implementation >
Device vendor and Device type parameters.

The Fixed-Point Advisor provides results
for each referenced model. For this task to
pass, manually configure this setting in each
referenced model. All referenced models must
use the same hardware settings.

Default data type of all floating-point
signals is set to Remain floating-point.

For microprocessors, set to Same as embedded
hardware integer. For FPGA/ASIC, set the
data type explicitly. The Fixed-Point Advisor
uses the sign and word length of this data type.

 Preparing for Data Typing and Scaling

44-35

See Also

• “Device type”
• “Device vendor”

44 Fixed-Point Advisor Reference

44-36

Specify block minimum and maximum values

Specify block output and parameter minimum and maximum values.

Description

Block output and parameter minimum and maximum values are used for fixed-point
data typing in other tasks. Typically, they are determined during the design process
based on the system you are creating.

Note: This task is preparation for automatic data typing, not actual automatic data
typing.

Results and Recommended Actions

Conditions Recommended Action

Minimum and maximum values are not
specified for Inport blocks.

Specify minimum and maximum values for
Inport blocks.

Warning if no simulation minimum or
maximum for any signals.

If you are using simulation minimum
and maximum data, return to “Create
simulation reference data” to set up signal
logging.

Tips

• In this task, you can specify minimum and maximum values for any block.
• You can promote simulation minimum and maximum values to output minimum and

maximum values using the Model Advisor Result Explorer, launched by clicking the
Explore Result button. In the center pane of the Model Advisor Result Explorer, use
the check boxes in the PromoteSimMinMax column to promote values.

• If you do not specify block minimum and maximum values, the Propose data types
task might fail later in the conversion.

See Also

“Batch-Fix Warnings or Failures” in the Simulink documentation.

 Return to the Fixed-Point Tool to Perform Data Typing and Scaling

44-37

Return to the Fixed-Point Tool to Perform Data Typing and Scaling

Close the Fixed-Point Advisor and return to the Fixed-Point Tool to autoscale your
model.

See Also

• “Preparation for Fixed-Point Conversion” on page 34-2

45

Troubleshooting

• “Frequently Asked Questions About Fixed-Point Numbers” on page 45-2
• “Decide Which Workflow Is Right For Your Application” on page 45-6
• “Tips for Making Generated Code More Efficient” on page 45-7
• “Know When a Function is Supported for Instrumentation and Acceleration” on page

45-9
• “What to Do If a Function Is Not Supported for Fixed-Point Conversion” on page

45-10
• “Common Errors and Warnings” on page 45-12
• “Why Does the Fixed-Point Converter App Not Propose Data Types for System

Objects?” on page 45-14
• “Prevent The Fixed-Point Tool From Overriding Integer Data Types” on page

45-15
• “Why Did The Fixed-Point Tool Not Propose Data Types?” on page 45-16
• “Frequently Asked Questions About Fixed-Point Numbers” on page 45-17
• “What to Do When a Block Is Not Supported For Fixed-Point Conversion” on page

45-18
• “Why am I missing data type proposals for MATLAB Function block variables?” on

page 45-20
• “Data Type Mismatch and Structure Initial Conditions” on page 45-21

45 Troubleshooting

45-2

Frequently Asked Questions About Fixed-Point Numbers

In this section...

“What Is the Difference Between Fixed-Point and Built-In Integer Types?” on page
45-2
“Negative Fraction Length” on page 45-2
“Fraction Length Greater Than Word Length” on page 45-3
“fi Constructor Does Not Follow globalfimath Rules” on page 45-5

What Is the Difference Between Fixed-Point and Built-In Integer Types?

There are several distinct differences between fixed-point data types and the built-in
integer types in MATLAB. The most notable difference, is that the built-in integer data
types can only represent whole numbers, while the fixed-point data types also contain
information on the position of the binary point, or the scaling of the number. This scaling
allows the fixed-point data types to represent both integers and non-integers. There
are also slight differences in how math is performed with these types. Fixed-point types
allow you to specify rules for math using the fimath object, including overflow and
rounding modes. However, the built-in types have their own internal rules for arithmetic
operations. See “Integers” for more information on how math is performed using built-in
types.

Negative Fraction Length

A negative fraction length occurs when the input value of a fi object contains trailing
zeros before the decimal point. For example,

x = fi(16000,1,8)

produces a fixed-point number with the specified signedness and word length, and best
precision fraction length.

x =

 16000

 DataTypeMode: Fixed-point: binary point scaling

 Signedness: Signed

 WordLength: 8

 Frequently Asked Questions About Fixed-Point Numbers

45-3

 FractionLength: -7

View the binary representation of x.

disp(bin(x))

01111101

There are seven implicit zeros at the end of this number before the binary point because
the fraction length of x is -7.

Convert from binary to decimal the binary representation of x with seven zero bits
appended to the end.

bin2dec('011111010000000')

ans =

 16000

The result is the real world value of x.

You can also find the real world value using the equation
Real World Value = Stored Integer Value Fraction Lengt

¥
-2 hh .

Start by finding the stored integer of x.

Q = storedInteger(x)

Q =

 125

Use the stored integer to find the real world value of x.

real_world_value = double(Q) * 2^-x.FractionLength

real_world_value =

 16000

Fraction Length Greater Than Word Length

A fraction length greater than the word length of a fixed-point number occurs when the
number has an absolute value less than one and contains leading zeros.

45 Troubleshooting

45-4

x = fi(.0234,1,8)

x =

 0.0234

 DataTypeMode: Fixed-point: binary point scaling

 Signedness: Signed

 WordLength: 8

 FractionLength: 12

View the binary representation of x.

disp(bin(x))

01100000

There are four implied leading zeros after the binary point and before the binary
representation of the stored integer because the fraction length of x is four greater than
the word length.

Convert from binary to decimal the binary representation of x with four leading zeros,
and scale this value according to the fraction length.

bin2dec('000001100000')*2^(-12)

ans =

 0.0234

The result is the real world value of x.

You can also find the real world value using the equation
Real World Value = Stored Integer Value Fraction Lengt

¥
-2 hh .

Start by finding the stored integer of x.

Q = storedInteger(x)

Q =

 96

Use the stored integer to find the real world value of x.

 Frequently Asked Questions About Fixed-Point Numbers

45-5

real_world_value = double(Q) * 2^-x.FractionLength

real_world_value =

 0.0234

fi Constructor Does Not Follow globalfimath Rules

If no fimath properties are used in the argument of the fi constructor, then it always
uses nearest rounding and saturates on overflow for the creation of the fi object,
regardless of any globalfimath settings.

If this behavior is undesirable for your application, you can do one of the following:

• Use the cast function to create a fi object using the globalfimath rules.

G = globalfimath('RoundingMethod', 'Floor', 'OverflowAction','Wrap');

cast(x, 'like', fi([],1,16,10))

• Specify fimath properties in the fi constructor.

fi(x,1,16,10,'RoundingMethod','Floor','OverflowAction','Wrap');

Note: When you create a fi object using the cast function, the resulting fi object does
not have a local fimath. When you create a fi object with fimath properties in the
constructor, the fi object does have a local fimath.

45 Troubleshooting

45-6

Decide Which Workflow Is Right For Your Application

There are two primary workflows available for converting MATLAB code to fixed-point
code.

• Manual Workflow

The manual workflow provides the most control to optimize the fixed-point types, but
requires a greater understanding of fixed-point concepts.

For more information, see “Manual Fixed-Point Conversion Best Practices”.
• Automated Workflow

The Fixed-Point Converter app enables you to convert your MATLAB code to fixed-
point code without requiring extensive preexisting knowledge of fixed-point concepts.
However, this workflow provides less control over your data types.

For more information, see “Automated Fixed-Point Conversion Best Practices”.

 Manual Workflow Automated Workflow

Fully automated conversion ✓
Less fixed-point expertise
required

 ✓

Quick turnaround time ✓
Simulation range analysis ✓ ✓
Static range analysis ✓
Iterative workflow ✓
Portable design ✓ ✓
Greatest control and
optimization of data types

✓

Data type proposal ✓ ✓
Histogram logging ✓ ✓
Code coverage ✓
Automatic plotting of output
variables for comparison

 ✓

 Tips for Making Generated Code More Efficient

45-7

Tips for Making Generated Code More Efficient

In this section...

“fimath Settings for Efficient Code” on page 45-7
“Replace Functions With More Efficient Fixed-Point Implementations” on page
45-7

fimath Settings for Efficient Code

The default settings of the fimath object are:

• RoundingMethod: Nearest

• OverflowAction: Saturate

• ProductMode: FullPrecision

• SumMode: FullPrecision

These settings offer the smallest rounding error and prevent overflows. However, they
can result in extra logic in generated code. For leaner code, it is recommended that you
match the fimath settings to the settings of your processor.

• The KeepLSB setting for ProductMode and SumMode models the behavior of integer
operations in the C language. KeepMSB for ProductMode models the behavior of
many DSP devices.

• Different rounding methods require different amounts of overhead code. Setting
the RoundingMethod property to Floor, which is equivalent to two’s complement
truncation, provides the most efficient rounding implementation for most operations.
For the divide function, the most efficient RoundingMethod is Zero

• The standard method for handling overflows is to wrap using modulo arithmetic.
Other overflow handling methods create costly logic. It is recommended that you set
the OverflowAction property to Wrap when possible.

Replace Functions With More Efficient Fixed-Point Implementations

CORDIC

The CORDIC-based algorithms are among the most hardware friendly because they
require only iterative shift-add operations. Replacing functions with one of the CORDIC

45 Troubleshooting

45-8

implementations can make your generated code more efficient. For a list of the CORDIC
functions, and examples of them being implemented, see “CORDIC”.

Lookup tables

You can implement some functions more efficiently by using a lookup table approach. For
an example, see “Implement Fixed-Point Log2 Using Lookup Table”.

Division

Division is often not supported by hardware. When possible, it is best to avoid division
operations.

When the denominator is a power of two, you can rewrite the division as a bitshift
operation.

x/8

can be rewritten as

bitsra(x,3)

Other times it is more efficient to implement division as a multiplication by a reciprocal.

x/5

can be rewritten as

x*0.2

 Know When a Function is Supported for Instrumentation and Acceleration

45-9

Know When a Function is Supported for Instrumentation and
Acceleration

There are several steps you can take to identify the features which could result in errors
during conversion.

• %#codegen and coder.screener

Add the %#codegen pragma to the top of the MATLAB file that is being converted
to fixed point. Adding this directive instructs the MATLAB Code Analyzer to help
you diagnose and fix violations that would result in errors during when you try to
accelerate or instrument your code.

The coder.screener function takes your function as its input argument and warns
you of anything in your code that is not supported for codegen. Codegen support is
essential for minimum and maximum logging and data type proposals.

• Consult the table of supported functions

See “Language Support” for a table of features supported for code generation and
fixed-point conversion.

For information on what to do if a function is not supported for fixed-point conversion,
see “What to Do If a Function Is Not Supported for Fixed-Point Conversion” on page
45-10.

45 Troubleshooting

45-10

What to Do If a Function Is Not Supported for Fixed-Point
Conversion

In this section...

“Isolate the Unsupported Functions” on page 45-10
“Create a Replacement Function” on page 45-10

Isolate the Unsupported Functions

When you encounter a function that is not supported for conversion, you can temporarily
leave that part of the algorithm in floating point.

The following code returns an error because the log function is not supported for fixed-
point inputs.

x = fi(rand(3),1,16,15);

y = log(x)

Cast the input, x, to a double, and then cast the output back to a fixed-point data type.

 y = fi(log(double(x)),1,16)

y =

 -0.2050 -0.0906 -1.2783

 -0.0990 -0.4583 -0.6035

 -2.0637 -2.3275 -0.0435

 DataTypeMode: Fixed-point: binary point scaling

 Signedness: Signed

 WordLength: 16

 FractionLength: 13

This casting allows you to continue with your conversion until you can find a
replacement.

Create a Replacement Function

Lookup Table Approximation

You can replace many functions that are not supported for fixed-point conversion with a
lookup table. For an example, see “Implement Fixed-Point Log2 Using Lookup Table”.

 What to Do If a Function Is Not Supported for Fixed-Point Conversion

45-11

Polynomial Approximation

You can approximate the results of a function that is not supported for fixed-point with a
polynomial approximation. For an example, see “Calculate Fixed-Point Arctangent”.

User-Authored Function

You can also write your own function that supports fixed-point inputs. For example,
using the mod function, which does support fixed-point inputs, you can write your own
version of the rem function, which does not support fixed-point inputs.

45 Troubleshooting

45-12

Common Errors and Warnings

In this section...

“fi*non-fi Errors” on page 45-12
“Data Type Mismatch Errors” on page 45-12
“Mismatched fimath Errors” on page 45-13

fi*non-fi Errors

Original Algorithm New Algorithm

function y = myProduct(x)

 y = 1;

 for n = 1:length(x)

 y(:) = y*x(n);

 end

end

Issue:

When multiplying a fixed-point
variable by a non-fixed-point
variable, the variable that does
not have a fixed-point type can
only be a constant.

Fix:

Before instrumenting your
code, cast the non-fi variable to
an acceptable fixed-point type.

function y = myProduct(x)

 y = ones(1,1, 'like', x(1)*x(1));

 for n = 1:length(x)

 y(:) = y*x(n);

 end

end

Data Type Mismatch Errors

Original Algorithm New Algorithm

Function:

function y = mysum(x,T) %#codegen

 y = zeros(size(x), 'like', T.y);

 for n = 1:length(x)

 y = y + x(n);

 end

end

Function:

function y = mysum(x,T) %#codegen

 y = zeros(size(x), 'like', T.y);

 for n = 1:length(x)

 y(:) = y + x(n);

 end

end

Types Table:

function T = mytypes(dt)

Issue:

y uses the default fimath
setting FullPrecision for
the SumMode property. At
each iteration of the for-loop in
the function mysum, the word
length of y grows by one bit.
During simulation in MATLAB,
there is no issue because data
types can easily change in

Types Table:

function T = mytypes(dt)

 Common Errors and Warnings

45-13

Original Algorithm New Algorithm
 switch(dt)

 case 'fixed'

 F = fimath('RoundingMethod', 'Floor')

 T.x = fi([],1,16,11, F);

 T.y = fi([],1,16,6, F);

 end

end

MATLAB. However, a type
mismatch error occurs at build
time because data types must
remain static in C.

Fix:

Rewrite the function to use
subscripted assignment within
the for-loop.

By rewriting y = y + x(n) as
y(:) = y + x(n), the value on
the right is assigned in to the
data type of y. This assignment
preserves the numerictype of
y and avoids the type mismatch
error.

 switch(dt)

 case 'fixed'

 F = fimath('RoundingMethod', 'Floor')

 T.x = fi([],1,16,11, F);

 T.y = fi([],1,16,6, F);

 end

end

Mismatched fimath Errors

Original Algorithm New Algorithm

Function:

function y = mysum(x,T) %#codegen

 y = zeros(size(x), 'like', T.y);

 for n = 1:length(x)

 y(:) = y + x(n);

 end

end

Function:

function y = mysum(x,T) %#codegen

 y = zeros(size(x), 'like', T.y);

 for n = 1:length(x)

 y(:) = removefimath(y) + x(n);

 end

end

Types Table:

function T = mytypes(dt)

 switch(dt)

 case 'fixed'

 T.x = fi([],1,16,0, 'RoundingMethod', 'Floor',...

 'OverflowAction','Wrap');

 T.y = fi([],1,16,0, 'RoundingMethod','Nearest');

 end

end

Issue:

If two fi object operands
have an attached fimath, the
fimaths must be equal.

Fix:

Use the removefimath
function to remove the fimath
of one of the variables in just
one instance. By removing
the fimath, you avoid the
“mismatched fimath” error
without permanently changing
the fimath of the variable.

Types Table:

function T = mytypes(dt)

switch(dt)

 case 'fixed'

 T.x = fi([],1,16,0, 'RoundingMethod','Floor',...

 'OverflowAction','Wrap');

 T.y = fi([],1,16,0, 'RoundingMethod', 'Nearest');

 end

end

45 Troubleshooting

45-14

Why Does the Fixed-Point Converter App Not Propose Data Types
for System Objects?

The Fixed-Point Converter app might not display simulation range data or data type
proposals for a System object because:

• The app displays range information for a subset of DSP System Toolbox System
objects only. For a list of supported System objects, see Converting System Objects to
Fixed-Point Using the Fixed-Point Converter App.

• The System object is not configured to use custom fixed-point settings.

If the system object is not configured correctly, the proposed data type column
appears dimmed and displays Full precision or Same as... to show the current
property setting.

Related Examples
• “Use the Fixed-Point Converter App with a System object”

 Prevent The Fixed-Point Tool From Overriding Integer Data Types

45-15

Prevent The Fixed-Point Tool From Overriding Integer Data Types

When performing data type override (DTO) on a selected system, the Fixed-Point Tool
overrides the output data types of each block in the system. The only blocks that are
never affected by DTO are blocks with boolean or enumerated output data types,
or blocks that are untouched by DTO by design (for example, lookup table blocks).
Depending on your application, you might want certain signals to preserve their data
type (for example, blocks that represent indices). To prevent the Fixed-Point Tool from
overriding the data type of a specific block, set the Data type override setting of the
numerictype of the block to Off.

1 Open the Block Parameters dialog box by double-clicking the block.
2 Under the Signal Attributes tab, open the Data Type Assistant by clicking

.
3 Set Data type override to Off.

You can set this override to off at the command line by changing the Data Type Override
setting of a signal’s numerictype. In this example, the output data type of this block
remains a built-in uint8 even after performing data type override.

45 Troubleshooting

45-16

Why Did The Fixed-Point Tool Not Propose Data Types?

In this section...

“Inherited Output Data Types” on page 45-16
“Inadequate Range Information” on page 45-16

Inherited Output Data Types

If the output data types of your blocks are set to an inherited rule (such as Inherit:
auto), then the Fixed-Point Tool, by design, does not propose new data types for those
blocks. Blocks with inherited output data types use internal block rules to determine the
output data type of the block. The Fixed-Point Tool marks the proposal for these blocks
as N/A.

If it is not your intent to use an inherited data type, remove the output data type
inheritance of the block to get a data type proposal.

It is recommended that you use the Fixed-Point Advisor to prepare your model
for conversion. The Fixed-Point Advisor provides guidance about model and block
configuration settings to prepare for automatic conversion to fixed point using the
Fixed-Point Tool. The check Remove output data type inheritance removes all
unintentional output data type inheritance from your model.

Inadequate Range Information

The Fixed-Point Tool bases its data type proposition on range information collected
through simulation, derivation, and design ranges that you provide. Before proposing
data types, you must collect range information which the Fixed-Point Tool uses to
propose data types.

Collect range information through simulation, or by deriving minimum and maximum
values for the selected system.

The Fixed-Point Advisor check Create simulation reference data creates reference
data to use for comparison and analysis.

 Frequently Asked Questions About Fixed-Point Numbers

45-17

Frequently Asked Questions About Fixed-Point Numbers

In this section...

“Fraction Length Greater Than Word Length” on page 45-17
“Negative Fraction Length” on page 45-17

Fraction Length Greater Than Word Length

A fraction length greater than the word length of a fixed-point number occurs when the
number has an absolute value less than one and contains leading zeros.

In the following example, the fixed-point tool proposed a data type with a fraction
length that is four greater than the word length. A binary representation of this
number consists of the binary point, four implied leading zeros, followed by the binary
representation of the stored integer: . X X X X 0 1 1 0 0 0 0 0, where the x’s represent the
implied zeros.

Negative Fraction Length

A negative fraction length occurs when the number contains trailing zeros before the
decimal point.

In the following example, the fixed-point tool proposed a data type with a negative
fraction length. A binary representation of this number consists of the binary
representation of the stored integer, followed by seven implied zeros, and then the binary
point: 0 1 1 1 1 1 0 1 X X X X X X X ., where the x’s represent the implied zeros.

45 Troubleshooting

45-18

What to Do When a Block Is Not Supported For Fixed-Point
Conversion

Isolate the Block

If you encounter a block that is not supported for fixed-point conversion, you can isolate
the block by decoupling it with a Data Type Converter block. This workaround is useful
when you do not intend to use the unsupported block on an embedded processor. One
example of this is if the Chirp Signal block in the Sources library, which does not support
fixed-point outputs, is used to generate a signal for simulation data.

The subsystem shown is designed for use on an embedded processor and must be
converted to fixed point. The Chirp Signal block creates simulation data. The Chirp
Signal block supports only floating-point double outputs. However, if you decouple the
Chirp Signal from the rest of the model by inserting a data type converter block after
the Chirp Signal block, you can use the Fixed-Point Tool to continue converting the
subsystem to fixed point.

Lookup Table Block Implementation

Many blocks that are not supported by the Fixed-Point Tool can be approximated with
a lookup table block. Design an efficient fixed-point implementation of an unsupported

 What to Do When a Block Is Not Supported For Fixed-Point Conversion

45-19

block by using the fixpt_look1_func_approx and fixpt_look1_func_plot
functions. For an example, see “Approximate the Square Root Function”.

User-Authored Blocks

You can create your own block which is supported by the Fixed-Point Tool from one of the
blocks in the User-Defined Functions Library.

45 Troubleshooting

45-20

Why am I missing data type proposals for MATLAB Function block
variables?

Fixed-Point Tool will not propose data types for variables in code inside a MATLAB
Function block that is not executed during simulation.

• Update your input source so that all sections of your code are executed during
simulation

• This section of code may not be necessary. Delete the portion of code that is not
exercised during simulation.

 Data Type Mismatch and Structure Initial Conditions

45-21

Data Type Mismatch and Structure Initial Conditions

A data type mismatch occurs when the data type of a tunable structure does not match
the data type of the assigned bus signal. Data type mismatch can also occur when you
specify a structure parameter through the mask of an atomic subsystem. Overriding data
types and converting to fixed-point using the Fixed-Point Tool can introduce this data
type mismatch in your model.

Enable Inline Parameters

When you assign a block with a tunable structure as the initial condition to a bus signal,
and the data type of the structure and the bus do not match, an error occurs when you
simulate. Enable inline parameters to convert the tunable structure to a structure of
constant values.

1 Open the ex_parameter_tunability model.

addpath(fullfile(docroot,'toolbox','fixpoint','examples'))

ex_parameter_tunability

45 Troubleshooting

45-22

2 Open the Unit Delay block dialog box to view the parameters. The initial condition is
a structure.

 Data Type Mismatch and Structure Initial Conditions

45-23

3 Update the diagram.

Update diagram fails for this model because the bus SensorData uses fixed-point
data types and the MATLAB structure for initialization in the Unit Delay block uses
doubles.

4 In the Configuration Parameters > Optimization > Signals and Parameters
pane, select the Inline parameters checkbox.

This option transforms tunable parameters into constant values. The inline
parameter becomes a constant in the generated code, and is no longer tunable.

5 Update the diagram again. The model updates without errors or warnings.

If you want to maintain tunability of the structure, consider using a
Simulink.Parameter object to define the structure. For more information, see
“Specify Bus Signal Initial Conditions Using Simulink.Parameter Objects” on page
45-24.

45 Troubleshooting

45-24

Specify Bus Signal Initial Conditions Using Simulink.Parameter Objects

This example shows how to replace a structure initial condition with a
Simulink.Parameter object. This approach allows the structure to maintain its
tunability.

1 Double-click the Unit Delay block to view the block parameters. The Unit Delay
block uses a structure initial condition.

2 Define a Simulink.Parameter object at the MATLAB command line. Set the data
type of the parameter object to the bus object SensorData. Set the value of the
parameter object to the specified structure.

P = Simulink.Parameter;

P.DataType = 'Bus: SensorData';

P.Value = struct('Torque',5,'Speed',8);

 Data Type Mismatch and Structure Initial Conditions

45-25

3 In the Unit Delay block dialog box, set Initial condition to P, the
Simulink.Parameter object you defined. The structure defined in the
Simulink.Parameter object remains tunable.

Data Type Mismatch and Masked Atomic Subsystems

A data type mismatch occurs when a structure initial condition drives a bus signal that
you specified using a masked atomic subsystem.

Change the subsystem to non atomic, or specify the structure parameter using a
Simulink.Parameter object (as described in “Specify Bus Signal Initial Conditions
Using Simulink.Parameter Objects” on page 45-24) to avoid the data type mismatch
error.

Related Examples
• “Convert Model with Bus Object with Structure Initial Conditions to Fixed-Point”
• “Bus Objects in the Fixed-Point Workflow”

A

Writing Fixed-Point S-Functions

This appendix discusses the API for user-written fixed-point S-functions, which enables
you to write Simulink C S-functions that directly handle fixed-point data types. Note that
the API also provides support for standard floating-point and integer data types. You can
find the files and examples associated with this API in the following locations:

• matlabroot/simulink/include/

• matlabroot/toolbox/simulink/fixedandfloat/fxpdemos/

A Data Type Support

A-2

Data Type Support

In this section...

“Supported Data Types” on page A-2
“The Treatment of Integers” on page A-3
“Data Type Override” on page A-3

Supported Data Types

The API for user-written fixed-point S-functions provides support for a variety of
Simulink and Fixed-Point Designer data types, including

• Built-in Simulink data types

• single

• double

• uint8

• int8

• uint16

• int16

• uint32

• int32

• Fixed-point Simulink data types, such as

• sfix16_En15

• ufix32_En16

• ufix128

• sfix37_S3_B5

• Data types resulting from a data type override with Scaled double, such as

• flts16

• flts16_En15

• fltu32_S3_B5

For more information, see “Fixed-Point Data Type and Scaling Notation” on page 31-17.

 Data Type Support

A-3

The Treatment of Integers

The API treats integers as fixed-point numbers with trivial scaling. In [Slope Bias]
representation, fixed-point numbers are represented as
real-world value = (slope × integer) + bias.

In the trivial case, slope = 1 and bias = 0.

In terms of binary-point-only scaling, the binary point is to the right of the least
significant bit for trivial scaling, meaning that the fraction length is zero:
real-world value = integer × 2-fraction length = integer × 20.

In either case, trivial scaling means that the real-world value is equal to the stored
integer value:
real-world value = integer.

All integers, including Simulink built-in integers such as uint8, are treated as fixed-
point numbers with trivial scaling by this API. However, Simulink built-in integers are
different in that their use does not cause a Fixed-Point Designer software license to be
checked out.

Data Type Override

The Fixed-Point Tool enables you to perform various data type overrides on fixed-point
signals in your simulations. This API can handle signals whose data types have been
overridden in this way:

• A signal that has been overridden with Single is treated as a Simulink built-in
single.

• A signal that has been overridden with Double is treated as a Simulink built-in
double.

• A signal that has been overridden with Scaled double is treated as being of data
type ScaledDouble.

ScaledDouble signals are a hybrid between floating-point and fixed-point signals, in
that they are stored as doubles with the scaling, sign, and word length information
retained. The value is stored as a floating-point double, but as with a fixed-point
number, the distinction between the stored integer value and the real-world value
remains. The scaling information is applied to the stored integer double to obtain the
real-world value. By storing the value in a double, overflow and precision issues are

A Data Type Support

A-4

almost always eliminated. Refer to any individual API function reference page at the end
of this appendix to learn how that function treats ScaledDouble signals.

For more information about the Fixed-Point Tool and data type override, see “Fixed-Point
Tool” and the fxptdlg reference page.

 Structure of the S-Function

A-5

Structure of the S-Function

The following diagram shows the basic structure of an S-function that directly handles
fixed-point data types.

The callouts in the diagram alert you to the fact that you must include fixedpoint.h
and fixedpoint.c at the appropriate places in the S-function. The other elements
of the S-function displayed in the diagram follow the standard requirements for S-
functions.

A Structure of the S-Function

A-6

To learn how to create a MEX-file for your user-written fixed-point S-function, see
“Create MEX-Files” on page A-20.

 Storage Containers

A-7

Storage Containers

In this section...

“Introduction” on page A-7
“Storage Containers in Simulation” on page A-7
“Storage Containers in Code Generation” on page A-10

Introduction

While coding with the API for user-written fixed-point S-functions, it is important to
keep in mind the difference between storage container size, storage container word
length, and signal word length. The sections that follow discuss the containers used by
the API to store signals in simulation and code generation.

Storage Containers in Simulation

In simulation, signals are stored in one of several types of containers of a specific size.

Storage Container Categories

During simulation, fixed-point signals are held in one of the types of storage containers,
as shown in the following table. In many cases, signals are represented in containers
with more bits than their specified word length.

Fixed-Point Storage Containers

Container Category Signal
Word Length

Container Word
Length

Container Size

FXP_STORAGE_INT8 (signed)
FXP_STORAGE_UINT8 (unsigned)

1 to 8 bits 8 bits 1 byte

FXP_STORAGE_INT16 (signed)
FXP_STORAGE_UINT16 (unsigned)

9 to 16 bits 16 bits 2 bytes

FXP_STORAGE_INT32 (signed)
FXP_STORAGE_UINT32 (unsigned)

17 to 32 bits 32 bits 4 bytes

FXP_STORAGE_OTHER_SINGLE_WORD33 to word
length of long
data type

Length of long
data type

Length of long data
type

A Storage Containers

A-8

Container Category Signal
Word Length

Container Word
Length

Container Size

FXP_STORAGE_MULTIWORD Greater than the
word length of
long data type
to 128 bits

Multiples of
length of long
data type to 128
bits

Multiples of length of
long data type to 128
bits

When the number of bits in the signal word length is less than the size of the container,
the word length bits are always stored in the least significant bits of the container. The
remaining container bits must be sign extended:

• If the data type is unsigned, the sign extension bits must be cleared to zero.
• If the data type is signed, the sign extension bits must be set to one for strictly

negative numbers, and cleared to zero otherwise.

For example, a signal of data type sfix6_En4 is held in a FXP_STORAGE_INT8
container. The signal is held in the six least significant bits. The remaining two bits are
set to zero when the signal is positive or zero, and to one when it is negative.

A signal of data type ufix6_En4 is held in a FXP_STORAGE_UINT8 container. The signal
is held in the six least significant bits. The remaining two bits are always cleared to zero.

 Storage Containers

A-9

The signal and storage container word lengths are returned by the
ssGetDataTypeFxpWordLength and ssGetDataTypeFxpContainWordLen
functions, respectively. The storage container size is returned by the
ssGetDataTypeStorageContainerSize function. The container category is returned
by the ssGetDataTypeStorageContainCat function, which in addition to those in the
table above, can also return the following values.

Other Storage Containers

Container Category Description

FXP_STORAGE_UNKNOWN Returned if the storage container category is unknown
FXP_STORAGE_SINGLE The container type for a Simulink single
FXP_STORAGE_DOUBLE The container type for a Simulink double
FXP_STORAGE_SCALEDDOUBLE The container type for a data type that has been overridden with

Scaled double

Storage Containers in Simulation Example

An sfix24_En10 data type has a word length of 24, but is actually stored in 32 bits
during simulation. For this signal,

• ssGetDataTypeStorageContainCat returns FXP_STORAGE_INT32.
• ssGetDataTypeStorageContainerSize or sizeof() returns 4, which is the

storage container size in bytes.
• ssGetDataTypeFxpContainWordLen returns 32, which is the storage container

word length in bits.
• ssGetDataTypeFxpWordLength returns 24, which is the data type word length in

bits.

A Storage Containers

A-10

Storage Containers in Code Generation

The storage containers used by this API for code generation are not always the same as
those used for simulation. During code generation, a native C data type is always used.
Floating-point data types are held in C double or float. Fixed-point data types are held
in C signed and unsigned char, short, int, or long.

Emulation

Because it is valuable for rapid prototyping and hardware-in-the-loop testing, the
emulation of smaller signals inside larger containers is supported in code generation.
For example, a 29-bit signal is supported in code generation if there is a C data type
available that has at least 32 bits. The rules for placing a smaller signal into a larger
container, and for dealing with the extra container bits, are the same in code generation
as for simulation.

If a smaller signal is emulated inside a larger storage container in simulation, it is not
necessarily emulated in code generation. For example, a 24-bit signal is emulated in a 32-
bit storage container in simulation. However, some DSP chips have native support for 24-
bit quantities. On such a target, the C compiler can define an int or a long to be exactly
24 bits. In this case, the 24-bit signal is held in a 32-bit container in simulation, and in a
24-bit container in code generation.

Conversely, a signal that was not emulated in simulation might need to be emulated in
code generation. For example, some DSP chips have minimal support for integers. On
such chips, char, short, int, and long might all be defined to 32 bits. In that case, it is
necessary to emulate 8- and 16-bit fixed-point data types in code generation.

Storage Container TLC Functions

Since the mapping of storage containers in simulation to storage containers in code
generation is not one-to-one, the Target Language Compiler (TLC) functions for storage
containers are different from those in simulation:

• FixPt_DataTypeNativeType

• FixPt_DataTypeStorageDouble

• FixPt_DataTypeStorageSingle

• FixPt_DataTypeStorageScaledDouble

• FixPt_DataTypeStorageSInt

• FixPt_DataTypeStorageUInt

 Storage Containers

A-11

• FixPt_DataTypeStorageSLong

• FixPt_DataTypeStorageULong

• FixPt_DataTypeStorageSShort

• FixPt_DataTypeStorageUShort

• FixPt_DataTypeStorageMultiword

The first of these TLC functions, FixPt_DataTypeNativeType, is the closest analogue
to ssGetDataTypeStorageContainCat in simulation. FixPt_DataTypeNativeType
returns a TLC string that specifies the type of the storage container, and the Simulink
Coder product automatically inserts a typedef that maps the string to a native C data
type in the generated code.

For example, consider a fixed-data type that is held in FXP_STORAGE_INT8 in
simulation. FixPt_DataTypeNativeType will return int8_T. The int8_T will be
typdef'd to a char, short, int, or long in the generated code, depending upon what is
appropriate for the target compiler.

The remaining TLC functions listed above return TRUE or FALSE depending on whether
a particular standard C data type is used to hold a given API-registered data type. Note
that these functions do not necessarily give mutually exclusive answers for a given
registered data type, due to the fact that C data types can potentially overlap in size. In
C,
sizeof(char) ≤ sizeof(short) ≤ sizeof(int) ≤ sizeof(long).

One or more of these C data types can be, and very often are, the same size.

A Data Type IDs

A-12

Data Type IDs

In this section...

“The Assignment of Data Type IDs” on page A-12
“Registering Data Types” on page A-13
“Setting and Getting Data Types” on page A-15
“Getting Information About Data Types” on page A-15
“Converting Data Types” on page A-17

The Assignment of Data Type IDs

Each data type used in your S-function is assigned a data type ID. You should always use
data type IDs to get and set information about data types in your S-function.

In general, the Simulink software assigns data type IDs during model initialization on a
“first come, first served” basis. For example, consider the generalized schema of a block
diagram below.

The Simulink software assigns a data type ID for each output data type in the diagram
in the order it is requested. For simplicity, assume that the order of request occurs from
left to right. Therefore, the output of block A may be assigned data type ID 13, and the
output of block B may be assigned data type ID 14. The output data type of block C is the
same as that of block A, so the data type ID assigned to the output of block C is also 13.
The output of block D is assigned data type ID 15.

Now if the blocks in the model are rearranged,

 Data Type IDs

A-13

The Simulink software still assigns the data type IDs in the order in which they are
used. Therefore each data type might end up with a different data type ID. The output of
block A is still assigned data type ID 13. The output of block D is now next in line and is
assigned data type ID 14. The output of block B is assigned data type ID 15. The output
data type of block C is still the same as that of block A, so it is also assigned data type ID
13.

This table summarizes the two cases described above.

Block Data Type ID in Model_1 Data Type ID in Model_2
A 13 13
B 14 15
C 13 13
D 15 14

This example illustrates that there is no strict relationship between the attributes of
a data type and the value of its data type ID. In other words, the data type ID is not
assigned based on the characteristics of the data type it is representing, but rather on
when that data type is first needed.

Note Because of the nature of the assignment of data type IDs, you should always use
API functions to extract information from a data type ID about a data type in your S-
function.

Registering Data Types

The functions in the following table are available in the API for user-written fixed-point
S-functions for registering data types in simulation. Each of these functions will return a
data type ID. To see an example of a function being used, go to the file and line indicated
in the table.

A Data Type IDs

A-14

Data Type Registration Functions

Function Description Example of Use

ssRegisterDataTypeFxpBinaryPoint Register a fixed-point
data type with binary-
point-only scaling and
return its data type ID

sfun_user_fxp_asr.c

Line 252

ssRegisterDataTypeFxpFSlopeFixExpBiasRegister a fixed-point
data type with [Slope
Bias] scaling specified
in terms of fractional
slope, fixed exponent,
and bias, and return its
data type ID

Not Available

ssRegisterDataTypeFxpScaledDouble Register a scaled
double data type with
[Slope Bias] scaling
specified in terms of
fractional slope, fixed
exponent, and bias, and
return its data type ID

Not Available

ssRegisterDataTypeFxpSlopeBias Register a data type
with [Slope Bias]
scaling and return its
data type ID

sfun_user_fxp_dtprop.c

Line 319

Preassigned Data Type IDs

The Simulink software registers its built-in data types, and those data types always have
preassigned data type IDs. The built-in data type IDs are given by the following tokens:

• SS_DOUBLE

• SS_SINGLE

• SS_INT8

• SS_UINT8

• SS_INT16

• SS_UINT16

• SS_INT32

 Data Type IDs

A-15

• SS_UINT32

• SS_BOOLEAN

You do not need to register these data types. If you attempt to register a built-in data
type, the registration function simply returns the preassigned data type ID.

Setting and Getting Data Types

Data type IDs are used to specify the data types of input and output ports, run-time
parameters, and DWork states. To set fixed-point data types for quantities in your S-
function, the procedure is as follows:

1 Register a data type using one of the functions listed in the table Data Type
Registration Functions. A data type ID is returned to you.

Alternately, you can use one of the preassigned data type IDs of the Simulink built-
in data types.

2 Use the data type ID to set the data type for an input or output port, run-time
parameter, or DWork state using one of the following functions:

• ssSetInputPortDataType

• ssSetOutputPortDataType

• ssSetRunTimeParamInfo

• ssSetDWorkDataType

To get the data type ID of an input or output port, run-time parameter, or DWork state,
use one of the following functions:

• ssGetInputPortDataType

• ssGetOutputPortDataType

• ssGetRunTimeParamInfo

• ssGetDWorkDataType

Getting Information About Data Types

You can use data type IDs with functions to get information about the built-in and
registered data types in your S-function. The functions in the following tables are
available in the API for extracting information about registered data types. To see an
example of a function being used, go to the file and line indicated in the table. Note

A Data Type IDs

A-16

that data type IDs can also be used with all the standard data type access methods in
simstruc.h, such as ssGetDataTypeSize.

Storage Container Information Functions

Function Description Example of Use

ssGetDataTypeFxpContainWordLen Return the word length
of the storage container
of a registered data type

sfun_user_fxp_

ContainWordLenProbe.c

Line 181

ssGetDataTypeStorageContainCat Return the storage
container category of a
registered data type

sfun_user_fxp_asr.c

Line 294

ssGetDataTypeStorageContainerSizeReturn the storage
container size of a
registered data type

sfun_user_fxp_

StorageContainSizeProbe.c

Line 171

Signal Data Type Information Functions

Function Description Example of Use

ssGetDataTypeFxpIsSigned Determine whether a fixed-
point registered data type is
signed or unsigned

sfun_user_fxp_asr.c

Line 254

ssGetDataTypeFxpWordLength Return the word length of a
fixed-point registered data type

sfun_user_fxp_asr.c

Line 255
ssGetDataTypeIsFixedPoint Determine whether a

registered data type is a fixed-
point data type

sfun_user_fxp_const.c

Line 127

ssGetDataTypeIsFloatingPoint Determine whether a
registered data type is a
floating-point data type

sfun_user_fxp_

IsFloatingPointProbe.c

Line 176

ssGetDataTypeIsFxpFltApiCompatDetermine whether a
registered data type is
supported by the API for user-
written fixed-point S-functions

sfun_user_fxp_asr.c

Line 184

ssGetDataTypeIsScalingPow2 Determine whether a
registered data type has power-
of-two scaling

sfun_user_fxp_asr.c

Line 203

 Data Type IDs

A-17

Function Description Example of Use

ssGetDataTypeIsScalingTrivialDetermine whether the scaling
of a registered data type is
slope = 1, bias = 0

sfun_user_fxp_

IsScalingTrivialProbe.c

Line 171

Signal Scaling Information Functions

Function Description Example of Use

ssGetDataTypeBias Return the bias of a registered
data type

sfun_user_fxp_dtprop.c

Line 243
ssGetDataTypeFixedExponentReturn the exponent of the slope of

a registered data type
sfun_user_fxp_dtprop.c

Line 237
ssGetDataTypeFracSlope Return the fractional slope of a

registered data type
sfun_user_fxp_dtprop.c

Line 234
ssGetDataTypeFractionLengthReturn the fraction length of a

registered data type with power-
of-two scaling

sfun_user_fxp_asr.c

Line 256

ssGetDataTypeTotalSlope Return the total slope of the
scaling of a registered data type

sfun_user_fxp_dtprop.c

Line 240

Converting Data Types

The functions in the following table allow you to convert values between registered data
types in your fixed-point S-function.

Data Type Conversion Functions

Function Description Example of Use
ssFxpConvert Convert a value from one data type to

another data type.
Not Available

ssFxpConvertFromRealWorldValueConvert a value of data type double to
another data type.

Not Available

ssFxpConvertToRealWorldValue Convert a value of any data type to a
double.

Not Available

A Overflow Handling and Rounding Methods

A-18

Overflow Handling and Rounding Methods

In this section...

“Tokens for Overflow Handling and Rounding Methods” on page A-18
“Overflow Logging Structure” on page A-19

Tokens for Overflow Handling and Rounding Methods

The API for user-written fixed-point S-functions provides functions for some
mathematical operations, such as conversions. When these operations are performed, a
loss of precision or overflow may occur. The tokens in the following tables allow you to
control the way an API function handles precision loss and overflow. The data type of the
overflow handling methods is fxpModeOverflow. The data type of the rounding modes
is fxpModeRounding.

Overflow Handling Tokens

Token Description Example of Use
FXP_OVERFLOW_SATURATE Saturate overflows Not Available
FXP_OVERFLOW_WRAP Wrap overflows Not Available

Rounding Method Tokens

Token Description Example of Use
FXP_ROUND_CEIL Round to the closest representable number

in the direction of positive infinity
Not Available

FXP_ROUND_CONVERGENT Round toward nearest integer with ties
rounding to nearest even integer

Not Available

FXP_ROUND_FLOOR Round to the closest representable number
in the direction of negative infinity

Not Available

FXP_ROUND_NEAR Round to the closest representable number,
with the exact midpoint rounded in the
direction of positive infinity

Not Available

FXP_ROUND_NEAR_ML Round toward nearest. Ties round toward
negative infinity for negative numbers, and
toward positive infinity for positive numbers

Not Available

 Overflow Handling and Rounding Methods

A-19

Token Description Example of Use
FXP_ROUND_SIMPLEST Automatically chooses between round

toward floor and round toward zero to
produce generated code that is as efficient as
possible

Not Available

FXP_ROUND_ZERO Round to the closest representable number
in the direction of zero

Not Available

Overflow Logging Structure

Math functions of the API, such as ssFxpConvert, can encounter overflows when
carrying out an operation. These functions provide a mechanism to log the occurrence of
overflows and to report that log back to the caller.

You can use a fixed-point overflow logging structure in your S-function by defining a
variable of data type fxpOverflowLogs. Some API functions, such as ssFxpConvert,
accept a pointer to this structure as an argument. The function initializes the logging
structure and maintains a count of each the following events that occur while the
function is being performed:

• Overflows
• Saturations
• Divide-by-zeros

When a function that accepts a pointer to the logging structure is invoked, the function
initializes the event counts of the structure to zero. The requested math operations
are then carried out. Each time an event is detected, the appropriate event count is
incremented by one.

The following fields contain the event-count information of the structure:

• OverflowOccurred

• SaturationOccurred

• DivisionByZeroOccurred

A Create MEX-Files

A-20

Create MEX-Files

To create a MEX-file for a user-written fixed-point C S-function on either Windows or
UNIX® systems:

• In your S-function, include fixedpoint.c and fixedpoint.h. For more
information, see “Structure of the S-Function” on page A-5.

• Pass an extra argument, -lfixedpoint, to the mex command. For example,

mex('sfun_user_fxp_asr.c','-lfixedpoint')

 Fixed-Point S-Function Examples

A-21

Fixed-Point S-Function Examples

The following files in matlabroot/toolbox/simulink/fixedandfloat/fxpdemos/
are examples of S-functions written with the API for user-written fixed-point S-functions:

• sfun_user_fxp_asr.c

• sfun_user_fxp_BiasProbe.c

• sfun_user_fxp_const.c

• sfun_user_fxp_ContainWordLenProbe.c

• sfun_user_fxp_dtprop.c

• sfun_user_fxp_FixedExponentProbe.c

• sfun_user_fxp_FracLengthProbe.c

• sfun_user_fxp_FracSlopeProbe.c

• sfun_user_fxp_IsFixedPointProbe.c

• sfun_user_fxp_IsFloatingPointProbe.c

• sfun_user_fxp_IsFxpFltApiCompatProbe.c

• sfun_user_fxp_IsScalingPow2Probe.c

• sfun_user_fxp_IsScalingTrivialProbe.c

• sfun_user_fxp_IsSignedProbe.c

• sfun_user_fxp_prodsum.c

• sfun_user_fxp_StorageContainCatProbe.c

• sfun_user_fxp_StorageContainSizeProbe.c

• sfun_user_fxp_TotalSlopeProbe.c

• sfun_user_fxp_U32BitRegion.c

• sfun_user_fxp_WordLengthProbe.c

Related Examples
• “Get the Input Port Data Type” on page A-23
• “Set the Output Port Data Type” on page A-25
• “Interpret an Input Value” on page A-26
• “Write an Output Value” on page A-28

A Fixed-Point S-Function Examples

A-22

• “Determine Output Type Using the Input Type” on page A-30

 Get the Input Port Data Type

A-23

Get the Input Port Data Type

Within your S-function, you might need to know the data types of different ports, run-
time parameters, and DWorks. In each case, you will need to get the data type ID of the
data type, and then use functions from this API to extract information about the data
type.

For example, suppose you need to know the data type of your input port. To do this,

1 Use ssGetInputPortDataType. The data type ID of the input port is returned.
2 Use API functions to extract information about the data type.

The following lines of example code are from sfun_user_fxp_dtprop.c.

In lines 191 and 192, ssGetInputPortDataType is used to get the data type ID for the
two input ports of the S-function:

dataTypeIdU0 = ssGetInputPortDataType(S, 0);

dataTypeIdU1 = ssGetInputPortDataType(S, 1);

Further on in the file, the data type IDs are used with API functions to get information
about the input port data types. In lines 205 through 226, a check is made to see whether
the input port data types are single or double:

storageContainerU0 = ssGetDataTypeStorageContainCat(S,

dataTypeIdU0);

storageContainerU1 = ssGetDataTypeStorageContainCat(S,

dataTypeIdU1);

 if (storageContainerU0 == FXP_STORAGE_DOUBLE ||

storageContainerU1 == FXP_STORAGE_DOUBLE)

{

/* Doubles take priority over all other rules.

* If either of first two inputs is double,

* then third input is set to double.

 */

dataTypeIdU2Desired = SS_DOUBLE;

}

else if (storageContainerU0 == FXP_STORAGE_SINGLE ||

 storageContainerU1 == FXP_STORAGE_SINGLE)

 {

 /* Singles take priority over all other rules,

* except doubles.

* If either of first two inputs is single

A Get the Input Port Data Type

A-24

* then third input is set to single.

*/

 dataTypeIdU2Desired = SS_SINGLE;

 }

 else

In lines 227 through 244, additional API functions are used to get information about the
data types if they are neither single nor double:
{

 isSignedU0 = ssGetDataTypeFxpIsSigned(S, dataTypeIdU0);

 isSignedU1 = ssGetDataTypeFxpIsSigned(S, dataTypeIdU1);

 wordLengthU0 = ssGetDataTypeFxpWordLength(S, dataTypeIdU0);

 wordLengthU1 = ssGetDataTypeFxpWordLength(S, dataTypeIdU1);

 fracSlopeU0 = ssGetDataTypeFracSlope(S, dataTypeIdU0);

 fracSlopeU1 = ssGetDataTypeFracSlope(S, dataTypeIdU1);

 fixedExponentU0 = ssGetDataTypeFixedExponent(S,dataTypeIdU0);

 fixedExponentU1 = ssGetDataTypeFixedExponent(S,dataTypeIdU1);

 totalSlopeU0 = ssGetDataTypeTotalSlope(S, dataTypeIdU0);

 totalSlopeU1 = ssGetDataTypeTotalSlope(S, dataTypeIdU1);

 biasU0 = ssGetDataTypeBias(S, dataTypeIdU0);

 biasU1 = ssGetDataTypeBias(S, dataTypeIdU1);

}

The functions used above return whether the data types are signed or unsigned, as well
as their word lengths, fractional slopes, exponents, total slopes, and biases. Together,
these quantities give full information about the fixed-point data types of the input ports.

Related Examples
• “Set the Output Port Data Type” on page A-25

 Set the Output Port Data Type

A-25

Set the Output Port Data Type
You may want to set the data type of various ports, run-time parameters, or DWorks in
your S-function.

For example, suppose you want to set the output port data type of your S-function. To do
this,

1 Register a data type by using one of the functions listed in the table Data Type
Registration Functions. A data type ID is returned.

Alternately, you can use one of the predefined data type IDs of the Simulink built-in
data types.

2 Use ssSetOutputPortDataType with the data type ID from Step 1 to set the
output port to the desired data type.

In the example below from lines 336 - 352 of sfun_user_fxp_const.c,
ssRegisterDataTypeFxpBinaryPoint is used to register the data type.
ssSetOutputPortDataType then sets the output data type either to the given data
type ID, or to be dynamically typed:

/* Register data type

 */

if (notSizesOnlyCall)

 {

 DTypeId DataTypeId = ssRegisterDataTypeFxpBinaryPoint(

 S,

V_ISSIGNED,

V_WORDLENGTH,

V_FRACTIONLENGTH,

1 /* true means obey data type override setting for

this subsystem */);

ssSetOutputPortDataType(S, 0, DataTypeId);

 }

 else

 {

ssSetOutputPortDataType(S, 0, DYNAMICALLY_TYPED);

}

Related Examples
• “Interpret an Input Value” on page A-26

A Interpret an Input Value

A-26

Interpret an Input Value

Suppose you need to get the value of the signal on your input port to use in your S-
function. You should write your code so that the pointer to the input value is properly
typed, so that the values read from the input port are interpreted correctly. To do this,
you can use these steps, which are shown in the example code below:

1 Create a void pointer to the value of the input signal.
2 Get the data type ID of the input port using ssGetInputPortDataType.
3 Use the data type ID to get the storage container type of the input.
4 Have a case for each input storage container type you want to handle. Within each

case, you will need to perform the following in some way:

• Create a pointer of the correct type according to the storage container, and cast
the original void pointer into the new fully typed pointer (see a and c).

• You can now store and use the value by dereferencing the new, fully typed pointer
(see b and d).

For example,

static void mdlOutputs(SimStruct *S, int_T tid)

{

 const void *pVoidIn =

 (const void *)ssGetInputPortSignal(S, 0); (1)

 DTypeId dataTypeIdU0 = ssGetInputPortDataType(S, 0); (2)

 fxpStorageContainerCategory storageContainerU0 =

 ssGetDataTypeStorageContainCat(S, dataTypeIdU0); (3)

 switch (storageContainerU0)

 {

 case FXP_STORAGE_UINT8: (4)

 {

 const uint8_T *pU8_Properly_Typed_Pointer_To_U0; (a)

 uint8_T u8_Stored_Integer_U0; (b)

 pU8_Properly_Typed_Pointer_To_U0 =

 (const uint8_T *)pVoidIn; (c)

 Interpret an Input Value

A-27

 u8_Stored_Integer_U0 =

 *pU8_Properly_Typed_Pointer_To_U0; (d)

 <snip: code that uses input when it's in a uint8_T>

 }

 break;

 case FXP_STORAGE_INT8: (4)

 {

 const int8_T *pS8_Properly_Typed_Pointer_To_U0; (a)

 int8_T s8_Stored_Integer_U0; (b)

 pS8_Properly_Typed_Pointer_To_U0 =

 (const int8_T *)pVoidIn; (c)

 s8_Stored_Integer_U0 =

 *pS8_Properly_Typed_Pointer_To_U0; (d)

 <snip: code that uses input when it's in a int8_T>

 }

 break;

Related Examples
• “Write an Output Value” on page A-28

A Write an Output Value

A-28

Write an Output Value

Suppose you need to write the value of the output signal to the output port in your S-
function. You should write your code so that the pointer to the output value is properly
typed. To do this, you can use these steps, which are followed in the example code below:

1 Create a void pointer to the value of the output signal.
2 Get the data type ID of the output port using ssGetOutputPortDataType.
3 Use the data type ID to get the storage container type of the output.
4 Have a case for each output storage container type you want to handle. Within each

case, you will need to perform the following in some way:

• Create a pointer of the correct type according to the storage container, and cast
the original void pointer into the new fully typed pointer (see a and c).

• You can now write the value by dereferencing the new, fully typed pointer (see b
and d).

For example,
static void mdlOutputs(SimStruct *S, int_T tid)

{

 <snip>

 void *pVoidOut = ssGetOutputPortSignal(S, 0); (1)

 DTypeId dataTypeIdY0 = ssGetOutputPortDataType(S, 0); (2)

 fxpStorageContainerCategory storageContainerY0 =

 ssGetDataTypeStorageContainCat(S,

 dataTypeIdY0); (3)

 switch (storageContainerY0)

 {

 case FXP_STORAGE_UINT8: (4)

 {

 const uint8_T *pU8_Properly_Typed_Pointer_To_Y0; (a)

 uint8_T u8_Stored_Integer_Y0; (b)

 <snip: code that puts the desired output stored integer

 value in to temporary variable u8_Stored_Integer_Y0>

 pU8_Properly_Typed_Pointer_To_Y0 =

 (const uint8_T *)pVoidOut; (c)

 *pU8_Properly_Typed_Pointer_To_Y0 =

 u8_Stored_Integer_Y0; (d)

 Write an Output Value

A-29

 }

 break;

 case FXP_STORAGE_INT8: (4)

 {

 const int8_T *pS8_Properly_Typed_Pointer_To_Y0; (a)

 int8_T s8_Stored_Integer_Y0; (b)

 <snip: code that puts the desired output stored integer

 value in to temporary variable s8_Stored_Integer_Y0>

 pS8_Properly_Typed_Pointer_To_Y0 =

 (const int8_T *)pVoidY0; (c)

 *pS8_Properly_Typed_Pointer_To_Y0 =

 s8_Stored_Integer_Y0; (d)

 }

 break;

 <snip>

Related Examples
• “Determine Output Type Using the Input Type” on page A-30

A Determine Output Type Using the Input Type

A-30

Determine Output Type Using the Input Type

The following sample code from lines 243 through 261 of sfun_user_fxp_asr.c gives
an example of using the data type of the input to your S-function to calculate the output
data type. Notice that in this code

• The output is signed or unsigned to match the input (a).
• The output is the same word length as the input (b).
• The fraction length of the output depends on the input fraction length and the

number of shifts (c).

#define MDL_SET_INPUT_PORT_DATA_TYPE

static void mdlSetInputPortDataType(SimStruct *S, int port,

 DTypeId dataTypeIdInput)

{

 if (isDataTypeSupported(S, dataTypeIdInput))

 {

 DTypeId dataTypeIdOutput;

 ssSetInputPortDataType(S, port, dataTypeIdInput);

 dataTypeIdOutput = ssRegisterDataTypeFxpBinaryPoint(

 S,

 ssGetDataTypeFxpIsSigned(S, dataTypeIdInput), (a)

 ssGetDataTypeFxpWordLength(S, dataTypeIdInput), (b)

 ssGetDataTypeFractionLength(S, dataTypeIdInput)

 - V_NUM_BITS_TO_SHIFT_RGHT, (c)

 0 /* false means do NOT obey data type override

 setting for this subsystem */);

 ssSetOutputPortDataType(S, 0, dataTypeIdOutput);

 }

}

 API Function Reference

A-31

API Function Reference

A ssFxpConvert

A-32

ssFxpConvert
Convert value from one data type to another

Syntax
extern void ssFxpConvert (SimStruct *S,

 void *pVoidDest,

 size_t sizeofDest,

 DTypeId dataTypeIdDest,

 const void *pVoidSrc,

 size_t sizeofSrc,

 DTypeId dataTypeIdSrc,

 fxpModeRounding roundMode,

 fxpModeOverflow overflowMode,

 fxpOverflowLogs *pFxpOverflowLogs)

Arguments

S

SimStruct representing an S-function block.
pVoidDest

Pointer to the converted value.
sizeofDest

Size in memory of the converted value.
dataTypeIdDest

Data type ID of the converted value.
pVoidSrc

Pointer to the value you want to convert.
sizeofSrc

Size in memory of the value you want to convert.

dataTypeIdSrc

Data type ID of the value you want to convert.

 ssFxpConvert

A-33

roundMode

Rounding mode you want to use if a loss of precision is necessary during the
conversion. Possible values are FXP_ROUND_CEIL, FXP_ROUND_CONVERGENT,
FXP_ROUND_FLOOR, FXP_ROUND_NEAR, FXP_ROUND_NEAR_ML,
FXP_ROUND_SIMPLEST and FXP_ROUND_ZERO.

overflowMode

Overflow mode you want to use if overflow occurs during the conversion. Possible
values are FXP_OVERFLOW_SATURATE and FXP_OVERFLOW_WRAP.

pFxpOverflowLogs

Pointer to the fixed-point overflow logging structure.

Description

This function converts a value of any registered built-in or fixed-point data type to any
other registered built-in or fixed-point data type.

Requirement

To use this function, you must include fixedpoint.h and fixedpoint.c. For more
information, see “Structure of the S-Function” on page A-5.

Languages

C

TLC Functions

None

See Also

ssFxpConvertFromRealWorldValue, ssFxpConvertToRealWorldValue

A ssFxpConvertFromRealWorldValue

A-34

ssFxpConvertFromRealWorldValue
Convert value of data type double to another data type

Syntax
extern void ssFxpConvertFromRealWorldValue

 (SimStruct *S,

 void *pVoidDest,

 size_t sizeofDest,

 DTypeId dataTypeIdDest,

 double dblRealWorldValue,

 fxpModeRounding roundMode,

 fxpModeOverflow overflowMode,

 fxpOverflowLogs *pFxpOverflowLogs)

Arguments

S

SimStruct representing an S-function block.
pVoidDest

Pointer to the converted value.
sizeofDest

Size in memory of the converted value.
dataTypeIdDest

Data type ID of the converted value.
dblRealWorldValue

Double value you want to convert.
roundMode

Rounding mode you want to use if a loss of precision is necessary during the
conversion. Possible values are FXP_ROUND_CEIL, FXP_ROUND_CONVERGENT,
FXP_ROUND_FLOOR, FXP_ROUND_NEAR, FXP_ROUND_NEAR_ML,
FXP_ROUND_SIMPLEST and FXP_ROUND_ZERO.

overflowMode

 ssFxpConvertFromRealWorldValue

A-35

Overflow mode you want to use if overflow occurs during the conversion. Possible
values are FXP_OVERFLOW_SATURATE and FXP_OVERFLOW_WRAP.

pFxpOverflowLogs

Pointer to the fixed-point overflow logging structure.

Description

This function converts a double value to any registered built-in or fixed-point data type.

Requirement

To use this function, you must include fixedpoint.h and fixedpoint.c. For more
information, see “Structure of the S-Function” on page A-5.

Languages

C

TLC Functions

None

See Also

ssFxpConvert, ssFxpConvertToRealWorldValue

A ssFxpConvertToRealWorldValue

A-36

ssFxpConvertToRealWorldValue

Convert value of any data type to double

Syntax

extern double ssFxpConvertToRealWorldValue (SimStruct *S,

 const void *pVoidSrc,

 size_t sizeofSrc,

 DTypeId dataTypeIdSrc)

Arguments

S

SimStruct representing an S-function block.
pVoidSrc

Pointer to the value you want to convert.
sizeofSrc

Size in memory of the value you want to convert.
dataTypeIdSrc

Data type ID of the value you want to convert.

Description

This function converts a value of any registered built-in or fixed-point data type to a
double.

Requirement

To use this function, you must include fixedpoint.h and fixedpoint.c. For more
information, see “Structure of the S-Function” on page A-5.

 ssFxpConvertToRealWorldValue

A-37

Languages

C

TLC Functions

None

See Also

ssFxpConvert, ssFxpConvertFromRealWorldValue

A ssFxpGetU32BitRegion

A-38

ssFxpGetU32BitRegion
Return stored integer value for 32-bit region of real, scalar signal element

Syntax

extern uint32 ssFxpGetU32BitRegion(SimStruct *S,

 const void *pVoid

 DTypeId dataTypeId

 unsigned int regionIndex)

Arguments

S

SimStruct representing an S-function block.
pVoid

Pointer to the storage container of the real, scalar signal element in which the 32-bit
region of interest resides.

dataTypeId

Data type ID of the registered data type corresponding to the signal.
regionIndex

Index of the 32-bit region whose stored integer value you want to retrieve, where 0
accesses the least significant 32-bit region.

Description

This function returns the stored integer value in the 32-bit region specified by
regionIndex, associated with the fixed-point data type designated by dataTypeId. You
can use this function with any fixed-point data type, including those with word sizes less
than 32 bits. If the fixed-point word size is less than 32 bits, the remaining bits are sign
extended.

This function generates an error if dataTypeId represents a floating-point data type.

 ssFxpGetU32BitRegion

A-39

To view an example model whose S-functions use the ssFxpGetU32BitRegion function,
at the MATLAB prompt, enter fxpdemo_sfun_user_U32BitRegion.

Requirement

To use this function, you must include fixedpoint.h and fixedpoint.c. For more
information, see “Structure of the S-Function” on page A-5.

Languages

C

See Also

ssFxpSetU32BitRegion

A ssFxpGetU32BitRegionCompliant

A-40

ssFxpGetU32BitRegionCompliant
Determine whether S-function is compliant with the U32 bit region interface

Syntax
extern ssFxpSGetU32BitRegionCompliant(SimStruct *S,

 int *result)

Arguments

S

SimStruct representing an S-function block.
result

• 1 if S-function calls ssFxpSetU32BitRegionCompliant to declare compliance with
memory footprint for fixed-point data types with 33 or more bits

• 0 if S-function does not call ssFxpSetU32BitRegionCompliant

Description

This function checks whether the S-function calls ssFxpSetU32BitRegionCompliant to
declare compliance with the memory footprint for fixed-point data types with 33 or more
bits. Before calling any other Fixed-Point Designer API function on data with 33 or more
bits, you must call ssFxpSetU32BitRegionCompliant as follows:

ssFxpSetU32BitRegionCompliant(S,1);

Note: The Fixed-Point Designer software assumes that S-functions that use fixed-point
data types with 33 or more bits without calling ssFxpSetU32BitRegionCompliant are
using the obsolete memory footprint that existed until R2007b. Either redesign these S-
functions or isolate them using the library fixpt_legacy_sfun_support.

.

 ssFxpGetU32BitRegionCompliant

A-41

Requirement

To use this function, you must include fixedpoint.h and fixedpoint.c. For more
information, see “Structure of the S-Function” on page A-5.

Languages

C

See Also

ssFxpSetU32BitRegionCompliant

A ssFxpSetU32BitRegion

A-42

ssFxpSetU32BitRegion
Set stored integer value for 32-bit region of real, scalar signal element

Syntax
extern ssFxpSetU32BitRegion(SimStruct *S,

 void *pVoid

 DTypeId dataTypeId

 uint32 regionValue

 unsigned int regionIndex)

Arguments
S

SimStruct representing an S-function block.
pVoid

Pointer to the storage container of the real, scalar signal element in which the 32-bit
region of interest resides.

dataTypeId

Data type ID of the registered data type corresponding to the signal.
regionValue

Stored integer value that you want to assign to a 32-bit region.
regionIndex

Index of the 32-bit region whose stored integer value you want to set, where 0
accesses the least significant 32-bit region.

Description

This function sets regionValue as the stored integer value of the 32-bit region specified
by regionIndex, associated with the fixed-point data type designated by dataTypeId.
You can use this function with any fixed-point data type, including those with word
sizes less than 32 bits. If the fixed-point word size is less than 32 bits, ensure that the
remaining bits are sign extended.

 ssFxpSetU32BitRegion

A-43

This function generates an error if dataTypeId represents a floating-point data type, or
if the stored integer value that you set is invalid.

To view an example model whose S-functions use the ssFxpSetU32BitRegion function,
at the MATLAB prompt, enter fxpdemo_sfun_user_U32BitRegion.

Requirement

To use this function, you must include fixedpoint.h and fixedpoint.c. For more
information, see “Structure of the S-Function” on page A-5.

Languages

C

See Also

ssFxpGetU32BitRegion

A ssFxpSetU32BitRegionCompliant

A-44

ssFxpSetU32BitRegionCompliant
Declare compliance with the U32 bit region interface for fixed-point data types with 33 or
more bits

Syntax
extern ssFxpSetU32BitRegionCompliant(SimStruct *S,

 int Value)

Arguments
S

SimStruct representing an S-function block.
Value

• 1 declare compliance with memory footprint for fixed-point data types with 33 or
more bits.

Description

This function declares compliance with the Fixed-Point Designer bit region interface for
data types with 33 or more bits. The memory footprint for data types with 33 or more bits
varies between MATLAB host platforms and might change between software releases. To
make an S-function robust to memory footprint changes, use the U32 bit region interface.
You can use identical source code on different MATLAB host platforms and with any
software release from R2008b. If the memory footprint changes between releases, you do
not have to recompile U32 bit region compliant S-functions.

To make an S-function U32 bit region compliant, before calling any other Fixed-Point
Designer API function on data with 33 or more bits, you must call this function as
follows:

ssFxpSetU32BitRegionCompliant(S,1);

If an S-function block contains a fixed-point data type with 33 or more bits, call this
function in mdlInitializeSizes().

 ssFxpSetU32BitRegionCompliant

A-45

Note: The Fixed-Point Designer software assumes that S-functions that use fixed-point
data types with 33 or more bits without calling ssFxpSetU32BitRegionCompliant are
using the obsolete memory footprint that existed until R2007b. Either redesign these S-
functions or isolate them using the library fixpt_legacy_sfun_support.

Requirement

To use this function, you must include fixedpoint.h and fixedpoint.c. For more
information, see “Structure of the S-Function” on page A-5.

Languages

C

See Also

ssFxpGetU32BitRegionCompliant

A ssGetDataTypeBias

A-46

ssGetDataTypeBias
Return bias of registered data type

Syntax
extern double ssGetDataTypeBias(SimStruct *S, DTypeId

 dataTypeId)

Arguments

S

SimStruct representing an S-function block.
dataTypeId

Data type ID of the registered data type for which you want to know the bias.

Description

Fixed-point numbers can be represented as
real-world value = (slope × integer) + bias.

This function returns the bias of a registered data type:

• For both trivial scaling and power-of-two scaling, 0 is returned.
• If the registered data type is ScaledDouble, the bias returned is that of the

nonoverridden data type.

This function errors out when ssGetDataTypeIsFxpFltApiCompat returns FALSE.

Requirement

To use this function, you must include fixedpoint.h and fixedpoint.c. For more
information, see “Structure of the S-Function” on page A-5.

 ssGetDataTypeBias

A-47

Languages

C

TLC Functions

FixPt_DataTypeBias

See Also

ssGetDataTypeFixedExponent, ssGetDataTypeFracSlope,
ssGetDataTypeTotalSlope

A ssGetDataTypeFixedExponent

A-48

ssGetDataTypeFixedExponent

Return exponent of slope of registered data type

Syntax

extern int ssGetDataTypeFixedExponent (SimStruct *S, DTypeId

 dataTypeId)

Arguments

S

SimStruct representing an S-function block.
dataTypeId

Data type ID of the registered data type for which you want to know the exponent.

Description

Fixed-point numbers can be represented as
real-world value = (slope × integer) + bias,

where the slope can be expressed as
slope = fractional slope × 2exponent.

This function returns the exponent of a registered fixed-point data type:

• For power-of-two scaling, the exponent is the negative of the fraction length.
• If the data type has trivial scaling, including for data types single and double, the

exponent is 0.
• If the registered data type is ScaledDouble, the exponent returned is that of the

nonoverridden data type.

This function errors out when ssGetDataTypeIsFxpFltApiCompat returns FALSE.

 ssGetDataTypeFixedExponent

A-49

Requirement

To use this function, you must include fixedpoint.h and fixedpoint.c. For more
information, see “Structure of the S-Function” on page A-5.

Languages

C

TLC Functions

FixPt_DataTypeFixedExponent

See Also

ssGetDataTypeBias, ssGetDataTypeFracSlope, ssGetDataTypeTotalSlope

A ssGetDataTypeFracSlope

A-50

ssGetDataTypeFracSlope
Return fractional slope of registered data type

Syntax
extern double ssGetDataTypeFracSlope(SimStruct *S, DTypeId

 dataTypeId)

Arguments

S

SimStruct representing an S-function block.
dataTypeId

Data type ID of the registered data type for which you want to know the fractional
slope.

Description

Fixed-point numbers can be represented as
real-world value = (slope × integer) + bias,

where the slope can be expressed as
slope = fractional slope × 2exponent.

This function returns the fractional slope of a registered fixed-point data type. To get the
total slope, use ssGetDataTypeTotalSlope:

• For power-of-two scaling, the fractional slope is 1.
• If the data type has trivial scaling, including data types single and double, the

fractional slope is 1.
• If the registered data type is ScaledDouble, the fractional slope returned is that of

the nonoverridden data type.

This function errors out when ssGetDataTypeIsFxpFltApiCompat returns FALSE.

 ssGetDataTypeFracSlope

A-51

Requirement

To use this function, you must include fixedpoint.h and fixedpoint.c. For more
information, see “Structure of the S-Function” on page A-5.

Languages

C

TLC Functions

FixPt_DataTypeFracSlope

See Also

ssGetDataTypeBias, ssGetDataTypeFixedExponent, ssGetDataTypeTotalSlope

A ssGetDataTypeFractionLength

A-52

ssGetDataTypeFractionLength
Return fraction length of registered data type with power-of-two scaling

Syntax
extern int ssGetDataTypeFractionLength (SimStruct *S, DTypeId

 dataTypeId)

Arguments
S

SimStruct representing an S-function block.
dataTypeId

Data type ID of the registered data type for which you want to know the fraction
length.

Description
This function returns the fraction length, or the number of bits to the right of the binary
point, of the data type designated by dataTypeId.

This function errors out when ssGetDataTypeIsScalingPow2 returns FALSE.

This function also errors out when ssGetDataTypeIsFxpFltApiCompat returns
FALSE.

Requirement
To use this function, you must include fixedpoint.h and fixedpoint.c. For more
information, see “Structure of the S-Function” on page A-5.

Languages
C

 ssGetDataTypeFractionLength

A-53

TLC Functions

FixPt_DataTypeFractionLength

See Also

ssGetDataTypeFxpWordLength

A ssGetDataTypeFxpContainWordLen

A-54

ssGetDataTypeFxpContainWordLen
Return word length of storage container of registered data type

Syntax
extern int ssGetDataTypeFxpContainWordLen (SimStruct *S,

 DTypeId dataTypeId)

Arguments
S

SimStruct representing an S-function block.
dataTypeId

Data type ID of the registered data type for which you want to know the container
word length.

Description

This function returns the word length, in bits, of the storage container of the fixed-
point data type designated by dataTypeId. This function does not return the size of the
storage container or the word length of the data type. To get the storage container size,
use ssGetDataTypeStorageContainerSize. To get the data type word length, use
ssGetDataTypeFxpWordLength.

Requirement

To use this function, you must include fixedpoint.h and fixedpoint.c. For more
information, see “Structure of the S-Function” on page A-5.

Languages

C

 ssGetDataTypeFxpContainWordLen

A-55

Examples

An sfix24_En10 data type has a word length of 24, but is actually stored in 32 bits
during simulation. For this signal,

• ssGetDataTypeFxpContainWordLen returns 32, which is the storage container
word length in bits.

• ssGetDataTypeFxpWordLength returns 24, which is the data type word length in
bits.

• ssGetDataTypeStorageContainerSize or sizeof() returns 4, which is the
storage container size in bytes.

TLC Functions

FixPt_DataTypeFxpContainWordLen

See Also

ssGetDataTypeFxpWordLength, ssGetDataTypeStorageContainCat,
ssGetDataTypeStorageContainerSize

A ssGetDataTypeFxpIsSigned

A-56

ssGetDataTypeFxpIsSigned
Determine whether fixed-point registered data type is signed or unsigned

Syntax
extern int ssGetDataTypeFxpIsSigned (SimStruct *S, DTypeId

 dataTypeId)

Arguments

S

SimStruct representing an S-function block.
dataTypeId

Data type ID of the registered fixed-point data type for which you want to know
whether it is signed.

Description

This function determines whether a registered fixed-point data type is signed:

• If the fixed-point data type is signed, the function returns TRUE. If the fixed-point
data type is unsigned, the function returns FALSE.

• If the registered data type is ScaledDouble, the function returns TRUE or FALSE
according to the signedness of the nonoverridden data type.

• If the registered data type is single or double, this function errors out.

This function errors out when ssGetDataTypeIsFxpFltApiCompat returns FALSE.

Requirement

To use this function, you must include fixedpoint.h and fixedpoint.c. For more
information, see “Structure of the S-Function” on page A-5.

 ssGetDataTypeFxpIsSigned

A-57

Languages

C

TLC Functions

FixPt_DataTypeFxpIsSigned

A ssGetDataTypeFxpWordLength

A-58

ssGetDataTypeFxpWordLength
Return word length of fixed-point registered data type

Syntax
extern int ssGetDataTypeFxpWordLength (SimStruct *S, DTypeId

 dataTypeId)

Arguments
S

SimStruct representing an S-function block.
dataTypeId

Data type ID of the registered fixed-point data type for which you want to know the
word length.

Description
This function returns the word length of the fixed-point data type designated by
dataTypeId. This function does not return the word length of the container of the data
type. To get the container word length, use ssGetDataTypeFxpContainWordLen:

• If the registered data type is fixed point, this function returns the total word length
including any sign bits, integer bits, and fractional bits.

• If the registered data type is ScaledDouble, this function returns the word length of
the nonoverridden data type.

• If registered data type is single or double, this function errors out.

This function errors out when ssGetDataTypeIsFxpFltApiCompat returns FALSE.

Requirement
To use this function, you must include fixedpoint.h and fixedpoint.c. For more
information, see “Structure of the S-Function” on page A-5.

 ssGetDataTypeFxpWordLength

A-59

Languages

C

Examples

An sfix24_En10 data type has a word length of 24, but is actually stored in 32 bits
during simulation. For this signal,

• ssGetDataTypeFxpWordLength returns 24, which is the data type word length in
bits.

• ssGetDataTypeFxpContainWordLen returns 32, which is the storage container
word length in bits.

• ssGetDataTypeStorageContainerSize or sizeof() returns 4, which is the
storage container size in bytes.

TLC Functions

FixPt_DataTypeFxpWordLength

See Also

ssGetDataTypeFxpContainWordLen, ssGetDataTypeFractionLength,
ssGetDataTypeStorageContainerSize

A ssGetDataTypeIsFixedPoint

A-60

ssGetDataTypeIsFixedPoint

Determine whether registered data type is fixed-point data type

Syntax

extern int ssGetDataTypeIsFixedPoint(SimStruct *S, DTypeId

 dataTypeId)

Arguments

S

SimStruct representing an S-function block.
dataTypeId

Data type ID of the registered data type for which you want to know whether it is
fixed-point.

Description

This function determines whether a registered data type is a fixed-point data type:

• This function returns TRUE if the registered data type is fixed-point, and FALSE
otherwise.

• If the registered data type is a pure Simulink integer, such as int8, this function
returns TRUE.

• If the registered data type is ScaledDouble, this function returns FALSE.

Requirement

To use this function, you must include fixedpoint.h and fixedpoint.c. For more
information, see “Structure of the S-Function” on page A-5.

 ssGetDataTypeIsFixedPoint

A-61

Languages

C

TLC Functions

FixPt_DataTypeIsFixedPoint

See Also

ssGetDataTypeIsFloatingPoint

A ssGetDataTypeIsFloatingPoint

A-62

ssGetDataTypeIsFloatingPoint
Determine whether registered data type is floating-point data type

Syntax
extern int ssGetDataTypeIsFloatingPoint (SimStruct *S, DTypeId

 dataTypeId)

Arguments
S

SimStruct representing an S-function block.
dataTypeId

Data type ID of the registered data type for which you want to know whether it is
floating-point.

Description

This function determines whether a registered data type is single or double:

• If the registered data type is either single or double, this function returns TRUE,
and FALSE is returned otherwise.

• If the registered data type is ScaledDouble, this function returns FALSE.

Requirement

To use this function, you must include fixedpoint.h and fixedpoint.c. For more
information, see “Structure of the S-Function” on page A-5.

Languages

C

 ssGetDataTypeIsFloatingPoint

A-63

TLC Functions

FixPt_DataTypeIsFloatingPoint

See Also

ssGetDataTypeIsFixedPoint

A ssGetDataTypeIsFxpFltApiCompat

A-64

ssGetDataTypeIsFxpFltApiCompat
Determine whether registered data type is supported by API for user-written fixed-point
S-functions

Syntax
extern int ssGetDataTypeIsFxpFltApiCompat(SimStruct *S, DTypeId

 dataTypeId)

Arguments

S

SimStruct representing an S-function block.
dataTypeId

Data type ID of the registered data type for which you want to determine
compatibility with the API for user-written fixed-point S-functions.

Description

This function determines whether the registered data type is supported by the API for
user-written fixed-point S-functions. The supported data types are all standard Simulink
data types, all fixed-point data types, and data type override data types.

Requirement

To use this function, you must include fixedpoint.h and fixedpoint.c. For more
information, see “Structure of the S-Function” on page A-5.

Languages

C

 ssGetDataTypeIsFxpFltApiCompat

A-65

TLC Functions

None. Checking for API-compatible data types is done in simulation. Checking for API-
compatible data types is not supported in TLC.

A ssGetDataTypeIsScalingPow2

A-66

ssGetDataTypeIsScalingPow2
Determine whether registered data type has power-of-two scaling

Syntax
extern int ssGetDataTypeIsScalingPow2 (SimStruct *S, DTypeId

 dataTypeId)

Arguments
S

SimStruct representing an S-function block.
dataTypeId

Data type ID of the registered data type for which you want to know whether the
scaling is strictly power-of-two.

Description

This function determines whether the registered data type is scaled strictly by a power of
two. Fixed-point numbers can be represented as
real-world value = (slope × integer) + bias,

where the slope can be expressed as
slope = fractional slope × 2exponent.

When bias = 0 and fractional slope = 1, the only scaling factor that remains is a power of
two:
real-world value = (2exponent × integer) = (2-fraction length × integer).

Trivial scaling is considered a case of power-of-two scaling, with the exponent being equal
to zero.

Note Many fixed-point algorithms are designed to accept only power-of-two
scaling. For these algorithms, you can call ssGetDataTypeIsScalingPow2 in

 ssGetDataTypeIsScalingPow2

A-67

mdlSetInputPortDataType and mdlSetOutputPortDataType, to prevent
unsupported data types from being accepted.

This function errors out when ssGetDataTypeIsFxpFltApiCompat returns FALSE.

Requirement

To use this function, you must include fixedpoint.h and fixedpoint.c. For more
information, see “Structure of the S-Function” on page A-5.

Languages

C

TLC Functions

FixPt_DataTypeIsScalingPow2

See Also

ssGetDataTypeIsScalingTrivial

A ssGetDataTypeIsScalingTrivial

A-68

ssGetDataTypeIsScalingTrivial
Determine whether scaling of registered data type is slope = 1, bias = 0

Syntax
extern int ssGetDataTypeIsScalingTrivial (SimStruct *S, DTypeId

 dataTypeId)

Arguments

S

SimStruct representing an S-function block.
dataTypeId

Data type ID of the registered data type for which you want to know whether the
scaling is trivial.

Description

This function determines whether the scaling of a registered data type is trivial. In [Slope
Bias] representation, fixed-point numbers can be represented as
real-world value = (slope × integer) + bias.

In the trivial case, slope = 1 and bias = 0.

In terms of binary-point-only scaling, the binary point is to the right of the least
significant bit for trivial scaling, meaning that the fraction length is zero:
real-world value = integer × 2–fraction length = integer × 20.

In either case, trivial scaling means that the real-world value is simply equal to the
stored integer value:
real-world value = integer.

Scaling is always trivial for pure integers, such as int8, and also for the true floating-
point types single and double.

 ssGetDataTypeIsScalingTrivial

A-69

This function errors out when ssGetDataTypeIsFxpFltApiCompat returns FALSE.

Requirement

To use this function, you must include fixedpoint.h and fixedpoint.c. For more
information, see “Structure of the S-Function” on page A-5.

Languages

C

TLC Functions

FixPt_DataTypeIsScalingTrivial

See Also

ssGetDataTypeIsScalingPow2

A ssGetDataTypeNumberOfChunks

A-70

ssGetDataTypeNumberOfChunks
Return number of chunks in multiword storage container of registered data type

Syntax
extern int ssGetDataTypeNumberOfChunks(SimStruct *S,

 DTypeId dataTypeId)

Arguments
S

SimStruct representing an S-function block.
dataTypeId

Data type ID of the registered data type for which you want to know the number of
chunks in its multiword storage container.

Description
This function returns the number of chunks in the multiword storage container of
the fixed-point data type designated by dataTypeId. This function is valid only for
a registered data type whose storage container uses a multiword representation. You
can use the ssGetDataTypeStorageContainCat function to identify the storage
container category; for multiword storage containers, the function returns the category
FXP_STORAGE_MULTIWORD.

Requirement
To use this function, you must include fixedpoint.h and fixedpoint.c. For more
information, see “Structure of the S-Function” on page A-5.

Languages
C

 ssGetDataTypeNumberOfChunks

A-71

See Also

ssGetDataTypeStorageContainCat

A ssGetDataTypeStorageContainCat

A-72

ssGetDataTypeStorageContainCat
Return storage container category of registered data type

Syntax
extern fxpStorageContainerCategory

ssGetDataTypeStorageContainCat(SimStruct *S, DTypeId dataTypeId)

Arguments

S

SimStruct representing an S-function block.
dataTypeId

Data type ID of the registered data type for which you want to know the container
category.

Description

This function returns the storage container category of the data type designated by
dataTypeId. The container category returned by this function is used to store input and
output signals, run-time parameters, and DWorks during Simulink simulations.

During simulation, fixed-point signals are held in one of the types of containers shown in
the following table. Therefore in many cases, signals are represented in containers with
more bits than their actual word length.

Fixed-Point Storage Containers

Container Category Signal
Word Length

Container Word
Length

Container Size

FXP_STORAGE_INT8 (signed)
FXP_STORAGE_UINT8 (unsigned)

1 to 8 bits 8 bits 1 byte

FXP_STORAGE_INT16 (signed)
FXP_STORAGE_UINT16 (unsigned)

9 to 16 bits 16 bits 2 bytes

 ssGetDataTypeStorageContainCat

A-73

Container Category Signal
Word Length

Container Word
Length

Container Size

FXP_STORAGE_INT32 (signed)
FXP_STORAGE_UINT32 (unsigned)

17 to 32 bits 32 bits 4 bytes

FXP_STORAGE_OTHER_SINGLE_WORD 33 to word
length of long
data type

Length of long
data type

Length of long data
type

FXP_STORAGE_MULTIWORD Greater than the
word length of
long data type
to 128 bits

Multiples of
length of long
data type to
128 bits

Multiples of length of
long data type to 128
bits

When the number of bits in the signal word length is less than the size of the container,
the word length bits are always stored in the least significant bits of the container. The
remaining container bits must be sign extended to fit the bits of the container:

• If the data type is unsigned, then the sign-extended bits must be cleared to zero.
• If the data type is signed, then the sign-extended bits must be set to one for strictly

negative numbers, and cleared to zero otherwise.

The ssGetDataTypeStorageContainCat function can also return the following values.

Other Storage Containers

Container Category Description
FXP_STORAGE_UNKNOWN Returned if the storage container category is unknown
FXP_STORAGE_SINGLE Container type for a Simulink single
FXP_STORAGE_DOUBLE Container type for a Simulink double
FXP_STORAGE_SCALEDDOUBLE Container type for a data type that has been overridden with

Scaled double

This function errors out when ssGetDataTypeIsFxpFltApiCompat returns FALSE.

Requirement

To use this function, you must include fixedpoint.h and fixedpoint.c. For more
information, see “Structure of the S-Function” on page A-5.

A ssGetDataTypeStorageContainCat

A-74

Languages

C

TLC Functions

Because the mapping of storage containers in simulation to storage containers in code
generation is not one-to-one, the TLC functions for storage containers in TLC are
different from those in simulation. Refer to “Storage Container TLC Functions” on page
A-10 for more information:

• FixPt_DataTypeNativeType

• FixPt_DataTypeStorageDouble

• FixPt_DataTypeStorageSingle

• FixPt_DataTypeStorageScaledDouble

• FixPt_DataTypeStorageSInt

• FixPt_DataTypeStorageUInt

• FixPt_DataTypeStorageSLong

• FixPt_DataTypeStorageULong

• FixPt_DataTypeStorageSShort

• FixPt_DataTypeStorageUShort

See Also

ssGetDataTypeStorageContainerSize

 ssGetDataTypeStorageContainerSize

A-75

ssGetDataTypeStorageContainerSize
Return storage container size of registered data type

Syntax
extern size_t ssGetDataTypeStorageContainerSize

 (SimStruct *S, DTypeId

 dataTypeId)

Arguments
S

SimStruct representing an S-function block.
dataTypeId

Data type ID of the registered data type for which you want to know the container
size.

Description
This function returns the storage container size of the data type designated by
dataTypeId. This function returns the same value as would the sizeof() function; it
does not return the word length of either the storage container or the data type. To get
the word length of the storage container, use ssGetDataTypeFxpContainWordLen. To
get the word length of the data type, use ssGetDataTypeFxpWordLength.

The container of the size returned by this function stores input and output signals, run-
time parameters, and DWorks during Simulink simulations. It is also the appropriate
size measurement to pass to functions like memcpy().

This function errors out when ssGetDataTypeIsFxpFltApiCompat returns FALSE.

Requirement
To use this function, you must include fixedpoint.h and fixedpoint.c. For more
information, see “Structure of the S-Function” on page A-5.

A ssGetDataTypeStorageContainerSize

A-76

Languages

C

Examples

An sfix24_En10 data type has a word length of 24, but is actually stored in 32 bits
during simulation. For this signal,

• ssGetDataTypeStorageContainerSize or sizeof() returns 4, which is the
storage container size in bytes.

• ssGetDataTypeFxpContainWordLen returns 32, which is the storage container
word length in bits.

• ssGetDataTypeFxpWordLength returns 24, which is the data type word length in
bits.

TLC Functions

FixPt_GetDataTypeStorageContainerSize

See Also

ssGetDataTypeFxpContainWordLen, ssGetDataTypeFxpWordLength,
ssGetDataTypeStorageContainCat

 ssGetDataTypeTotalSlope

A-77

ssGetDataTypeTotalSlope

Return total slope of scaling of registered data type

Syntax

extern double ssGetDataTypeTotalSlope (SimStruct *S, DTypeId

 dataTypeId)

Arguments

S

SimStruct representing an S-function block.
dataTypeId

Data type ID of the registered data type for which you want to know the total slope.

Description

Fixed-point numbers can be represented as
real-world value = (slope × integer) + bias,

where the slope can be expressed as
slope = fractional slope × 2exponent.

This function returns the total slope, rather than the fractional slope, of the data type
designated by dataTypeId. To get the fractional slope, use ssGetDataTypeFracSlope:

• If the registered data type has trivial scaling, including double and single data
types, the function returns a total slope of 1.

• If the registered data type is ScaledDouble, the function returns the total slope of
the nonoverridden data type. Refer to the examples below.

This function errors out when ssGetDataTypeIsFxpFltApiCompat returns FALSE.

A ssGetDataTypeTotalSlope

A-78

Requirement

To use this function, you must include fixedpoint.h and fixedpoint.c. For more
information, see “Structure of the S-Function” on page A-5.

Languages

C

Examples

The data type sfix32_En4 becomes flts32_En4 with data type override. The total
slope returned by this function in either case is 0.0625 (2-4).

The data type ufix16_s7p98 becomes fltu16_s7p98 with data type override. The total
slope returned by this function in either case is 7.98.

TLC Functions

FixPt_DataTypeTotalSlope

See Also

ssGetDataTypeBias, ssGetDataTypeFixedExponent, ssGetDataTypeFracSlope

 ssLogFixptInstrumentation

A-79

ssLogFixptInstrumentation

Record information collected during simulation

Syntax

extern void ssLogFixptInstrumentation

 (SimStruct *S,

 double minValue,

 double maxValue,

 int countOverflows,

 int countSaturations,

 int countDivisionsByZero,

 char *pStrName)

Arguments

S

SimStruct representing an S-function block.
minValue

Minimum output value that occurred during simulation.
maxValue

Maximum output value that occurred during simulation.
countOverflows

Number of overflows that occurred during simulation.
countSaturations

Number of saturations that occurred during simulation.
countDivisionsByZero

Number of divisions by zero that occurred during simulation.
*pStrName

The string argument is currently unused.

A ssLogFixptInstrumentation

A-80

Description

ssLogFixptInstrumentation records information collected during a simulation, such as
output maximum and minimum, any overflows, saturations, and divisions by zero that
occurred. The Fixed-Point Tool displays this information after a simulation.

Requirement

To use this function, you must include fixedpoint.h and fixedpoint.c. For more
information, see “Structure of the S-Function” on page A-5.

Languages

C

 ssRegisterDataTypeFxpBinaryPoint

A-81

ssRegisterDataTypeFxpBinaryPoint

Register fixed-point data type with binary-point-only scaling and return its data type ID

Syntax

extern DTypeId ssRegisterDataTypeFxpBinaryPoint

 (SimStruct *S,

 int isSigned,

 int wordLength,

 int fractionLength,

 int obeyDataTypeOverride)

Arguments

S

SimStruct representing an S-function block.
isSigned

TRUE if the data type is signed.

FALSE if the data type is unsigned.
wordLength

Total number of bits in the data type, including any sign bit.
fractionLength

Number of bits in the data type to the right of the binary point.
obeyDataTypeOverride

TRUE indicates that the Data Type Override setting for the subsystem is to be
obeyed. Depending on the value of Data Type Override, the resulting data type
could be Double, Single, Scaled double, or the fixed-point data type specified by
the other arguments of the function.

FALSE indicates that the Data Type Override setting is to be ignored.

A ssRegisterDataTypeFxpBinaryPoint

A-82

Description

This function fully registers a fixed-point data type with the Simulink software
and returns a data type ID. Note that unlike the standard Simulink function
ssRegisterDataType, you do not need to take any additional registration steps. The
data type ID can be used to specify the data types of input and output ports, run-time
parameters, and DWork states. It can also be used with all the standard data type access
methods in simstruc.h, such as ssGetDataTypeSize.

Use this function if you want to register a fixed-point data type with binary-point-only
scaling. Alternatively, you can use one of the other fixed-point registration functions:

• Use ssRegisterDataTypeFxpFSlopeFixExpBias to register a data type with
[Slope Bias] scaling by specifying the word length, fractional slope, fixed exponent,
and bias.

• Use ssRegisterDataTypeFxpScaledDouble to register a scaled double.
• Use ssRegisterDataTypeFxpSlopeBias to register a data type with [Slope Bias]

scaling.

If the registered data type is not one of the Simulink built-in data types, a Fixed-
Point Designer software license is checked out. To prevent a Fixed-Point Designer
software license from being checked out when you simply open or view a model, protect
registration calls with

if (ssGetSimMode(S) != SS_SIMMODE_SIZES_CALL_ONLY)

 ssRegisterDataType...

Note Because of the nature of the assignment of data type IDs, you should always use
API functions to extract information from a data type ID about a data type in your S-
function. For more information, refer to “Data Type IDs” on page A-12.

Requirement

To use this function, you must include fixedpoint.h and fixedpoint.c. For more
information, see “Structure of the S-Function” on page A-5.

 ssRegisterDataTypeFxpBinaryPoint

A-83

Languages

C

TLC Functions

None. Data types should be registered in the Simulink software. Registration of data
types is not supported in TLC.

See Also

ssRegisterDataTypeFxpFSlopeFixExpBias,
ssRegisterDataTypeFxpScaledDouble, ssRegisterDataTypeFxpSlopeBias

A ssRegisterDataTypeFxpFSlopeFixExpBias

A-84

ssRegisterDataTypeFxpFSlopeFixExpBias
Register fixed-point data type with [Slope Bias] scaling specified in terms of fractional
slope, fixed exponent, and bias, and return its data type ID

Syntax

extern DTypeId ssRegisterDataTypeFxpFSlopeFixExpBias

 (SimStruct *S,

 int isSigned,

 int wordLength,

 double fractionalSlope,

 int fixedExponent,

 double bias,

 int obeyDataTypeOverride)

Arguments

S

SimStruct representing an S-function block.
isSigned

TRUE if the data type is signed.

FALSE if the data type is unsigned.
wordLength

Total number of bits in the data type, including any sign bit.
fractionalSlope

Fractional slope of the data type.
fixedExponent

Exponent of the slope of the data type.
bias

Bias of the scaling of the data type.
obeyDataTypeOverride

 ssRegisterDataTypeFxpFSlopeFixExpBias

A-85

TRUE indicates that the Data Type Override setting for the subsystem is to be
obeyed. Depending on the value of Data Type Override, the resulting data type
could be Double, Single, Scaled double, or the fixed-point data type specified by
the other arguments of the function.

FALSE indicates that the Data Type Override setting is to be ignored.

Description

This function fully registers a fixed-point data type with the Simulink software
and returns a data type ID. Note that unlike the standard Simulink function
ssRegisterDataType, you do not need to take any additional registration steps. The
data type ID can be used to specify the data types of input and output ports, run-time
parameters, and DWork states. It can also be used with all the standard data type access
methods in simstruc.h, such as ssGetDataTypeSize.

Use this function if you want to register a fixed-point data type by specifying the word
length, fractional slope, fixed exponent, and bias. Alternatively, you can use one of the
other fixed-point registration functions:

• Use ssRegisterDataTypeFxpBinaryPoint to register a data type with binary-
point-only scaling.

• Use ssRegisterDataTypeFxpScaledDouble to register a scaled double.
• Use ssRegisterDataTypeFxpSlopeBias to register a data type with [Slope Bias]

scaling.

If the registered data type is not one of the Simulink built-in data types, a Fixed-
Point Designer software license is checked out. To prevent a Fixed-Point Designer
software license from being checked out when you simply open or view a model, protect
registration calls with

if (ssGetSimMode(S) != SS_SIMMODE_SIZES_CALL_ONLY)

 ssRegisterDataType...

Note Because of the nature of the assignment of data type IDs, you should always use
API functions to extract information from a data type ID about a data type in your S-
function. For more information, refer to “Data Type IDs” on page A-12.

A ssRegisterDataTypeFxpFSlopeFixExpBias

A-86

Requirement

To use this function, you must include fixedpoint.h and fixedpoint.c. For more
information, see “Structure of the S-Function” on page A-5.

Languages

C

TLC Functions

None. Data types should be registered in the Simulink software. Registration of data
types is not supported in TLC.

See Also

ssRegisterDataTypeFxpBinaryPoint, ssRegisterDataTypeFxpScaledDouble,
ssRegisterDataTypeFxpSlopeBias

 ssRegisterDataTypeFxpScaledDouble

A-87

ssRegisterDataTypeFxpScaledDouble
Register scaled double data type with [Slope Bias] scaling specified in terms of fractional
slope, fixed exponent, and bias, and return its data type ID

Syntax
extern DTypeId ssRegisterDataTypeFxpScaledDouble

 (SimStruct *S,

 int isSigned,

 int wordLength,

 double fractionalSlope,

 int fixedExponent,

 double bias,

 int obeyDataTypeOverride)

Arguments

S

SimStruct representing an S-function block.
isSigned

TRUE if the data type is signed.

FALSE if the data type is unsigned.
wordLength

Total number of bits in the data type, including any sign bit.
fractionalSlope

Fractional slope of the data type.
fixedExponent

Exponent of the slope of the data type.
bias

Bias of the scaling of the data type.
obeyDataTypeOverride

A ssRegisterDataTypeFxpScaledDouble

A-88

TRUE indicates that the Data Type Override setting for the subsystem is to be
obeyed. Depending on the value of Data Type Override, the resulting data type
could be Double, Single, Scaled double, or the fixed-point data type specified by
the other arguments of the function.

FALSE indicates that the Data Type Override setting is to be ignored.

Description

This function fully registers a fixed-point data type with the Simulink software
and returns a data type ID. Note that unlike the standard Simulink function
ssRegisterDataType, you do not need to take any additional registration steps. The
data type ID can be used to specify the data types of input and output ports, run-time
parameters, and DWork states. It can also be used with all the standard data type access
methods in simstruc.h, such as ssGetDataTypeSize.

Use this function if you want to register a scaled double data type. Alternatively, you can
use one of the other fixed-point registration functions:

• Use ssRegisterDataTypeFxpBinaryPoint to register a data type with binary-
point-only scaling.

• Use ssRegisterDataTypeFxpFSlopeFixExpBias to register a data type with
[Slope Bias] scaling by specifying the word length, fractional slope, fixed exponent,
and bias.

• Use ssRegisterDataTypeFxpSlopeBias to register a data type with [Slope Bias]
scaling.

If the registered data type is not one of the Simulink built-in data types, a Fixed-
Point Designer software license is checked out. To prevent a Fixed-Point Designer
software license from being checked out when you simply open or view a model, protect
registration calls with

if (ssGetSimMode(S) != SS_SIMMODE_SIZES_CALL_ONLY)

 ssRegisterDataType...

Note Because of the nature of the assignment of data type IDs, you should always use
API functions to extract information from a data type ID about a data type in your S-
function. For more information, refer to “Data Type IDs” on page A-12.

 ssRegisterDataTypeFxpScaledDouble

A-89

Requirement

To use this function, you must include fixedpoint.h and fixedpoint.c. For more
information, see “Structure of the S-Function” on page A-5.

Languages

C

TLC Functions

None. Data types should be registered in the Simulink software. Registration of data
types is not supported in TLC.

See Also

ssRegisterDataTypeFxpBinaryPoint,
ssRegisterDataTypeFxpFSlopeFixExpBias, ssRegisterDataTypeFxpSlopeBias

A ssRegisterDataTypeFxpSlopeBias

A-90

ssRegisterDataTypeFxpSlopeBias

Register data type with [Slope Bias] scaling and return its data type ID

Syntax

extern DTypeId ssRegisterDataTypeFxpSlopeBias

 (SimStruct *S,

 int isSigned,

 int wordLength,

 double totalSlope,

 double bias,

 int obeyDataTypeOverride)

Arguments

S

SimStruct representing an S-function block.
isSigned

TRUE if the data type is signed.

FALSE if the data type is unsigned.
wordLength

Total number of bits in the data type, including any sign bit.
totalSlope

Total slope of the scaling of the data type.
bias

Bias of the scaling of the data type.
obeyDataTypeOverride

TRUE indicates that the Data Type Override setting for the subsystem is to be
obeyed. Depending on the value of Data Type Override, the resulting data type
could be Double, Single, Scaled double, or the fixed-point data type specified by
the other arguments of the function.

 ssRegisterDataTypeFxpSlopeBias

A-91

FALSE indicates that the Data Type Override setting is to be ignored.

Description

This function fully registers a fixed-point data type with the Simulink software
and returns a data type ID. Note that unlike the standard Simulink function
ssRegisterDataType, you do not need to take any additional registration steps. The
data type ID can be used to specify the data types of input and output ports, run-time
parameters, and DWork states. It can also be used with all the standard data type access
methods in simstruc.h, such as ssGetDataTypeSize.

Use this function if you want to register a fixed-point data type with [Slope Bias] scaling.
Alternately, you can use one of the other fixed-point registration functions:

• Use ssRegisterDataTypeFxpBinaryPoint to register a data type with binary-
point-only scaling.

• Use ssRegisterDataTypeFxpFSlopeFixExpBias to register a data type with
[Slope Bias] scaling by specifying the word length, fractional slope, fixed exponent,
and bias.

• Use ssRegisterDataTypeFxpScaledDouble to register a scaled double.

If the registered data type is not one of the Simulink built-in data types, a Fixed-
Point Designer software license is checked out. To prevent a Fixed-Point Designer
software license from being checked out when you simply open or view a model, protect
registration calls with

if (ssGetSimMode(S) != SS_SIMMODE_SIZES_CALL_ONLY)

 ssRegisterDataType...

Note Because of the nature of the assignment of data type IDs, you should always use
API functions to extract information from a data type ID about a data type in your S-
function. For more information, refer to “Data Type IDs” on page A-12.

Requirement

To use this function, you must include fixedpoint.h and fixedpoint.c. For more
information, see “Structure of the S-Function” on page A-5.

A ssRegisterDataTypeFxpSlopeBias

A-92

Languages

C

TLC Functions

None.

See Also

ssRegisterDataTypeFxpBinaryPoint,
ssRegisterDataTypeFxpFSlopeFixExpBias,
ssRegisterDataTypeFxpScaledDouble

